铒镱共掺有机聚合物平面光波导放大器的优化设计与制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
掺铒光波导放大器(Erbium Doped Waveguide Amplifier: EDWA)兼具掺铒光纤放大器(Erbium Doped Fiber Amplifier: EDFA)的偏振串扰无关性、低噪声指数等优点,及体积小型、结构紧凑的重要优势,可以与其他光波导器件集成在一起构成高效的集成光学系统。是继EDFA以后又一极具发展前途的光放大器。无机基质EDWA已经拥有了商用化的器件,但是工艺复杂周期长,设备昂贵,难以与其他光波导器件集成,EDWA的集成优势难以体现。
     有机基质EDWA具有价格低廉,制备工艺简单,折射率易调节,易于集成(尤其是与其他聚合物光波导器件集成)的优点,可以弥补无机EDWA的不足。但是其自身也存在着技术难题:无机稀土离子在有机体中的掺杂量和铒离子发光量子效率难以提高。本论针对两个主要技术难点,结合器件结构设计,对有机聚合物平面光波导放大器展开了一系列研究工作。主要内容与工作创新点如下:
     1.基于980nm泵浦下的Er-Yb共掺六能级跃迁模型,结合原子速率方程和前向泵浦下的光功率传输方程,使用重叠积分简化方法对器件进行增益特性的理论分析。采用Judd-Ofelt理论计算表征材料发光性能参数;采用基于插值的有限差分法,结合有效折射率法,用Matlab编程,更精确的分析波导模式特性,并获得模场分布。
     2.针对有机基质中Er荧光寿命短,发光量子效率较低这一问题,采用简单地共沉淀法合成油酸(Oleic acid:OA)修饰的LaF_3:Er, Yb纳米颗粒,采用有机改性前驱体基于sol-gel法制备有机无机杂化材料。对材料进行红外光谱分析、元素分析等一系列表征。纳米颗粒粒径约8nm,荧光寿命约100μs(La:Er:Yb=85:3:12),与有机无机杂化材料(Organic/Inorganic Hybrid Materials:OIHM)的5%失重温度都在300℃以上,OA-LaF_3:Er,Yb纳米颗粒以33wt.%比例掺杂OIHM,获得了平整的薄膜,用Judd-Ofelt理论计算其理论亚稳态能级寿命达到13.34ms。用自行搭建的近场光斑测试系统及增益测试系统,对该掺杂材料制作的嵌入式波导放大器进行测试。器件通光性良好,121mW泵浦光下,在2.9cm长的波导器件中,获得3.69dB(Ps=1mW)、3.89dB(Ps=0.5mW)和4.11dB(Ps=0.2mW)的相对增益,小信号光获得了较大增益;在一个1.9cm长的波导器件中,观察到:相对增益由抛光前的2.2dB提高到抛光后的3.2dB(Ps=1mw,Pp=188mW),抛光后泵浦效率提高。模拟计算铒镱共掺光波导放大器(Erbium-Ytterbium Co-Doped Waveguide Amplifier: EYCDWA)的增益特性。讨论了在确定的结构下Er3+离子掺杂浓度、重叠积分因子、信号光和泵浦光功率,波导长度及Er3+离子亚稳态能级寿命对增益的影响。
     3.为了优化器件结构,我们尝试对芯包层共同掺杂型(Core-cladding doped)波导放大器的增益特性进行分析,并将之与单芯层掺杂型(Core doped)波导放大器对比。获得结论:Core-cladding doped型波导在一定芯区厚度内,起到了提高增益的作用,但是泵浦效率较低;峰值浓度明显降低,易通过改变浓度来提升器件性能。根据材料特性和波导结构对芯包层的要求,选用具有紫外热光漂白效应的SU-8为基质材料,取高温热分解法制备的发光能力更强的OA-NaYF_4:Er,Yb纳米颗粒为掺杂剂。OA-NaYF_4:Er,Yb纳米颗粒粒径约为15nm,具有更好地无机晶格,上转换及下转换发光都更强,在SU-8中的掺杂量可以适当降低,从而确保SU-8的交联度。利用我们摸索的SU-8一般工艺条件与光漂白的工艺条件,制作了OA-NaYF_4:Er,Yb纳米颗粒掺杂SU-8的Core doped型及Core-claddingdoped型光波导,由于SU-8低损耗特性,获得良好通光效果。在1.5cm长的Coredoped型波导中获得相对增益2.08dB(Ps=1mW,Pp=170mW)。这种Core-claddingdoped型波导为提高波导放大器的增益特性提供思路。
     4.针对主客掺杂型材料分散能力及掺杂均匀性有限的问题,合成并表征了一种可以直接旋涂成膜的铒/镱共掺可溶性配合物Er_(1.2)Yb_(0.8)(PBa)_6(Phen)_2材料(PBa为4-戊基苯甲酸,Phen为一水合1,10-邻菲啰啉),Er含量提高到10.9wt.%(OA-LaF_3:Er, Yb掺杂OIHM中Er含量1.1wt.%)。其薄膜吸收光谱与一般主客掺杂薄膜形成鲜明对比,几乎没有基质材料的背景吸收,特征吸收峰非常清晰。粉末和薄膜的光致发光光谱的峰值都在1535nm处左右,荧光半高宽约80nm。可溶性配合物薄膜中稀土元素质量百分比高达18.4wt.%,由于存在阻碍干法气体刻蚀的问题,我们仍然采用嵌入式结构,制备嵌入式光波导放大器。在一个1.5cm长的SU-8包层波导中得到相对增益5.20dB (Ps=0.3mW,Pp=140mW);一个2.2cm长的PMMA薄片表面的嵌入式波导中得到相对增益2.52dB (Ps=0.2mW,Pp=170mW)。针对与实验结合最紧密的四种不同上下包层组合结构及非理想刻蚀情况进行分析,结果表明:芯包折射率差大和折射率差小,可以得到大小相当的增益;折射率差大时,单模工艺难度大,但泵浦效率高;上下包层折射率差大且波导芯尺寸小时,光场向上包分散,增益下降,可考虑上包掺杂型;实验中常出现的侧向刻蚀情况会导致增益性能下降,应尽量避免。
     5.针对高芯区折射率波导分析中凸显出的增益与泵浦效率的竞争问题,引入低芯区折射率波导——狭缝波导。首先分析了狭缝波导的基本特性:狭缝波导的平均光强系数γ比一般的高折射率波导高出两个量级,设计中可不用考虑;狭缝波导对波长不敏感。讨论狭缝宽wS、Si侧壁宽wH及Si侧壁高h_Si对重叠积分因子Γ的影响关系,确定狭缝波导尺寸。建立1480nm泵浦下四能级跃迁模型,分析一般高折射率波导中,包括掺杂浓度、激发态吸收、合作上转换、信号光和泵浦光传输损耗、信号光和泵浦光功率、波导有效截面积以及重叠积分因子对该系统增益特性的影响,发现对于确定的材料参数,最佳泵浦强度Ip-sat近似为定值。于是可以由狭缝波导不同尺寸得到对应的最佳泵浦功率,从而计算对应最大增益;利用多层狭缝大幅度提高Γ,指出狭缝个数以3~4层为宜。
     本论文分别采用具有油酸修饰的纳米颗粒(OA-LaF_3:Er,Yb和OA-NaYF_4:Er,Yb)和Er/Yb共掺可溶性配合物制作了聚合物平面光波导放大器。综合无机纳米核良好的稀土发光环境,及可溶性配合物直接旋涂成膜的思路,有望探索出更具优势的有源材料,为制作出具有高净增益的聚合物光波导放大器奠定基础。
It has been widely acknowledged that all-optical communication would be theprime method in optical communication systems. The integrated optical amplificationtechnology which can amplify the optical signal without any conversion from light toelectricity is the most effective method for the loss compensation. In recent years,much attention has been devoted to the development of erbium-doped waveguideamplifiers (EDWAs). Compared with inorganic host, polymer has excellent propertiessuch as: simple processing steps, high bandwidth, low cost, and compatibility withsilicon substrates. However, few successful EDWAs have been demonstrated usingerbium-doped polymers or organic/inorganic hybrid materials (OIHMs). Onebottleneck is that the insolubility of Er~(3+)ions in organic materials cannot meet therequirement of EDWAs’ small size and high Er~(3+)-doping concentration. Anotherdifficulty is the relatively low photoluminescence quantum efficiency due to thevibration quenching caused by O-H and C-H groups and concentration quenchingcaused by the high Er~(3+)-doping concentration or local non-uniform doping.
