纳米流体的热物性及在波壁管内流动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,能源问题日益突出,如何降低工业装备的能量消耗、提高热交换设备的换热效率就变得十分重要。传统的低导热系数的纯液体换热工质已经很难满足一些特殊条件下的换热要求,因此需要研制出导热系数高、传热性能好的新型换热工质。为了解决这一问题,有学者提出一个全新的概念—纳米流体:即以一定的方式和比例,将纳米级的金属或非金属粒子添加到液体介质中形成的一类新型传热工质。
     本文对纳米流体的制备及稳定性进行了探索性研究,采用两步法制备出多种具有较好悬浮稳定性的纳米流体。在此基础上,详细研究了纳米流体的热物性参数,通过实验方法测量了纳米流体的导热系数、粘度和比热容;总结归纳了近年来国内外学者对纳米流体热物性参数理论模型的研究成果,并将实验值与理论预测值进行比较,确定出最有效的纳米流体热物性参数理论模型。
     为了研究纳米流体的流动特性,将不同体积浓度的SiO2-水纳米流体应用于波壁管中进行实验研究,由于波壁管自身的结构特点,使得流体能够在较小雷诺数下达到湍流状态,可以方便测出流体在层流、过渡流、湍流区的特点。通过纳米流体在波壁管内沿程阻力特性实验发现:SiO2-水纳米流体的摩擦系数在层流区和过渡流区内随着纳米粒子浓度的增加而增大,在湍流区其摩擦系数随浓度的变化不大。通过流动可视化实验,拍摄到了不同体积浓度的SiO2-水纳米流体在波壁管内流动的照片,可以看出纳米流体的浓度越高,流动就越显得活跃,这是由于内部纳米粒子的微运动促使流体均匀性更好。实验测量了波壁管内纳米流体的质量传递系数,结果表明:SiO2-水纳米流体的质量传递系数无论在层流、过渡流还是湍流区都比去离子水的质量传递系数有显著提高。
     采用FLUENT软件并基于标准k-ε计算模型,假定纳米流体为均匀、单相、不可压缩流体,分别对去离子水和体积浓度为2%的SiO2-水纳米流体在波壁管内的流动特性进行数值模拟,得到了两种流体在相同雷诺数及相同入口流速条件下的流线图,从图中看出体积浓度为2%的SiO2-水纳米流体的数值模拟结果与可视化实验结果并不一致,并分析了产生这种现象的原因,为进一步研究纳米流体的流动特性和传热传质机理提供了
With the development of science and technology, the problem of energy sources is getting more and more serious than ever. It is very important to reduce power consumption and enhance the heat transfer rate in heat tansfer capabilities. Nowadays, the traditional pure liquid heat-transfer medium can't meet the requirements in some special work condition. It is necessary to prepare a higher thermal conductivity and more efficient heat-transfer medium. To solve this problem, a new concept of heat transfer fluids called "nanofluids" has been proposed. It refers to a new kind of heat transfer medium created by suspending nanoscaled metallic or nonmetallic particles in the base fluids.
     This research focuses on the preparation and stability of nanofluids. Two steps method is used to prepare many kinds of nanofluids with better stability. On this basis, research on thermophysical characteristic of nanofluids and measure the conductivity, viscosity and specific heat of nanofluids through the experimental method; generalize the research achievement of thermophysical characteristic proposed by researchers in the recent years; confirm the effective thermal property models of nanofluids after comparison between the experimental data and the calculated results.
     Experiments are carried on flow behavior of different volume concentration SiO2-water nanofluids in a wavy-walled tube. Because of the structural characteristics of the wavy-walled tube, the SiO2-water nanofluids can be in a turbulent area in smaller Reynolds numbers and the flow structural characteristics can be easily measured in the laminar, transitional and turbulent flow regimes. The result of resistance tests shows that the friction factor of SiO2-water nanofluids increases with the concentration of nanoparticles in the laminar and transitional flow regimes, but it is almost unchanged in the turbulent flow regimes. The photos of flow visualization show that the SiO2-water nanofluids have better uniformity due to the micro-movements of the nanoparticles. The result of mass transfer tests show that the mass transfer of SiO2-water nanofluids is higher than pure water in the laminar, transitional and turbulent flow regimes.
     The flow behavior of pure water and SiO2-water nanofluids(2%) in a wavy-walled tube is simulated by using FLUENT software based on the standard k-εmodel. The flow line pictures of pure water and SiO2-water nanofluids(2%) are achieved, which is under the condition of the same Reynolds number and the same inlet velocity. It is found that the simulation results of SiO2-water nanofluids(2%) are not entirely consistent with the experimental results and the reasons for this phenomenon are analyzed. The software provides a new method for further research on the flow behavior as well as the heat and mass transfer mechanisms of the nanofluids.
