基于Micropen直写技术快速制造聚合物条形光波导的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物条形光波导的传统制作方法比较成熟,但这些方法具有工艺复杂、制作周期长和效率低等缺点。与传统方法相比,直写技术(Direct Writing)由于具有无掩模、高柔性化、加工精度高、速度快、可靠性程度高、成本低以及适用的材料范围广泛等优点而倍受人们的重视。因此,直写技术特别适合用于产品的研究与开发阶段,在实验研究和小规模生产中发挥传统方法难以发挥的作用。
     针对聚酰亚胺材料的特点和微细笔直写技术的特点,本课题提出采用微细笔直写工艺来直接制作聚合物条形光波导芯层的技术思想。利用该技术成功的制作出了质量良好的氟化聚酰亚胺条形光波导,并对聚合物条形光波导的直写工艺、波导的尺寸控制和通光性能进行了系统的研究。
     直写工艺中,系统研究了波导的直写速度V、气体压力P、笔头到基板的距离H对波导宽度的影响规律。在其它工艺参数一定的情况下,波导宽度随气体压力P的增加而增大,但随直写速度V的增大而减小。在临界高度内,笔头到基板的距离H对波导宽度的影响不大;但是一旦超过临界高度,波导边沿质量就变得很差。通过对不同直写参数下得到的波导的外形尺寸和微观形貌进行分析,得到微细笔直写的优化工艺参数为:直写速度V=2mm/s,气体压力为P=8kPa,微细笔笔尖到基板的高度H=5μm。
     波导成型后,后续的热处理工艺会对波导损耗产生比较大影响。在50℃-300℃之间,氟化聚酰亚胺的本征损耗随热处理温度的升高而降低,并在300℃左右达到损耗的最小值。分析了波导中存在的杂质颗粒、气孔、裂纹和不规则外形等缺陷的形成原因,并提出了相应的解决法。分析了影响波导通光性能和增大光传输损耗的主要因素。用截断法测试了聚合物条形光波导在1550nm波长处的传输损耗,最小的传输损耗为0.27 dB/cm,达到了光集成器件的使用要求。
Although the traditional methods of fabricating polymer strip optical waveguides are already applied widely, the shortcomings of the complex manufacturing process, time-consuming and low efficiency are still difficult to overcome. In compare, direct writing technology has attracted great attention for the virtues of maskless, high-flexibility, high-precision, fast-fabrication, high-reliability, low-cost and wide-adaptability to materials. Therefore, the technology of direct writing is very suitable for the period of experimental research and small-scale product development.
     In this paper, the idea of fabricating the core layer of polymer strip optical waveguides was given based on the characteristics of polyimide(PI) and the direct writing of micropen. PI strip optical waveguides with good formation were fabricated successfully and the writing parameters, dimension control and light propagation of waveguides were investigated systematically.
     In experiments, the effects of writing velocity (V), gas pressure (P) and the height (H) between the micropen point to the substrate on the width of the polymer strip waveguides were studied. The width of the waveguides increases with the gas pressure but decreases with the writing velocity when other parameters are fixed. Besides, there is a critical distance between the micropen point to the substrate. The width of the waveguide changes little when the height (H) between the micropen point to the substrate is lower than the critical distance. But the formation quality of the strip waveguide becomes worse when the height (H) between the micropen point to the substrate is higher than the critical distance. In our work, basing on dimension and appearance of the strip optical waveguides, we can get the following optimized writing parameters: writing velocity (V) is 2mm/s, gas pressure (P) 8kPa, the height (H) between the micropen point to the substrate is 5μm.
     Heat treatment process tremendous influences the propagation loss of waveguides. The experimental result indicates that propagation loss of the PI material increases with the temperature in the range of 50 to 300℃. And the minimum propagation loss of the PI materials was gotten after the heat treatment at 300℃. Moreover, the reason of producing particles, pores, cracks and irregular shape in the procedure of writing waveguides were discussed and corresponding solutions were given. The propagation losses of the PI strip optical waveguides were measured by the use of cut-back method at the wavelength of 1550nm. And the minimum propagation of the strip optical waveguides is 0.27 dB/cm, which can meet the application need of the optical integrate device in the communication wave band.
引文
[1]张宝富,谭笑,蒋慧娟.光纤通信系统原理与实验教程.北京:电子工业出版社, 2004, 1~16
    [2] J. H. Franz, V. K. Jain著.光通信器件与系统.徐宏杰等译.北京:电子工业出版社, 2002. 3~7
    [3]李玉权,崔敏.光波导理论与技术.北京:人民邮电出版社, 2002, 2~12
    [4]小林功郎著.光集成器件.崔凤林译.北京:科学出版社, 2002, 2~12
    [5]林志浪. SOI集成光波导器件的基础研究: [博士学位论文].上海:中国科学院上海微系统与信息技术研究所, 2004.