     In this thesis, we have made efforts to improve the polymeric planar opticalwaveguide amplifiers, particularly on the major technical difficulties mentioned aboveand the design of the device configuration. The main contents and innovations are asfollowing:
     1. Based on optical amplifying theory of excited emission and a six-level systemmodel for Er~(3+)-Yb~(3+)co-doped waveguide amplifier, the rate equations and propagationequations of optical power were established. Using the method of overlap integral, thegain characteristics of devices were numerical simulated. The luminescenceperformance parameters of materials were computed by the Judd-Ofelt theory. Toanalyze the mode characteristics and calculate the mode field distribution of an opticalwaveguide with jumps in the refractive index,the semi-vectorial finite-differencemethod (FDM) based on the Lagrange interpolation and the Effective Index Method(EIM) were implemented by programming with MATLAB. The results werecompared with the commercial software COMSOL Multiphysics and the both resultscould be confirmed.
     2. The Er element in the organic matrix often has lower quantum efficiency and a short fluorescence lifetime. To solve this problem, oleic acid (OA)-LaF_3:Er,Ybnanoparticles and OIHM were synthesized by chemical coprecipitation and sol-gelmethod respectively. Their properties were characterized by the method such asinfrared spectroscopic analysis, elementary analysis, etc. The diameter of the particleswas about8nm and the fluorescence lifetime was about100μs (for La:Er:Yb=85:3:12).The5%weight-loss temperatures of nanoparticles and OIHM were both above300degree. The OA-LaF_3:Er,Yb nanoparticles were dissolved in OIHM as content of33wt.%and a film with low surface roughness was obtained. The Judd-Ofelttheoretical calculation value of the metastable level lifetime was13.34ms. TheOA-LaF_3:Er,Yb nanoparticles doped OIHM waveguides with embedded structurewere tested using the fiber-waveguide coupling test system and gain test system. Awell near-field optical spot was showed. The relative gains of3.69dB (P_s=1mW),3.89dB (P_s=0.5mW) and4.11dB (P_s=0.2mW) were obtained in a2.9cm long devicewhen the pumping power was121mW, which showed that a smaller input signalcorresponds to a bigger gain. The relative gain of a1.9cm long device waveguideincreased from2.2dB to3.2dB corresponding before and after polishing, whichshowed that polishing was help to improve the pumping efficiency. The gaincharacteristics of the erbium-ytterbium co-doped waveguide amplifier (EYCDWA)device were simulated. The effects on the gain of the Er~(3+)-doping concentration, theoverlap integral factor, the signal and pumping power, waveguide length and the Er~(3+)ion metastable level lifetime were discussed.
     3. In order to optimize the device structure, the gain characteristics of a kind ofCore-cladding doped waveguide amplifier were analyzed and compared with the Coredoped waveguide amplifier. Within a certain thickness of the core, the Core-claddingdoped type could increase the gain, but it had a lower pumping efficiency. The peakconcentration of the Core-cladding doped type declined obviously. SU-8which hadthe UV thermo-optical bleaching effect was selected as a substrate material.OA-NaYF_4:Er,Yb nanoparticles which had a stronger luminescence property weresynthesized by high-temperature thermal decomposition method. The diameter of theparticles was about15nm. OA-NaYF_4:Er,Yb nanoparticles doped SU-8waveguidesboth of the Core doped type and the Core-cladding doped type was fabricated and hadwell optical performance. The relative gain of2.08dB (P_s=1mW, P_p=170mW) wasobtained in a1.5cm long Core doped type device waveguide.