引文
[1]Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles. Developments and Applications of Non-Newtonian Flows[G].New York:ASME FED-vol.231,1995:99-105.
    [2]Choi S U S, Zhang Z G, Yu W, et al. Anomalous thermal conductivity enhancement in nanotube suspensions[J].Appllied Physics Letters,2001,79:2252-2554.
    [3]Xuan Yimin, Li Qiang. Heat transfer enhancement of nanofluids[J]. International Journal of Heat Fluid Flow,2000,21:58-64.
    [4]彭小飞,俞小莉,夏立峰,等.纳米流体悬浮稳定性影响因素[J].浙江大学学报(工学版),2007,41(4):577-580.
    [5]彭小飞,俞小莉,余凤芹.低浓度纳米流体比热容研究[J].材料科学与工程学报,2007,25(5):719-722.
    [6]Lee S, Choi S U S, Eastman J A. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. Journal of Heat Transfer,1999,121:280-289.
    [7]谢华清,奚同庚,王锦昌.纳米流体介质导热机理初探[J],物理学报,2003,6(6):1444-1449.
    [8]金翼,Yulong Ding, Dongshen Wen. Ti02纳米流体的对流换热系数测定[J],冶金能源,2006,25(6):47-50.
    [9]Xie H Q, Lee H Y, Youn W I. Nanofluids containing smultiwalled carbon nanotubes and their enhanced themal conductivities[J].Appllied Physics Letters,2003,94:4967-4971.
    [10]Yang B, Han Z H. Thermal conductivity enhancement in water in-FC72 nanoemulsion fluids[J]. Appllied Physics Letters,2006,88(26):2145-2149.
    [11]李强,宣益民.纳米流体热导率的测量[J].化工学报,2003,54(1):42-46.
    [12]Murshed S M S. Enhanced thermal conductivity of TiO2-water based nanofluids[J]. International Journal of Thermal Seiences,2005,44:367-373.
    [13]Wang X W, Xu X F, Choi S U S. Thermal Conductivity of Nanoparticle-Fluid Mixture [J]. Journal of Thermophysics and Heat Transfer,1999,13(4):478-480.
    [14]Eastman J A, Choi S U S, Li S, et al. Enhanced thermal conductivity through the development of nanofluids[J]. Nanophase and Nanocomposite Mater, U. S. A.1997, 457:3-11.
    [15]Murshed S M S, Leong K C, Yang C. Thermal Conductivity of Nanoparticle Suspensions, Appllied Physics Letters,2006,78:90-93.
    [16]李金凯,赵蔚琳.低浓度A1203-水纳米流体制备及导热性能测试[J].硅酸盐通报,2010,(29)1:204-207.
    [17]唐盛伟.同心圆筒法测定磷铵料浆的导热系数[J].高效化学工程学报,2001,6(15):583-586.
    [18]蔡岸,谢华清.无机纳米流体的热物性及其测试新方法的研究[J].无机材料报,2004,19(5):1151-1157.
    [19]李强.纳米流体强化传热机理研究[D].南京:南京理工大学,2004.
    [20]王补宣,李春辉,彭晓峰.纳米颗粒悬浮液的粘度、热扩散系数与普朗特数[J].自然科学进展,2004(7),799-803.
    [21]周乐平,王补宣.准稳态法测量纳米颗粒悬浮液热物性的实验研究[C].中国工程热物理学会学术会议论文集,2002,889-892.
    [22]彭小飞,俞小莉,钟勋,等.低浓度纳米流体比热容实验研究[J].浙江大学学报,2007,41(7)529-531.
    [23]Lee S, Choi S U S. Application of metallic nanoparticle suspensionin advanced cooling systems[J]. Recent Advances in Solids/Structures and Applications of Metallic Materials, New York,1996:227-234.
    [24]Eastman J A, Choi S U S. Novel thermal properties of nanostructured materials [C]. Mater Sci Forum,1999:312-314.
    [25]宣益民,李强.纳米流体强化传热研究[J].工程热物理学报,2000,21(4):466-470.
    [26]李强,宣益民.纳米流体对流换热的实验研究[J].工程热物理学报,2002,23(6):721-723.
    [27]李强,宣益民.铜-水纳米流体流动与对流换热特性[J].中国科学,2002,32(3):331-337.
