集成光子晶体滤波器和微流体光波导器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微集成光子器件是光子芯片的重要组成部分。光子集成是指在一个普通的平面衬底上制作和集成许多光子元件。这些元件包括分光器、光栅、耦合器、偏振器、干涉仪、光源和检测器等。在这个基础上制作成一个功能块,许多这样的功能块集成起来可以实现更复杂的功能,如光通讯系统、仪器和传感器等。它的传输媒介是光子,所以具有高速、大容量、抗电磁干扰性强等优点。本论文讨论的是两种微集成光子器件:光子晶体滤波器和微流体光波导传感器。
     本论文提出的基于耦合模式理论和传输矩阵法的理论模型可以快速的找出各个参数对光子晶体滤波器和光栅性能的影响,从而可以对它们的性能进行优化。本论文还提出两种技术来抑制光子晶体滤波器的旁瓣,啁啾技术和优化级联技术,理论上这两种技术的边模抑制比能达到30dB。与切趾技术相比这两种方法简单有效的抑制了旁瓣,并且在控制滤波器带宽和陡峭边沿上有很大的灵活性,在工艺上易于实现。
     微光子器件和微流体器件合成做成微流体光器件,一方面可以集成生物化学传感器,待测物通过流体运送到高灵敏度微光子器件进行分析,另一方面微流体控制微光子器件,使微光子器件可控、可调、可重组。本论文首先对微流体光波导的传输及损耗特性进行了测量与讨论,接着设计了基于微流体光波导的传输型传感器和吸收型传感器。基于倏逝波传输特性的传感器,尺寸大小为3cm×3cm,探测折射率灵敏度为△S/△C=275μm~2 L/mol。基于样品吸收特性的传感器,尺寸大小为3.5cm×3cm,rhodamin 6G的探测极限浓度是5×10~(-9)mol/L(0.5ng/mL),Mathylene blue的探测极限是5×10~(-8)mol/L(0.16ng/mL)。与固体波导传感器相比,由于流体既是样品的承载者,又是光学测量的主体,使用上更加灵活和方便,而且液体波导传感器的灵敏度相同但尺寸减小。传输型和吸收性传感器结构上是一样的。传输型可用于高浓度样品测量,吸收型适用于低浓度样品测量。同一个芯片可以同时满足不同的测量需要,这是固液型传感器做不到的。基于微流体光波导的双Mach-Zenhder干涉仪可以用来探测粒子所在位置,进而控制粒子传输方向,进行粒子分类,这是一种高灵敏度的粒子分类仪器。
Integrated photonic device is an important part of photonics circuits. 'Integrated photonics' means several photonic components fabricated and integrated on a planar substrate. These components include beam splitters, gratings, couplers, polarisers, interferometers, sources and detectors, and others. In turn, these can then be used as buiding blocks to fabricate more complex planar devices which can perform a wide range of functions with applications in optical communication systems and sensors.The advantanges of the photonic device are the high speed, large capacity, low loss and so on because the propogation media is photonics. In this thesis two integrated device is discussed, photonic crystal filter and micro liquid/liquid waveguide.
     This thesis presents the theoretical model of the side-coupled photonic crystal filter and the gratings. Numerical verification shows a good agreement between the theoretic method and the finite-difference time-domain simulation, but the theoretic method does not involve the time-consuming computation. The theoretical method also presents a better physical image for choosing the critical parameters. Based on the theoretic model, two optimization methods (chirp and cascading) are proposed to deeply suppress the sidelobes, the sidelobe surpression ratio is 30dB. They also show more flexibility in controlling the bandwidth and steepness of the roll-off in the filter. Comparing to apodized technique, it is easy to fabricate.
     The potential applications of the micro integrated photonic devices and microfluidic systems are mainly twofold. In the context of integrated biochemical sensing, fluids can be used to carry substances to be analysed through highly sensitive microphotonic circuits. Conversely, microfluids can be exploited to control microphotonic devices, making them tunable, reconfigurable and adaptive. In the thesis the optical properties such as the propogation and the loss of the liquid/liquid waveguide were measured and discussed. Two liquid/liquid waveguide sensors were proposed, transmission sensor and absorption sensor. The size of the transmission sensor is 3cm×3cm. The sensitivity is△S/△C=275μm~2 L/mol. The size of the absorption sensor is 3.5cm×3cm. The limitation of detection is 0.5 ng/mL for rhodamin 6G and 0.16 ng/mL for Mathylene blue. Campared with the solid/liquid sensor the liquid/liquid senor has the advantage of flexible and easy for use. The liquid sensor has small size when its sensitivity is the same as the solid/liquid sensor. The two sensos have the same structure. The transmision sensor can be used for the high concentration sample detection and the absorption can be used for the low concentration. It is impossible for traditional solid/liquid waveguide senor to use the same circiut to satisfy the different needs. The twin Mach-Zenhder interferometer based on the liquid/liquid waveguide can be used to detect the position of the paticles for the particles sorting. This particle sorting device is high sensitivity.
引文
[1]B.E.Kane,"A silicon-based nuclear spin quantum computer," Nature 393(6681),133-137,1998.
    [2]L.M.Adleman,"Molecular computation of solutions to combinatorial problems," Science 266(5187),1021-1024,1994.
    [3]A.D.McAulay,Optical computer architectures:the application of optical concepts to next generation computers,Wiley,New York,1991.
    [4]S.E.Miller,"Integrated optics:An introduction," Bell Syst.Tech.J.48(7),2059(1969).
    [5]J.D.Joannopoulos,R.D.Meade,and J.N.Winn,Photonic Crystals - Molding the Flow of Light,Princeton University Press,1995.
    [6]K.M.Ho,C.T.Chan,and C.M.Soukoulis,"Existence of a photonic gap in periodic dielectric structures," Phys.Rev.Lett.65,3152,1990.
    [7] S. G. Johnson and J. D. Joannopoulos, "Block-Interative frequency-Domain methods for Maxwell's equations in a plane wave basis," Opt. Express 8, 173-180, 2001.
    [8] C. Chen. Band gap and dispersion engineering of photonic crystal devices. Dissertation, University of Delaware, 2004.
    