     4. The dispersion ability and uniformity of the host-guest doped material werealways limited. To solve this problem, a film-formable solution-processable erbium-ytterbium co-doped complex was synthesized and characterized which had ahigh erbium concentration of10.8wt.%(In contrast,1.1wt.%corresponding that inOA-LaF_3:Er,Yb doped OIHM). The absorption spectrum of the complex film was insharp contrast with common host-guest doped type film, which almost had nobackground absorption of matrix materials. The full width at half maximum (FWHM)was about80nm (centered around1535nm). The relative gain of5.20dB (Ps=0.3mW,P_p=140mW) and2.52dB (P_s=0.2mW, P_p=170mW) were obtained in a1.5cm longdevice with a SU-8cladding layer and a2.2cm long device with a PMMA groove,respectively. Four different structures which were the most closely combined with theexperiment and the side-etching were analyzed to provide theoretical guidance for thedevice fabrication.
     5. Since there was a competition between gain and pumping efficiency in thehigh core region refractive index waveguides, a low core region refractive indexwaveguide (slot waveguide) was introduced. Firstly, the basic characteristics of slotwaveguides were analyzed. The average intensity coefficient γ in a slot waveguidewas two orders of magnitude higher than that in a high refractive index waveguide sothat it was not necessary to be considered. Slot waveguides presented low wavelengthsensitivity. The affect relationships between the overlap integral factor Γ and slotwidth, Si-sidewall width, Si-sidewall height were analyzed and the slot waveguidesize was determined. A four-level system model for Er~(3+)doped waveguide amplifierwas established. The effects on the gain in a common high refractive index waveguideof the Er~(3+)-doping concentration, the excitation state absorption, the cooperationup-conversion, the signal light and pump light transmission loss, signal and pumppower, the waveguide effective cross area and the overlap integral factor werediscussed. We found that there was optimal pump intensity (I_(p-sat)) in a certainwaveguide structure. So that for a slot waveguide, different waveguide dimensionscorresponded to different optimal pumping power and the optimal gains could becalculated using the optimal pumping powers. Multi-layer slot could greatly increasethe Γ and the most suitable slot number was3or4layers.
     This thesis presented two kinds of materials for fabricating polymeric planaroptical waveguide amplifiers: nanoparticles (OA-LaF_3:Er,Yb and OA-NaYF_4:Er,Yb)and film-formable solution-processable erbium-ytterbium co-doped complex. Theformer possesses a stronger luminescence property, and the latter exhibits higherbium-doping concentration and film uniformity. Taking account of these advantages,novel active materials would be prepared, which gives most promising application for enhancing the net gain of polymeric planar optical waveguide amplifiers.
引文
[1]杨祥林.光放大器及其应用[M].北京:电子工业出版社,2000.
    [2] DORREN H J S, LENSTRA D, YONG L, et al. Nonlinear polarization rotation insemiconductor optical amplifiers: theory and application to all-optical flip-flopmemories[J]. IEEE Quantum Electronics,2003,39(1):141-148.
    [3]沈元壤[美],顾世杰.非线性光学原理与应用,北京:科学出版社,1987.
    [4] GILES C R, DESURVIRE E, TALMAN J R, et al.2Gibt/s signal amplification atλ=1.53μm in an erbium-doped single-mode fiber amplifier[J]. IEEE J. LightwaveTech.,1989,7(4):651-656.
    [5] POLMAN A. Erbium implanted thin film photonic materials[J]. J. Appl. Phys,1997,82(1):1-39.
    [6] HUANG C H, MCCAUGHAN L. Photorefractive-damage-resistant Er-indiffusedMgO:LiNbO3ZnO-waveguide amplifiers and lasers[J]. Electron. Lett.,1997,33(19):1639-1640.
    [7]陈海燕.宽带掺Er光波导放大器关键技术研究[D].西安:电子科技大学光学工程,2004.
    [8]高景生.掺Yb/Er-Al2O3光波导放大器制备及光学性质研究[D].辽宁:大连理工大学光学工程,2004.
    [9] ZHAO R T; WANG M; CHEN B J, et la. Bent channel design in buried Er3+/Yb3+codoped phosphate glass waveguide fabricated by field-assisted annealing[J].Optical Engineering,2011,50(4):044602.
    [10] Bradley J D B, Agazzi L, Geskus D, et la. Gain bandwidth of80nm and2dB/cmpeak gain in Al2O3:Er3+optical amplifiers on silicon[J]. JOSA B,2010,27(2):187-196.
    [11] IZAWA T, NAKAGOME H. Optical waveguide formed by electrically inducedmigration of ions in glass plates[J]. Appl. Phys. Lett.,1972,21(12):584-586.
    [12] RAMASWAMHY R V, SRIVASTAVA R. Ion-exchanged glass waveguides: areview[J]. Lightwave Technology,1988,6(6):984-1002.
    [13] BENN A, EDWA gains on EDFAs, Pennwell Lightwave Europe,2002.http://lw.pennnet.com.
    [14] BOUAZAOUI M, Capoen B, BENATSOU M, et al. Praparation andcharacterization of sol-gel derived Er3+:A12O3-SiO2planar waveguides[J]. Appl.Phys.Lett.,1997,71(4):428-430.
    [15] SIGOLI F A, MESSADDEQ Y, RIBEIRO S J L. Erbium and ytterbium co-dopedSiO2-GeO2planar waveguide prepared by the sol-gel route using an alternativeprecutsor[J]. Sol-Gel Sci Technol.,2008,45:179-185.
    [16]李毅刚.新型掺铒光学材料及光波导的制备与光学性质研究[D].上海:复旦大学信息学院光科学与工程系,2004.
    [17]林丙臣.稀土离子掺杂材料得溶胶凝胶法制备及光谱性质研究[D].郑州:河南大学光学专业,2007.