    [6]严清峰,余金中,陈少武.从OFC2003看平面光波导器件的发展动向.光电子·激光. 2003, 14(10): 1124~1128
    [7] U suiM , H ik itaM , Watanabe T et al. Journal of Lightwave Technology. 1996, 14 (10): 2338~2343.
    [8]秦秉坤,孙雨南.介质光波导及其应用.北京:北京理工大学出版社, 1991, 2~36
    [9]朱京平.光电子技术基础.北京:科学出版社, 2003, 17~43
    [10]梅遂生.光电子技术.北京:国防工业出版社, 1999, 3~25
    [11]许政权.介质光波导器件原理.上海:上海交通大学出版社, 1989, 74~85
    [12] Yo sh immura R, H ik itaM , Tom ru S et al. Journal of Lightwave Technology, 1998, 16(6): 1030~1037.
    [13] S Kim, K Geary, D Chang et al. Polymeric Modulators with Poling Induced Waveguides and Self-Aligned Electrodes. OFC2003, 2003, (8): 319 ~320
    [14] Wu J W. Binkley E S, Kenney J T, et al. Highly thermally stable electro-optic response in poled guest host polyimide system cured at 360℃. J Appl. Phys., 1991,69: 7366 ~7368.
    [15] Colinge J P. Silicon-on-Insulator technology. Materials to VLSI, Kluw er Academic Pub. , 1991, 24: 3829~3836
    [16]刘育梁,王启明.硅基光波导结构与器件.红外与毫米波学报, 1996, 15(1): 65~71
    [17]丁孟贤,何天白.聚酰亚胺新型材料.北京:科学出版社. 1998, 1~52
    [18] Ma J., Lin S., Feng W., et al. Modeling photoleached optical polymer waveguides. Appl Opt., 1995, 34(24): 5352~5360.
    [19] Dave Gerold, Ray T. Chen. Vacuum-Tuned Graded Index Polymer Waveguides On Silicon Substrates. Proc. of SPIE. 2291: 285~293
    [20]禹忠,汪敏强,姚熹.光通讯波段聚合物光波导材料的研究进展.化学通报, 2001, (1): 5~10
    [21]刘金刚,何民辉,王丽芳等.含氟聚酰亚胺在微电子工业中的应用.高分子通报. 2003, (4): 4~24
    [22] Sihan Lin, Wei Feng, Brian Hooker R., et al. UV bleaching of polymers and polymeric directional couplers for optical interconnects. Proc. of SPIE, 1994, 2285: 415 ~423
    [23] M B J Diemere, Suyten F M M, Trommel E S, et al. Photonduced channel waveguide formation nonlinear optical polymers. Electron Lett, 1990, 26: 379~380
    [24] Ann Norris, Jon DeGroot, Takuya Ogawa, et al. High Reliability of Silicone Materials for Use as Polymer Waveguides. Proc. of SPIE, 1994, 5212: 76~82
    [25] Winfried H .G. Horsthuis, Johannes W. Hofstraat, Jean-Luc P. Heideman.Loss Mechanisms and Measurements in Polymer Waveguides. Proc. of SPIE, 2025: 233~242
    [26]毕克允.微电子技术—信息装备的精灵.北京:国防工业出版社, 2000, 24~35
    [27]冷卫南.含氟聚酰亚胺高聚物平面波导的制备及其电光性质的研究: [博士学位论文].南京:东南大学图书馆, 2001.
    [28]邢汝冰,张学亮.脊形聚合物光波导制备及理论分析.发光学报, 2001,22(1): 80~84
    [29] Lipscomb G F, lytel R S, Ticknor A J, et al. Nonlinear optical properties of organic materials. SPIE Conf, 1990, 1337: 23~28.
    [30]仇琳琳,沈启舜,曹庄琪等.低损耗有机聚合物光波导的制备.上海交通大学学报, 1986, 30: 8~12
    [31]祁小敬,基于玻璃基底的激光直写布线技术研究: [硕士学位论文].华中科技大学图书馆, 2003.
    [32]周小红,新型激光直写系统的优化设计与工艺研究: [硕士学位论文].苏州大学图书馆, 2005.