    [9] Z. Y. Li and L. L. Lin, "Photonic band structures solved by a plane-wave-based transfer- matrix method," Phys. Rev. E 67, 046607, 2003.
    [10] A. Taflove and S. C. Hagness, Computational Electromagnetics: The Finite-difference Time-Domain Method. Artech House, Boston, 2000.
    [11] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media," IEEE Trans. Antennas Propagat. AP-14, 302-307, 1966.
    [12] M. Qiu, M. Mulot, M. Swillo et al., "Photonic crystal optical filter based on contra- directional waveguide coupling." Appl. Phys. Lett. 83, 5121-5123, 2003.
    [13] B. Song, S. Noda, and T. Asano, "Photonic devices based on in-plane hetero photonic crystals," Science 300(5625), 1537, 2003.
    [14] D. Park, S. Kim, I. Park et al., "Higher order optical resonant filters based on coupled defect resonators in photonic crystals ," J. Light. Techn. 23(5), 1923-1928, 2005.
    [15] S. Kim, I. Park, H. Lim, et al., "Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback." Opt. Express 12(22), 5518- 5525,2004.
    [16] R. F. Cregan, B. J. Mangan, J. C. Knight et al., "Single-mode photonic band gap guidance of light in air," Science 285(5433), 1537-1539, 1999.
    [17] K. M. Ho, C. T. Chan, C. M. Soukoulis et al., "Photonic Band Gaps In Three Dimensions: New Layer-By-Layer Periodic Structures", Solid State Comm. 89, 413,1994.
    [18] S. Noda, N. Yamamoto and A. Sasaki, "New Realization Method for Three-Dimensional Photonic Crystal in Optical Wavelength Region." Japanese Journal of Applied Physics 35, L909-L915, 1996.
    [19] M. Loncar, T. Doll, J. Vuckovic et al., "Design and fabrication of silicon photonic crystal optical waveguides," J. Lightwave Technol. 18(10), 1402-1411, 2000.
    [20] A. Birner, U. Gruning, S. Ottow et al., "Macroporous silicon: A two-dimensional photonic bandgap material suitable for the near-infrared spectral range," Phys. Status Solidi A-Appl. Res. 165 (1), 111-117 (1998).
    [21] V. Bykov, "Sponteneous emission in a periodic structure," Sov. Phys. JETP 35, 269-273, 1972.
    [22] V. Bykov, "Spontaneous emission from a medium with a band spectrum," Sov. J. Quantum Electron 4, 861-871,1975.
    [23] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58(20), 2059-2062,1987.
    [24] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58(23), 2486-2489,1987.
    [25]D. W. Prather, S. Y. Shi, J. Murakowski et al., "Photonic crystal structures and applications: Perspective, overview, and development," IEEE J. Sel. Top. Quantum Electron. 12 (6), 1416-1437, 2006.
    [26] J. G. Fleming and S. Y. Lin, "Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm," Opt. Lett. 24(1), 49-51,1999.
    [27] S. Noda, K. Tomoda, N. Yamamoto et al., "Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths," Science 289,604-606,2000.
    [28] N. Yamamoto, S. Noda, and A. Sasaki, "New realization method of three-dimensional photonic crystal in optical wavelength region," Jpn. J. Appl. Phys. 36,1907-1911,1997.
    [29] M. M. Sigalas, R. Biswas, K. M. Ho et al., "Theoretical investigation of off-plane propagation of electromagnetic waves in two-dimensional photonic crystals," Phys. Rev. B 58, 6791-6794,1998.
    [30] M. Bayindir, E. Cubukcu, I. Bulu et al., "Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals," Phys. Rev. B 64,195113,2001.
    [31] W. M. Robertson, G. Arjavalingam, R. D. Meade et al., "Measurement of photonic band structure in a two-dimensional periodic dielectric array," Phys. Rev. Lett. 68(13), 2023- 2026,1992.
    [32] I. El-Kady, M. M. Sigalas, R. Biswas et al., "Dielectric waveguides in two-dimensional photonic bandgap materials," J. Lightw. Technol. 17(11), 2042-2049, 1999.
    [33] S. Y. Lin, E. Chow, S. G. Johnson et al., "Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5μm wavelength," Opt. Lett. 25(17), 1297-1299, 2000.
    [34] C. J. M. Smith, H. Benisty, S. Olivier et al., "Low-loss channel waveguides with two- dimensional photonic crystal boundaries," Appl. Phys. Lett. 77(18), 2813-2815, 2000.
    [35] M. Notomi, A. Shinya, K. Yamada et al., "Structural tuning of guiding modes of line- defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron. 38(7), 736-742, 2002.
    [36] Y. Ohtera, T. Kawashima, Y. Sakai et al., "Photonic crystal waveguides utilizing a modulated lattice structure," Opt. Lett. 27(24), 2158-2160, 2002.