    [18] YAJIMA H, KAWASE S, SEKIMOTO Y. Amplification at1.06μm using aNd:glass thin film waveguide[J]. Appl. Phys. Lett.,1972,21:407-409.
    [19] Ennen H, Schneider J, Pomrenke G, et al.1.54μm luminescence oferbium-implanted III-V semiconductors and silicon[J]. Appl. Phys. Lett.,1983,43(10):943-946.
    [20] LI C C, KIM H K, MIGLIUOLO M. Er-doped glass ridge-waveguide amplifiersfabricated with a collimated sputter deposition technique[J]. IEEE PhotonicsTechnology Letters,1997,9(9):1223-1225.
    [21] SOLEHMAINEN K, KAPULAINEN M, HEIMALA P, et la. Erbium-dopedwaveguides fabricated with atomic layer deposition method[J]. IEEE PhotonicsTechnology Letters,2004,16(1):194-196.
    [22]王菲.硅基聚合物阵列波导光栅波分复用器的研制[D].吉林:吉林大学电子科学与工程学院,2005.
    [23]赵禹.聚合物光波导和阵列波导光栅的基础研究[D].吉林:吉林大学电子科学与工程学院,2004.
    [24]禹忠,汪敏强,姚熹.光通信波段聚合物光波导材料的研究进展[J].化学通报,2001,1:5-10.
    [25]沈玉金,潘裕斌,钟宝璇.有机/聚合物光电子学器件的应用与研究进展[J].功能材料,2000,31(1):1-4.
    [26] AHN S W, SHIN S Y, LEE S S. Polymeric digital optical modulator based onasymmetric branch[J]. Electron. Lett.,2001,37(3):172-174.
    [27] KEIL N, YAO H H, ZAWADZKI C. Polymer waveguide optical switch with<-40dB polarisation independent crosstalk[J]. Electron. Lett.,1996,32(7):655-657.
    [28] KOBAYASHI J, INOUE Y, MARUNO T, et al. Tunable andpolarization-intensitive arrayed-waveguide grating multiplexer fabricated fromfluorinated polyimides[J]. IEICE Trans. Electron.,1998, E81-C(7):1020-1026.
    [29] LEE H P, PARK J J, RYOO H H, et al, Resonance characteristics ofwaveguide-coupled polyimide microring resonator[J]. Optic. Materials,2002,21:535-541.
    [30] SLOOFF L H, POLMAN A, OUDE WOLBERS M P, et al. Optical properties oferbium-doped polydentate organic cage complexes[J]. J. Appl. Phys,1998,83:497-503.
    [31] GILLIN W P, CURRY R J. Erbium(III)tris(8-hydroxyquinoline)(ErQ): Apotential material for silicon compatible1.5μm emitters[J]. Appl. Phys. Lett.,1999,74(6):798-799.
    [32] SLOOFF L H, DE DOOD M J A, VAN BLAADEREN A, et al.Erbium-implanted silica colloids with80%luminescence quantum efficiency[J].Applied Physics Letters,2000,76(25):3682-3684.
    [33] MANCINO G, FERGUSON A J, BEEBY A, et al. Dramatic increases in thelifetime of the Er3+ion in a molecular complex using a perfluorinatedimidodiphosphinate sensitizing Ligand[J]. J. AM. CHEM. SOC.,2005,127:524-525.
    [34] KUMAR G A, RIMAN R E, DIAR TORRES L A, et al. Chalcogenide-boundErbium complexes: paradigm molecules for infrared fluorescence emission[J].Chem. Mater.,2005,17:5130-5135.
    [35]王怀善,钱国栋,王民权.通讯窗口稀土钕掺杂有源光波导的进展[J].材料导报,2002,16:44-46.
    [36] SLOOFF L H, BLAADEREN A V, POLMAN A, et al. Rare-earth dopedpolymers for planar optical amplifiers[J]. Appl. Phys.2002,91:3955-3980.
    [37] WEI Y, LU F Q, ZHANG X R, et al. Polyol-mediated synthesis of water-solubleLaF3:Yb,Er upconversion fluorescent nanocrystals[J]. Materials Letters,2007,61(6):1337-1340.
    [38] ETIENNE P, COUDRAY P, Porque J, et al. Active erbium-dopedorganic-inorganic waveguide[J]. Optics Communications,2000,174:413-418.
    [39] WONG W H, PUN E Y B, CHAN K S, et al. Er3+-Yb3+codoped polymericoptical waveguide amplifiers[J]. Applied Physics Letters,2004,84(2):176-178.
    [40] WONG W H, CHAN K, SPUN E Y B. Ultraviolet direct printing ofrare-earth-doped polymer waveguide amplifiers[J]. Appl. Phys. Lett.,2005,87:011103.
    [41] KUMAR G A, RIMAN R E, BANERJEE S, et al. Infrared fluorescence andoptical gain characteristics of chalcogenide-bound erbium cluster-fluoropolymernanocomposites[J]. Appl. Phys. Lett.,2006,88:091902.
    [42] QUANG A Q L, HIERLE R, ZYSS J, et al. Demonstration of net gain at1550nmin an erbium-doped polymer single mode rib waveguide[J]. Appl. Phys. Lett.,2006,89:141124.
    [43] ZHANG D, CHEN C, CHEN C M, et al. Optical gain at1535nm in LaF3:Er,Ybnanoparticle-doped organic-inorganic hybrid material waveguide[J]. Appl. Phys.Lett.,2007,91:161109.
    [44] BO S, WANG J, ZHAO H, et al. LaF3:Er,Yb doped sol-gel polymeric opticalwaveguide amplifiers[J]. Appl. Phys. B,2008,91(1):79-83.
    [45] BO S H, HU J, CHEN Z, et al. Core-shell LaF3:Er,Yb nanocrystal doped sol-gelmaterials as waveguide amplifiers[J]. Appl. Phys. B,2009,97(3):665-669.