    [28]陈骁,李俊明,戴闻亭,等.细圆管内纳米颗粒悬浮液强化对流换热的探讨[J].工程热物理报,2004,25(4):643-645.
    [29]Masuda H, Ebata A, Teramae K, et al. Altemation of thermal conductivity and viseosity of liquid by dispersing ultra-fine Partieles(dispersion of Al2O3, SiO2 and TiOz ultra-fine partieles)[J]. Netsu Bussie(Japan),1993,4:227-233.
    [30]Eastman J A, Choi S U S, Li S, et al. Enhanced thermal conductivity through the development of nanofluids[J]. Nanophase and Nanocomposite Mater,1997,457:3-11.
    [31]Lee S, Choi S U S, Li S, Eastman J A. Measuring thermal conduetivity of fluids containing oxide nanoparticles[J]. Transaction of The ASME,1999,121:130-139.
    [32]Eastman J A, Choi S U S, Li S. Development of Energy-effieient Nanofluids for Heat Transfer Applications[R]. Report of Argonne National Laboratory,2001.
    [33]Wang X W, Xu X F, Choi S U S. Thermal conductivity of nanoparticle-Fluid Mixture [J]. Journal of Thermophysics and Heat Transfer.1999,13(4):478-480.
    [34]Eastman J A, Choi S U S, Li S, Thompson L J. Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles [J]. Applied Physics Letters,2001,78(6):718-720.
    [35]Keblinski P, Phillpot S R, Choi S U S, et al. Mechanisms of heat flow in suspensions of nano-sized particles(nanofluids)[J]. Heat Mass Transfer,2002,45(4):855-863.
    [36]李强,宣益民.航天用传热强化工质导热系数和粘度的实验研究[J].宇航学报.2002,23(6):71-74.
    [37]Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids
    [J]. Journal of Heat Transfer,2003,125(1):151-155.
    [38]宣益民,余凯,吴轩,等.基于Lattice-Boltzmann方法的纳米流体流动与传热分析[J].工程热物理学报,2004,25(6):1022-1024.
    [39]戴闻亭,李俊明,王补宣,等.细圆管内氧化铜颗粒悬浮液流动与对流换热的实验研究[J].工业加热,2002,(5):1-4.
    [40]王补宣,李宏,彭晓峰.吸附作用在纳米颗粒悬浮液换热强化中的试验与机理研究[J].工程热物理学报,2003,24(4):664-666.
    [41]周乐平,王补宣.颗粒尺寸与表面吸附对低浓度非金属纳米颗粒悬浮液有效导热系数的影响[J].自然科学进展,2003,13(4):426-429.
    [42]王补宣.颗粒团聚对低浓度纳米流体热性质和热过程的影响[J].机械工程学报,2009,45(3):1-4.
    [43]谢华清,王锦昌,奚同庚,等.SiC纳米粉体悬浮液导热系数研究[J].硅酸盐学报,2001,29(4):361-364.
    [44]谢华清,吴清仁,王锦昌,等.氧化铝纳米粉体悬浮液强化导热研究[J].硅酸盐学报,2002,30(3):272-276.
    [45]谢华清,奚同庚,王锦昌,纳米流体介质导热机理初探[J].物理学报,2003,52(6):1444-1449.
    [46]谢华清,陈立飞.纳米流体的对流换热系数增大机理[J].物理学报,2008,58(4):2513-2516.
    [47]彭小飞,俞小莉,夏立峰,等.纳米流体有效热导率预测[J].化工学报,2007,58(2):299-303.
    [48]Pak B C, Cho Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide partieles[J]. Experimental heat transfer,1998,11(2):151-170.
    [49]Yang Y, Zhang Z G, Grulke E A, et al.Heat transfer properties of nanoparticle in-fluid dispersions(nanofluids)in laminar flow[J]. International Journal of Heat Mass Transfer,2005,48:1107-1116.
    [50]Eastman J A, Choi S U S, Li, et al. Enhanced thermal conductivity through the development of nanofluids[J]. Journal of Heat Transfer,1999, (121):280-289.
    [51]Maiga S E B, Palm S J, Nguyen C T. Heat transfer enhancement by using nanofluids in forced convection flows[J]. International Journal of Heat and Fluid Flow,2005,26: 530-546.
    [52]Gilles Roy, Nguyen C T, Lajoie P R. Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids[J]. Superlattices and Microstructures,2004,35:497-511.
    [53]S Zeinali Heris, S Gh Etemad, M Nasr Esfahany. Experimental investigation of oxide nanofluids laminar flow convective heat transfer[C]. International Communications in Heat and Mass Transfer,2006,33:529-535.