    [37] S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express. 11(22), 2927-2939, 2003.
    [38] M. Notomi, A. Shinya, S. Mitsugi et al., "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12(8), 1551-1561, 2004.
    [39] A. Mekis, J. C. Chen, I. Kurland et al. "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77(18), 3787-3790, 1996.
    [40] S. Y. Lin, E. Chow, V. Hietola et al., "Experimental demonstration of guiding and bending of electromagnetic waves in photonic crystal," Science 282(5387), 274-276, 1998.
    [41] M. Loncar, J. Vuckovic, and A. Scherer, "Methods for controlling positions of guided modes of photonic-crystal waveguides," J. Opt. Soc. Am. B 18(9), 1362-1368, 2001.
    [42] H. Benisty, S. Olivier, C. Weisbuch et al., "Models and measurements for the transmission of submicron-width waveguide bends defined in two-dimensional photonic crystals," IEEE J. Quantum Electron. 38(7), 770-785, 2002.
    [43] A. Yariv, Y. Xu, R. K. Lee et al., "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713, 1999.
    [44] S. Mookherjea, A. Yariv, "Coupled-resonator optical waveguides," IEEE J. Select. Topics Quantum Electron. 8(3), 448-456, 2002.
    [45] W. J. Kim, W. Kuang, and J. O'Brien, "Dispersion characteristics of photonic crystal coupled resonator optical waveguides," Opt. Express 11, 3431-3437, 2003.
    [46] S. Olivier, C. Smith, M. Rattier et al., "Miniband transmission in a photonic crystal coupled-resonator optical waveguide," Opt. Lett. 26,1019-1021, 2001.
    [47] M. Soljacic, S. G. Johnson, S. Fan et al., "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059, 2002.
    [48] J. K. S. Poon, J. Scheuer, Y. Xu et al., "Designing coupled-resonator optical waveguide delay lines," J. Opt. Soc. Am. B 21,1665-1673, 2004.
    [49] M. Ibanescu, Y. Fink, S. Fan et al., "An all-dielectric Coaxial waveguide," Science 289(5478), 415-419, 2000.
    [50] J. C. Knight, T. A Birks, P. St. J. Russell et al., "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549, 1996.
    [51] T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963, 1997.
    [52] S. E. Barkou, J. Broeng, and A. Bjarklev, "Silica air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect," Opt. Lett. 24,46-48,1999.
    [53] J. Broeng, S. E. Barkou, T. Sondergaard et al., "Analysis of air-guiding photonic bandgap fibers," Opt. Lett. 25,96-98,2000.
    [54] J. C. Knight, J. Broeng, T. A. Birks et al., "Photonic band gap guidance in optical fibers," Science 282,1476-1478,1998.
    [55] J. C. Knight, T. A. Birks, P. S. J. Russell et al., "Properties of photonic crystal fiber and the effective index model," J. Opt. Soc. Am. A 15, 748-752,1998.
    [56] K. Tajima, J. Zhou, K. Nakajima et al., "Ultra low loss and long length photonic crystal fiber,"OFC PD1,2003.
    [57] B. J. Mangan, L. Farr, A. Langford et al., "Low loss (1.7 dB/km) hollow core photonic bandgap fiber," OFC 2,2004.
    [58] A. Ferrando, E. Silvestre, J. J. Miret et al., "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett. 25,790-792, 2000.
    [59] W. Reeves, J. Knight, P. Russell et al., "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10,609-613,2002.
    [60] K. Hansen, "Dispersion flattened hybrid-core nonlinear photonic crystal fiber," Opt. Express 11, 1503-1509,2003.
    [61] J. C. Knight, et al. "Anomalous dispersion in photonic crystal fiber." IEEE Photon. Technol. Lett. 12, 807-809,2000.
    [62] J. C. Knight, T. A. Birks, R. F. Cregan et al., "Large mode area photonic crystal fibre," Electron. Lett. 34,1347-1348,1998.
    [63] N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg et al., "Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt. Lett. 28, 393-395, 2003.
    [64] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth et al., "Highly birefringent photonic crystal fibers," Opt. Lett. 25,1325-1327, 2000.
    [65] E. Yablonovitch, T. J. Gmitter, R. D. Meade et al., "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67, 3380-3383,1991.
    [66] M. M. Sigalas, K. M. Ho, R. Biswas et al., "Theoretical investigation of defects in photonic crystals in the presence of dielectric losses," Phys. Rev. B 57, 3815-3820, 1998.
    [67] M. Loncar, T. Yoshie, A. Scherer et al., "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682, 2002.
    