    [46] CHEN C, ZHANG D, LI T, et al. Erbium-ytterbium codoped waveguideamplifier fabricated with solution-processable complex[J]. Applied PhysicsLetters,2009,94(4):041119.
    [47] CHEN C, ZHANG D, LI T, et al. Demonstration of optical gain at1550nm inerbium-ytterbium co-doped polymer waveguide amplifier[J]. J. Nanosci.Nanotechnol.,2010,10:1947-1950.
    [1] AGRAWAL G P, DUTTA N K. Long wavelength semiconductor lasers[M]. NewYork:Van Nostrand Reinhold,1986.
    [2]杨祥林.光放大器及其应用[M].北京:电子工业出版社,2000.
    [3]聂秋华.光纤激光器和放大器技术[M].北京:电子工业出版社,1997.
    [4]李淑凤.掺Er及Yb-Er共掺Al2O3/SiO2/Si光波导放大器的理论设计[D].大连:大连理工大学,2004.
    [5] VAN DEN HOVEN G N,SNOEKS E,POLMAN A,et al. Upconversion inEr-implanted Al2O3waveguides[J]. J. App. Phys.,1996,79(3):1258-1270.
    [6] SHOOSHTARI A, TOUAM T, NAJAFI S I, et al. Yb3+sensitized Er3+-dopedwaveguide amplifiers: a theoretical approach[J]. Optical and Qunatum electornics,1998,30(3):249-269.
    [7] SIMONDI-TEISSEIRE B, VIANA B, VIVIEN D, et al. Yb3+to Er3+energytransfer and rate-equations formalism in the eye safe laser material Yb: Er:Ca2Al2SiO7[J]. Optical Materials,1996,6(4):267-274.
    [8] HEHLEN M P, COCKROFT N J, GOSNELL T R, et al. Spectroscopic propertiesof Er3+-and Yb3+-doped soda-lime silicate and aluminosilicate glasses[J].Physical Review B,1997,56(15):9302-9318.
    [9]戴能利,张德宝,胡丽丽等. Er3+单掺及Er3+Yb3+共掺SiO2-Al2O3-La2O3玻璃光谱性质研究[J].光子学报,2003,32(1):112-116.
    [10] STROHHOFER C, POLMAN A. Absorption and emission spectroscopy inEr3+-Yb3+doped aluminum oxide waveguides[J]. Optical Materials,2003,21:705-712.
    [11] QUIMBY R S, MINISCALCO W J, THOMPSON B. Fiber Laser Sources andAmplifiers IV, March23,1993[C]. SPIE,1993.
    [12]陈海燕.宽带掺Er光波导放大器关键技术研究[D].西安:电子科技大学光学工程,2004.
    [13] JIANG C, HU W, ZENG Q. Improved gain characteristics of high concentrationErbium-doped phosphate fiber amplifier[J]. IEEE Photon. Technol. Lett.,2004,16(3):774-776.
    [14] ACHTENHAGEN M, BEESON R J, PAN F, et al. Gain and noise inYtterbium-sensitized Erbium-doped fiber amplifiers: measurements andsimulations[J]. J. Lightw. Technol.,2001,19(10):1521-1526.
    [15] LIU K, PUN E Y B. Modeling and experiments of packaged Er3+,Yb3+co-dopedglass waveguide amplifiers[J]. Opt. Commun.,2007,273:413-420.
    [16]张丹.掺铒有机聚合物光波导放大器的理论研究与实验制备[D].吉林:吉林大学电子科学与工程学院,2008.
    [17] QUIMBY R S, MINISCALCO W J, THOMPSON B. Fiber laser sources andamplifiers IV, September10,1992[C]. Boston:SPIE,1993.
    [18]马春生,刘式墉.光波导模式理论[M].吉林:吉林大学出版社,2001.
    [19] STERN M S. Semivectorial polarized finite difference method for opticalwaveguides with arbitrary index profiles[J]. IEE Proc. Opt.,1998,135(1):56-63.
    [20] HADLEY G R, SMITH R E. Full-vector waveguide modeling using an iterativefinite-difference method with transparent boundary conditions[J]. J. LightwaveTechnol.,1995,13(3):465-469.
    [21] XU C L, HUANG W P, STERN M S, et al. Full-vectorial mode calculations byfinite difference method[J]. IEE Proc. Opt.,1994,141(5):281-286.
    [22] LUSSE P, STUWE P, SCHULE J, et al. Analysis of vectorial mode fields inoptical waveguides by a new finite difference method[J]. J. Lightwave Technol.,1994,12(3):487-493.
    [23] HUANG W P, XU C L. Simulation of three-dimensional optical waveguides by afull-vector beam propagation method[J]. J. Quantum Electron.,1993,29(10):2639-2649.
    [24] YAMAUCHI J, SEKIGUCHI M, UCHIYAMA O, et al. Modified finite-difference formula for the analysis of semivectorial modes in step-index opticalwaveguides[J]. IEEE Photon. Tech. Lett.,1997,9(7):961-963.
    [25] YAMAUCHI J, TAKAHASHI G, NAKANO H. Full-vectorial beam-propagationmethod based on the McKee-Mitchell scheme with improved finite-differenceformulas[J]. Journal of Lightwave Technology,1998,12:2458-2464.
    [26] MURPHY T E. Design, fabrication and measurement of integrated Bragg gratingoptical filters[D]. Massachusetts:MIT,2001.
    [27] SNYDER A W, LOVE J D. Optical Waveguide Theory[M]. Boston:KluwerAcademic Publisher,1983.
    [28] SHUMATE P W. The broadest broadband fiber to the home[J]. ScientificAmerican,1999,281(4):104-105.
    [29] PERAIRE J. Finite Difference Discretization of Elliptic Equations[M].1999.
    [30] JUDD B R. Optical Absorption Intensities of Rare-Earth Ions[J]. Phys. Rev.,1962,127(3):750-761.