    [33] Carl.E.D. Inking system for producing circuit pattern. U.S. patents, 4485387, 1985, 269~275
    [34] King, B.H. et al. Direct-write fabrication of integrated, multilayer ceramic components. Journal of Electro ceramics, 1999, 3(2): 173~178
    [35]刘敬伟,曾晓雁.激光直写布线技术的现状与展望.激光杂志, 2001, 22(6): 15~18
    [36] P. E. Sheehan, L. J. Whitman. Nanoscale depositions of solid inks via thermal dip pen nanolithography. Appl. Phys. Lett., 2004, 85( 9): 1589~1591
    [37] Geert Van Steen Bergea, Nina Hendrickxa, Peter Geerincka, at al. Development of a fabrication technology for integrating low cost optical interconnects on a printed circuit board. Proc. of SPIE, 2006, 612603: 1~9
    [38] Shuping Wang, Brad Borden, Ye Li at al. Laser direct writing of inorganic-organic hybrid polymeric channel waveguide for optical integrated circuits. Proc. of SPIE, 2005 , 63890B:1~ 7
    [39] Chia-Yu Lin, Ying-Hong Ling, Wei-Ching Chuang. A Simple Replication Method to Fabricate Polymer Waveguide. Proc. of SPIE, 2006, 617710:1~ 8
    [40] Douglas B. Chrisey. The Power of Direct Writing. Science, 2000, (11): 879~880
    [41] Fuller, S.B et al. Ink-Jet Printed Nanoparticle Microelectromechanical Systems. Journal of MEMS, 2002,11(1): 54~60
    [42]何中伟,周冬莲.厚膜直接描绘工艺.电子元件与材料, 1999, 18(5): 3~6
    [43] Claire L. Callender, Lucie Robitaille, Julian P. Noad. Polyimide waveguide components and interconnects in advanced communication systems. Proc. of SPIE, 2004, 3278: 112~121
    [44]刘德明,向清,黄德修.光纤光学.北京:国防工业出版社, 1995, 4~51
    [45]郁道银,谈恒英.工程光学.北京:机械工业出版社, 1999, 179~198
    [46]吴远大,夏君磊,安俊明等.紫外写入技术制备光波导器件研究.半导体学报, 2006, 27(4): 744~746
    [47]刘育梁,王启明.硅基光波导结构与器件.红外与毫米波学报, 1996, 15(1): 65~71
    [48]刘光灿,白廷柱.平面光波导器件及应用分析.光电技术应用, 2005, 20(3): 45-48
    [49]初凤红,韩秀友,庞拂飞等.集成光波导传感器的研究进展.激光与光电子学进展, 2006, 43(3): 21~27
    [50]吕新杰,杨军,明海.聚合物光波导器件的最新进展.光电子信息与技术, 2004, 17(6): 6~11
    [51]韩晓星,朱大庆,宁娜等.用于光波导的高性能聚合物薄膜制备工艺研究.激光技术, 2004, 28(3): 315-318
    [52]付凯,罗风光,曹明翠.用于光电印制电路板(OEPCB)的聚合物光波导的制作.光通信技术, 2005, (4): 18~19
    [53]费旭,傅娜,王耀.可交联聚甲基丙烯酸甲酯的合成表征及在阵列式波导光栅中的应用.高等学校化学学报, 2006, 27(3): 571~574
    [54]禹忠,汪敏强,姚熹.光通讯波段聚合物光波导材料的研究进展.化学通报, 2001, (1): 5~10
    [55]刘建静,郝伟,刘锴等.光折变聚合物材料在光电子技术中的应用.应用光学.2006, 27(3): 239~242
    [56]张平,高福斌,邢汝冰.侧链型聚合物DANS-PMMA脊形条波导的制备.发光学报, 2001, 22(2): 147~150
    [57]邱凤仙,周钰明,刘举正.含氟聚酰亚胺的热光性能.中国激光, 2006, 33(2): 233~237
    [58]高福斌,张平,金锋.极化聚合物薄膜波导的光学特性.发光学报, 1999, 20(2): 117~122
    [59]邢汝冰,张学亮,张平等.脊形聚合物光波导制备及理论分析.发光学报, 2001, 22(1): 80~84
    [60]凌云,张彤,崔一平.有机聚合物光波导的研制.电子器件, 2005, 28(2): 265~267
    [61]单吉祥,应再生,沈启舜等.制备有机聚合物脊型光波导的新方法.微细加工技术, 2000, (2): 50~54
    [62]徐炽焕.作为光学材料的含氟聚酰亚胺.化工新型材料, 1998, (2): 10~14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700