    [68] Y. Akahane, T. Asano, B.-S. Song et al., "High-Q photonic nanocavity in a two- dimensional photonic crystal," Nature 425, 944-947,2003.
    [69]B.S.Song,S.Noda,T.Asano et al.,"Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat.4,207-210,2005.
    [70]H.Y.Ryu and M.Notomi,"Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity," Opt.Lett.28,2390-2392,2003.
    [71]E.M.Purcell,"Spontaneous emission probabilities at radio frequencies," Phy.Rev.69,681,1946.
    [72]P.L.Gourley,"Microstructured semiconductor lasers for high-speed informationprocessing,"Nature 371(6498),571-577,1994.
    [73]K.Srinivasan and O.Painter,"Momentum space design of high-Q photonic crystal optical cavities," Opt.Express 10(15),670-684,2002.
    [74]S.Arnold,M.Khoshsima,I.Teraoka,et al.,"Shift of whispering-gallery modes in microspheres by protein adsorption," Opt.Lett.28(4),272-274,2003.
    [75]M.L.Gorodetsky,A.A.Savchenkov,V.S.Ilchenko,"Ultimate Q of optical microsphere resonators," Opt.Lett.21(7),453-455,1996.
    [76]P.Lalanne and J.P.Hugonin,"Bloch-wave engineering for high-q small-v microcavities," IEEE.J.Quantum Electron.39(11),1430-1438,Nov.2003.
    [77]P.Lalanne,S.Mias,and J.P.Hugonin,"Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities," Opt.Express 12(3),458-467,2004.
    [78]J.S.Foresi,P.R.Villeneuve,J.Ferrera et al.,"Photonic-bandgap microcavities in optical waveguides," Nature 390(6656),143-145,1997.
    [79]R.K.Lee,O.J.Painter,B.D'Urso et al.,"Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,"Appl.Phys.Lett.74(11),1522-1524,1999.
    [80]O.Painter,R.K.Lee,A.Scherer et al."Two-dimensional photonic band-gap defect mode laser," Science 284(5421),1819-1821,1999.
    [81]O.Painter,A.Husain,A.Scherer et al.,"Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP," J.Lightwave Technol.17(11),2082-2088,1999.
    [82]H.G.Park,J.K.Hwang,J.Huh et al.,"Nondegenerate monopole-mode twodimensional photonic band gap laser," Appl.Phys.Lett.79(19),3032-3034,2001.
    [83]H.Y.Ryu,S.H.Kwon,Y.J.Lee et al.,"Very low- threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl.Phys.Lett.80(19),3476-3478,2002.
    [84] O. Painter, A. Husain, A. Scherer et al., "Lithographic Tuning of a two-dimensional photonic crystal laser array," IEEE Photon. Technol. Lett. 12(9), 1126-1128, 2000.
    