    [31] OFELT D S. Intensities of crystal spectra of rare-earth ions[J]. J. Chem. Phys.,1962,37:511-520.
    [32]张庆礼,何伟,孙敦陆等. Judd-Ofelt光谱分析理论[J].光谱学与光谱分析,2005,25(3):329-333.
    [33] SARDAR D K, GRUBER J B, ZANDI B, et al. Judd-Ofelt analysis of the Er3+(4f11) absorption intensities in phosphate glass[J]. J. Appl. Phys.,2003,93(4):2041-2046.
    [34] WEBER M J. Probabilities for radiative and nonradiative decay of Er3+inLaF3[J]. Phys. Rev.,1967,157(2):262-272.
    [35] LINA H, PUNA E Y B, LIU X R. Er3+-doped Na2O·Cd3Al2Si3O12glass forinfrared and upconversion applications[J]. Journal of Non-Crystalline Solids,2001,283:27-33.
    [1] STOUWDAM J W, VAN VEGGEL F C J M. Improvement in the luminescenceproperties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surfacemodification[J]. Langmuir,2004,20:11763-11771.
    [2] STOUWDAM J W, HEBBINK G A, HUSKENS J, et al. Lanthanide-dopednanoparticles with excellent luminescent properties in organic media[J]. Chem.Mater.,2003,15(24):4604–4616.
    [3] HEBBINK G A, REINHOUDT D N, VAN VEGGEL F C J M. Increasedluminescent lifetimes of Ln3+complexes emitting in the near-infrared as a resultof deuteration[J]. Eur. J. Org. Chem.,2001,21:4101-4106.
    [4] QUANG A Q L,HIERLE R, ZYSS J, et al. Demonstration of net gain ar1550nmin an erbium-doped polymer single mode rib waveguide[J]. Applied PhysicsLetters,2006,89:141124.
    [5] CORREIA S M G, BERMUDEZ V Z, FERREIRA R A S. An investigation of themorphological, electrical and optoelectronic properties of short chain Di-ureasilsdoped with Er3+ions[J]. Ionics,2002,8:73-78.
    [6]张丹.掺铒有机聚合物光波导放大器的理论研究与实验制备[D].吉林:吉林大学电子科学与工程学院,2008.
    [7]张希珍.1.55μm波段聚合物光波导放大器的基础研究[D].吉林:吉林大学电子科学与工程学院,2007.
    [8] MENG J X, ZHANG M F, LIU Y L, et al. Hydrothermal preparation andluminescence of LaF3: Eu3+nanoparticles[J]. Spectrochimica Acta Part A,2007,66:81-85.
    [9] JUNG H K, OH J S, SEOK S I, et al. Preparation and luminescence properties ofLaPO4:Er, Yb nanoparticles[J]. J. Lumin.,2005,114:307-313.
    [10] YI G S, CHOW G M. Colloidal LaF3:Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tmnanocrystals with multicolor upconversion fluorescence[J]. Journal of MaterialsChemistry,2005,15:4460-4464.
    [11] DEKKER R, KLUNDER D J W, BORRENMAN A, et al. Stimulated emissionand optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides[J].Appl. Phys. Lett.,2004,85:6104-6106.
    [12] TANABE S, HAYASHI H, HANADA T, et al. Fluorescenceproperties ofEr3+ions in glass ceramics containing LaF3nanocrystals[J]. Opt. Mater.,2002,19(3):343-349.
    [13]陈爽,刘维民.亲油性LaF3纳米粒子的制备及表征[J].功能材料,2006,3(27):437-439.
    [14]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [15] WANG J, HU J, TANG D, et al. Oleic acid (OA)-modified LaF3:Er,Ybnanocrystals and their polymer hybrid materials for potentialoptical-amplification applications[J]. J. Mater. Chem.,2007,17:1597-1601.
    [16] NARA M, TORII H, TASUMI M. Correlation between the vibrationalfrequencies of the carboxylate group and the types of its coordination to a metalion: an ab initio molecular orbital study[J]. J. Phys. Chem.,1996,100:19812-19817.
    [17] SHEN L, LAIBINIS P E, HATTON T A. Bilayer surfactant stabilized magneticfluids: synthesis and interactions at interfaces[J]. Langmuir,1999,15(2):447-453.
    [18] AHN B Y, SEOK S I, HONG S I, et al. Optical properties of organic/inorganicnanocomposite sol-gel films containing LaPO4:Er,Yb nanocrystals[J]. Opt.Mater.,2006,28(4):374-379.
    [19] Hebbink G A, Stouwdam J W, Reinhoudt D N, et al. Lanthanide(III)-dopednanoparticles that emit in the near-infrared[J]. Adv. Mater.,2002,14(16):1147-1150.
    [20] ZHANG H X, KAM C H, ZHOU Y, et al. Photoluminescence at1.54μm insol-gel-derived, Er-doped BaTiO3films[J]. Journal of Alloys and Compounds,2000,308:134-138.
    [21] ETIENNE P, COUDRAY P, PORQUE J, et al. Active erbium-dopedorganic-inorganic waveguide[J]. Opt. Commun.,2000,174:413-418.
    [22] ETIENNE P, COUDRAY P, MOREAU Y, et al. Photocurable sol-gel coatings:channel waveguides for use at1.55μm[J]. J. Sol-Gel Sci. Technol.,1998,13:523-527.
    [23] SLOOFF L H, POLMAN A, WOLBERS M P O, et al. Optical properties oferbium-doped organic polydentate cage complexes[J]. J. Appl. Phys.,1998,83:497-504.
    [24] WONG S F, PUN E Y B, CHUN P S. Er3+-Yb3+codoped phosphate glasswaveguide amplifier using Ag+-Li+ion exchange[J]. IEEE Photon. Tech. Lett.,2002,14:80-82.
    [25] LIU K, PUN E Y B. K+-Na+ion-exchanged waveguides in Er3+-Yb3+codopedglasses using field-assisted annealing[J]. Appl Opt,2004,43(15):3179-3184.