    [54]李强,宣益民.小通道扁管内纳米流体流动与传热特性[J].工程热物理学报,2004,25(2):305-307.
    [55]谢华清.纳米颗粒悬浮液热物性研究[D].上海:中国科学院硅酸盐研究所,2001.
    [56]戴闻亭,李俊明,王补宣.细圆管内纳米悬浮液对流换热的试验研究[J].工程热物理学报,2003,24(4):633-636.
    [57]冯建超.纳米流体脉动热管的传热性能研究[D].北京:中国科学院研究生院,2008.
    [58]白敏丽,徐哲,吕继祖.纳米流体对内燃机冷却系统强化传热的数值模拟研究[J].内燃机学报,2008,26(2):183-187.
    [59]杨画春,李庆领,刘炳成,等.Fe3O4-水纳米流体对流换热特性的实验研究[J].青岛科技大学学报,2007,28(4):152-155.
    [60]钟勋,俞小莉,吴俊.氧化铝有机纳米流体的流动传热基础特性[J].化工学报,2009,60(1):35-39.
    [61]钟勋,俞小莉,彭小飞,等.用于发动机高温冷却技术的氧化铝有机纳米流体:中国,200810120194.3[P],2008,12,17.
    [62]宣益民,李强.纳米流体能量传递理论与应用[M].北京:科学出版社,2010.
    [63]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001
    [64]Maxwell J C. A treatise on electricity and magnetism[M]. London:Oxford University Press,1904.
    [65]Hamilton R L, Crosser 0 K. Thermal conductivity of heterogeneous two-component systems[J]. Journal of applied physics,1962,1(3):187-191.
    [66]Choi S U S, Yu W, Hull J R, et al. Nanofluids for vehicle thermal management [C]. Vehicle thermal management systems conference & exhibition,2001.
    [67]Xue Q Z. Model for effective thermal conductivity of nanofluids[J]. Appllied Physics Letters,2007,307:313-317.
    [68]Leong K C, Yang C, Murshed S M S. A model for the thermal conductivity of nanofluids-the effect of interfacial layer[J]. Journal of Nanoparticle Research,2006,8:245-254.
    [69]Xuan Yimin, Li Qiang. Simulations of structure and thermal conductivity of nanofluids[J]. Engineering hermophysics(China),2002,23(2):206-208.
    [70]Batchelor G K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles[J]. Journal of Fluid Mechanism,1977,83:97-101.
    [71]郭顺松.纳米流体的热物理特性研究[D].杭州:浙江大学,2006,
    [72]Brinkman H C. The viscosity of concentrated suspension and solution [J]. Journal of Chemical Physics,1952,20:571-576
    [73]彭小飞.车用散热器中纳米流体高温传热基础问题研究[D].杭州:浙江大学,2007.
    [74]王补宣,周乐平,彭晓峰.纳米颗粒悬浮液热物性及颗粒比热容尺寸效应[J].工程热物理学报,2004,25(2):296-298
    [75]贾宝菊.波壁管内的脉动流动及其传质特性的实验和数值模拟[D].大连:大连理工大学,2009.
    [76]Nishimura T, Kajimoto Y, Kawamura Y. Mass transfer enhancement in channels with a wavy wall[J]. J. Chem. Eng. Japan,1986,19:142-144.
    [77]Yongning Bian, Baoju Jia. Mass Transfer Characteristics in an Axisymmetric Wavy-Walled Tube for Pulsatile Flow with Backward Flow[J]. Heat and Mass Transfer,2009,45 (6) 693-702.
    [78]杨有庆,魏启鲲.流动显示技术浅谈[M].力学与实践,1982,1:20-26.
    [79]Mizushina T. The electrochemical method in transport phenomena[M]. New York and London:Academic Press Inc.,1971:87-159.
    [80]孙宇.定常流场下波壁流路内的流体流动及质量传递特性[D].大连:大连理工大学,2005.
    [81]贾宝菊,卞永宁.利用电化学方法测量波壁管内的质量传递系数[J].实验力学,2009,24(1):43-48.
    [82]Yongning Bian. Fluid flow and mass transfer in a wavy-walled tube for steady and pulsatile flows[D], Japan,2002.
    [83]卞永宁.表面冷却器的喷洒性能及传热研究[D].北京:北京化工大学,1996.
    [84]解茂昭.内燃机计算燃烧学[M].大连:大连理工大学出版社,2005.
    [85]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700