    [85] J. K. Hwang, H. Y. Ryu, D. S. Song et al., "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54μm," Appl. Phys. Lett. 76(21), 2982-2984,2000.
    
    [86] W. D. Zhou, J. Sabarinathan, B. Kochman et al., "Electrically injected single-defect photonic bandgap surface-emitting laser at room temperature," Electron. Lett. 36(18), 1541-1542,2000.
    
    [87] J. C. Chen, H. A. Haus, S. Fan et al., "Optical filters from photonic band gap air bridges," J. Lightwave Technol. 14,2575-2580,1996.
    
    [88] X. Y. Lei, H. Li, F. Ding et al., "Novel application of a perturbed photonic crystal: High-quality filter," Appl. Phys. Lett. 71,2889-2891,1997.
    
    [89] A. D'Orazio, M. De Sario, V. Petruzzelli et al., "Photonic band gap filter for wavelength division multiplexer," Opt. Express 11,230-239,2003.
    
    [90] A. Jugessur, P. Pottier, and R. De La Rue, "Engineering the filter response of photonic crystal microcavity filters," Opt. Express 12,1304-1312,2004.
    
    [91] S. Fan, P. R. Villeneuve, J. D. Joannopoulos et al., "Channel Drop Tunneling through Localized States," Phys. Rev. Lett. 80, 960-963,1998.
    
    [92] S. Fan, P. Villeneuve, J. Joannopoulos et al., "Channel drop filters in photonic crystals," Opt. Express 3,4-11, 1998.
    
    [93] S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Theoretical analysis of channel drop tunneling processes," Phys. Rev. B 59,15882-15892,1999.
    
    [94] C. Manolatou, M. J. Khan, S. Fan et al., "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35,322-1331,1999.
    
    [95] M. J. Khan, C. Manolatou, S. Fan et al., "Mode coupling analysis of multipole symmetric resonant add/drop filters," IEEE J. Quantum Electronics 35,1451-1460,1999.
    
    [96] H. Takano, Y. Akahane, T. Asano et al., "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 84, 2226-2228, 2004.
    
    [97] B. K. Min, J. E. Kim, and H. Y. Park, "Channel drop filters using resonant tunneling processes in two-dimensional triangular lattice photonic crystal slabs," Opt. Commun. 237, 59-63, 2004.
    