    [26] ZHANG D, CHEN C, CHEN C M, et al. Optical gain at1535nm in LaF3:Er,Ybnanoparticle-doped organic-inorganic hybrid material waveguide[J]. Appl PhysLett,2007,91(16):161109.
    [27] BO S, WANG J, ZHAN H, et al. LaF3:Er,Yb doped sol–gel polymeric opticalwaveguide[J]. Appl Phys B,2008,91:79-83.
    [28] LINA H, PUNA E Y B, LIU X R. Er3+-doped Na2O·Cd3Al2Si3O12glass forinfrared and upconversion applications[J]. Journal of Non-Crystalline Solids,2001,283:27-33.
    [29] KARVE G, BIHARI B, CHEN R T. Demonstration of optical gain at1.06μm ina neodymium-doped polyimide waveguide[J]. Appl. Phys. Lett,2000,77(9):1253-1255.
    [30] SHOOSHTARI A, TOUAM T, NAJAFI S I, et al. Yb3+sensitized Er3+-dopedwaveguide amplifiers: a theoretical approach[J]. Optical and QuantumElectronics,1998,30:249-264.
    [1] SHOOSHTARI A, TOUAM T, NAJAFI S I, et al. Yb3+sensitized Er3+-dopedwaveguide amplifiers: a theoretical approach[J]. Optical and Quantum Electronics,1998,30:249-264.
    [2] DALTON L R, HARPER A W, WU B, et al. Polymeric electro-optic modulators:materials synthesis and processing[J]. Adv. Mater.,1995,7(6):519-540.
    [3] SHUTO Y, TOMARU S, HIKITA M, et al. Optical intensity modulators usingdiazo-dye-substituted polymer channel waveguides[J]. IEEE J.Quantum Electron.,1995,31(8):1451-1460.
    [4]张琨,岳远斌,李彤等.感应耦合等离子体刻蚀在聚合物光波导制作中的应用[J]. Chinese Optics,2012,5:64-70.
    [5]吕垚,李宝霞,万里兮.硅深槽ICP刻蚀中刻蚀条件对形貌的影响[J].微电子学,2009,5:729-732.
    [6] SHI Y Q, STEIER W H, YU L P, et al. Large stable photoinduced refractive indexchange in a nonlinear optical polyester polymer with disperse red side groups[J].Appl. Phys. Lett,1991,58:1131-1133.
    [7] BALAKRISHNAN M, FACCINI M, DIEMEER M B J, et al. Microring resonatorbased modulator made by direct photodefinition of an electro-optic polymer[J].Appl.Phys. lett.,2008,92:153310.
    [8] YANG B, YANG L, HU R, et al. Fabrication and characterization of small opticalridge waveguides based on SU-8polymer[J]. Journal of Lightwave Technology,2009,27(18):4091-4096.
    [9] TUNG K K, WONG W H, PUN E Y B. Polymeric optical waveguides using directultraviolet photolithography process[J]. Appl. Phys. A: Mater. Sci. Process.,2005,80(3):621-626.
    [10] BêCHE B, PELLETIERA N, GAVIOTA E, et al. Single-mode TE00-TM00optical waveguides on SU-8polymer[J]. Opt. Commun.,2004,230:91-94.
    [11] CHAO C Y, GUO L J. Thermal-flow technique for reducing surface roughnessand controlling gap size in polymer microring resonators[J]. Appl. Phys. Letts.,2004,84(14):2479-2481.
    [12]陈长鸣.硅基聚合物平面光波导器件的基础研究[D].吉林:吉林大学电子科学与工程学院,2010.
    [13] CHEN C M, SUN X Q, ZHANG D, et al. Dye-doped polymeric planarwaveguide devices based on a thermal UV-bleaching technique[J]. Optics&Laser Technology,2009,41:495-498.
    [14] SHEW B Y, KUOB C H,HUANG Y C, et al. UV-LIGA interferometer biosensorbased on the SU-8optical waveguide[J]. Sensors and Actuators A: Physical,2005,120(2):383-389.
    [15] WANG F, LIU X G. Recent advances in the chemistry of lanthanide-dopedupconversion nanocrystals[J]. Chem. Soc. Rev.,2009,38:976-989.
    [16] SCHA¨FER H, PTACEK P, EICKMEIER H, et al. Synthesis of hexagonal Yb3+,Er3+-doped NaYF4nanocrystals at low temperature[J]. Adv. Funct. Mater.,2009,19:3091-3097.
    [17] BOYER J C, VETRONE F, CUCCIA L A, et al. Synthesis of colloidal upconvertingNaYF4nanocrystals doped with Er3+,Yb3+and Tm3+, Yb3+via thermal decomposition oflanthanide trifluoroacetate precursors[J]. J. Am. Chem. Soc.,2006,128:7444-7445.
    [1] FUKUSHIMA M, MANAGAKI N, FUJII M, et al. Enhancement of1.54-μmemission from Er-doped sol-gel SiO2films by Au nanoparticles doping[J]. Journalof Applied Physics,2005,98(2):024316.
    [2] WANG H S, QIAN G D, WANG Z Y, et al.1.53μm photoluminescence fromORMOSIL films doped with erbium complexes[J]. Journal of Luminescence,2005,113(3):214-220.
    [3] KOPPE M, BRABEC C J, SARICIFTCI N S, et al. Er3+-emission from organic complexesembedded in thin polymer films[J]. Synth. Met.,2001,121:1511-1512.
    [4] QUANG A Q L, BESSON E, HIERLE R, et al. Polymer-based materials foramplification in the telecommunication window: Influence of erbium complexconcentration on relevant parameters for the elaboration of waveguide amplifiersaround1550nm[J]. Optical Materials,2007,29(8):941-948.
    [5] MOYNIHAN S, DEUN R V, BINNEMANS K, et al. Optical properties of planarpolymer waveguides doped with organo-lanthanide complexes[J]. Opt. Mater.,2007,29:1821-1830.
    [6] JANIAK C. A critical account on π–π stacking in metal complexes with aromaticnitrogen-containing ligands[J]. J. Chem. Soc., Dalton Trans.,2000,3885-3896.
    [7] SONG L M, LIU X H, ZHEN Z, et al. Solution-processable erbium-ytterbiumcomplex for potential planar optical amplifier application[J]. J Mater Chem,2007,17:4586-4590.
    [8] SONG L M, WANG Q, TANG D H, et al. Crystal structure and near-infraredluminescence properties of novel binuclear erbium and erbium–ytterbiumcocrystalline complexes[J]. Chem,2007,31:506-511.
    [9] BELLUSCI A, BARBERIO G, CRISPINI A, et al. Synthesis and luminescentproperties of novel lanthanide(III) β-diketone complexes with nitrogenp,p‘-disubstituted aromatic ligands[J]. Inorg. Chem.,2005,44(6):1818-1825.
    [10] NIU S Y, JIN J, JIN X L, et al. Synthesis, structure and characterization of Gd(III)dimer bridged by tetra benzoates[J]. Solid State Sci.,2002,4(8):1103-1106.
    [11] WANG R F,WANG S P, SHI S K, et al. Crystal structure and properties of aTerbium benzoate complex with1,10-phenanthroline[J]. Chinese J. Struct.Chem.,2004,23(11):1300-1304.
    [12]刘崇进,沈家瑞,李凤仙.椭偏仪测量粗糙面薄膜的厚度和折射率的研究[J].光学技术,1995,3:18-21.
    [13]张希珍,高强,刘自强等.聚合物光波导放大器材料的光学参数及器件制备[J].光电子.激光,2008,6:735-738.
    [14]陈聪.铒镱共掺有机聚合物硅基平面光波导放大器的研究[D].吉林:吉林大学电子科学与工程学院,2010.
    [15] CHEN C, ZHANG D, LI T, et al. Erbium-ytterbium codoped waveguideamplifier fabricated with solution-processable complex[J]. Applied PhysicsLetters,2009,94:041119.
    [16] CHEN C, ZHANG D, LI T, et al. Demonstration of optical gain at1550nm inErbium-Ytterbium co-doped polymer waveguide amplifier[J]. Journal ofNanoscience and Nanotechnology,2010,10:1947-1950.
    [17]费旭,傅娜,王耀等.可交联聚甲基丙烯酸甲酯的合成、表征及在阵列式波导光栅中的应用[J].高等学校化学学报,2006,27(3):571-574.
    [1] ALMEIDA V A, XU Q, BARRIOS C A, LIPSON M. Guiding and confining lightin void nanostructure[J]. Opt. Lett.,2004,29:1209-1211.
    [2] MULLER P, HAINBERGER R. Structural optimization of silicon-on-insusatorslot waveguides[J]. IEEE Photon. Technol. Lett.,2006,18:2557-2559.
    [3] FENG N N, MICHEL J, KIMERLING L C. Optical field concentration inlow-index waveguides[J]. IEEE J. Quantum. Electron.,2006,42:885-890.
    [4] ANDERSON P A, SCHMIDT B S, LIPSON M. High confinement in silicon slotwaveguides with sharp bends[J]. Opt. Express.,2006,14:9197-9202.
    [5] CHAO C Y. Simple and effective calculation of modal properties of bent slotwaveguides[J]. J. Opt. Soc. Am. B,2007,24:2373-2377.
    [6] YANG S H, BANDARU P R, COOPER M L, et al. Multi-slot silicon opticalwaveguides[C]. California: OSA/CLEO/QELS, CThT1,2008.
    [7]肖司淼.基于狭缝波导的光器件研究[D].浙江:浙江大学信息与电子工程学系,2010.
    [8] BARRIOS C A, LIPSON M. Electrically driven silicon resonant light emittingdevice based on slot-waveguide[J]. Opt. Express,2005,13:10092-10101.
    [9] JUN Y C, BRIGGS R M, ATWATER H A, et al. Broadband enhancement of lightemission in silicon slot waveguides[J]. Opt. Express,2009,17:7479-7490.
    [10] WANG G, BAEHR-JONES T, HOCHBERG M, et al. Design and fabrication ofsegmented, slotted waveguides for electro-optic modulation[J]. Appl. Phys. Lett.,2007,91:143109.
    [11] LEE J M, KIM D J, KIM G H, et al. Controlling temperature dependence ofsilicon waveguide using slot structure[J]. Opt. Express.,2008,16:1645-1652.
    [12] BARRIOS C A, BANULS M J, GONZALE-PEDRO V, et al. Label-free opticalbiosensing with slot-waveguides[J]. Opt. Lett.,2008,33:708-710.
    [13] PINTUS P, FARALLI S, PASQUALE F D. Integrated2.8μm laser source inAl2O3:Er3+slot waveguide on SOI[J]. Journal of lightwave technology,2011,29(8):1206-1212.
    [14] GREEN M A, KEEVERS M. Optical properties of intrinsic silicon at300K[J].Progress in Photovoltaics: Research and Applications,1995,3(3):189-192.
    [15] HOVEN G N V D, SNOEKS E, POLMAN A. Upconversion in Er-implantedAl2O3waveguides[J]. J. Appl. Phys.,1996,79(3):1258-1265.
    [16] LI S F, SONG C L, XIONG Q J, et al. A numerical analysis of gaincharacteristics of Er-doped Al2O3waveguide amplifiers[J]. Optical and QuantumElectronics,2002,34:859-866.
    [17] PINTUS P, FARALLI S, PASQUALE F D. Low-threshold pump power and highintegration in Al2O3:Er3+slot waveguide lasers on SOI[J]. IEEE Photo. Tech.Lett.,2010,22(19):1428-1430.
    [18] SHOOSHTARI A, TOUAM T, et al. Yb3+sensitized Er3+-doped waveguideamplifiers: a theoretical approach[J]. Opt. Quant. Electr.,1998,30:249-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700