    [98] M. Qiu, "Ultra-compact optical filter in two-dimensional photonic crystal," Electronics Letters 40, 539- 540, 2004.
    [99] M. Qiu and B. Jaskorzynska, "Design of a channel drop filter in a two-dimensional triangular photonic crystal," Appl. Phys. Lett. 83, 1074-1076, 2003.
    [100] Z. Zhang and M. Qiu, "Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs," Opt. Express 13, 2596- 2604, 2005.
    [101] K. Hwang and G. Song, "Design of a high-Q channel add-drop multiplexer based on the two-dimensional photonic-crystal membrane structure," Opt. Express 13, 1948- 1957, 2005.
    [102] A. Gomyo, J. Ushida, and M. Shirane, "Highly drop-efficient channel-drop optical filters with Si-based photonic crystal slabs," Proc. ICSI-4 508, 422-425, 2006.
    [103] A. Sharkawy, S. Shi, and D. W. Prather, "Multichannel Wavelength Division Multiplexing with Photonic Crystals," Appl. Opt. 40, 2247-2252, 2001.
    [104] S. Kim, I. Park, and H. Lim, "Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback," Opt. Express 12, 5518-5525, 2004.
    
    [105] A. Shinya, S. Mitsugi, M. Kuramochi et al., "Ultrasmall multi-channel resonant- tunneling filter using mode gap of width-tuned photonic crystal waveguide," Opt. Express 13,4202-4209,2005.
    [106] M. Notomi, A. Shinya, S. Mitsugi et al., "Waveguides, resonators and their coupled elements in photonic crystal slabs," Optics Expressl2,1551-1561, 2004.
    [107] H. Takano, B. S. Song, T. Asano et al., "Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal," Appl. Phys. Lett. 86, 241101, 2005.
    [108] Z. Zhang, M. Qiu, "Coupled mode analysis of in-plane channel drop filters with resonant mirrors," Photonics and Nanostructures 3, 84-89, 2005.
    
    [109] H. Ren, C. Jiang, W. Hu et al., "Photonic crystal channel drop filter with a wavelength- selective reflection micro-cavity," Opt. Express 14, 2446-2458, 2006.
    [110] D. Park, S. Kim, I. Park et al., "Higher order optical resonant filters based on coupled defect resonators in photonic crystals," J. Lightwave Technol. 23, 1923-1928, 2005.
    [111] T. Fujisawa and M. Koshiba, "An analysis of photonic crystal waveguide gratings using coupled-mode theory and finite-element method," Appl. Opt. 45, 4114-4121, 2006.
    [112]N. Yokoi, T. Fujisawa, K. Saitoh et al., "Apodized photonic crystal waveguide gratings," Opt. Express 14, 4459-4468, 2006.
    [113] R. Bogue, "Nanosensors: a review of recent progress," Sens. Rev. 28 (1), 12-17, 2008.
    [114]V. Ruddy, B. D. MacCraith, and J. A. Murphy, "Evanescent wave absorption spectroscopy using multimode fibers," J. Appl. Phys. 67(10), 6070-6074,1990.
    [115] R. C. Gauthier, and C. Ross, "Theoretical and experimental considerations for a single- mode fiber-optic bend-type sensor," Appl. Opt. 36(25), 6264-6273,1997.
    [116]M. Ahmad and L. L. Hench, "Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers," Biosens. Bioelectron. 20(7), 1312- 1319,2005.
    [117] J. Hu, V. Tarasov, A. Agarwal et al., "Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor," Opt. Express 15(5), 2307-2314,2007.
    [118]B. J. Luff, J. S. Wilkinson, J. Piehler et al., "Integrated optical Mach-Zehnder biosensor," J. Lightwave Technol. 16(4), 583-592,1998.
    [119] F. Prieto, B. Sepulveda, A. Calle, et al., "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14(8), 907-912, 2003.
    [120] R. G. Heideman and P. V. Lambeck, "Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase- modulated Mach-Zehnder interferometer system," Sens. Actuator B-Chem. 61 (1-3), 100- 127,1999.
    [121] J. Y. Lou, L. M. Tong, and Z. Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13(6), 2135-2140,2005.
    [122] A. Brandenburg, "Differential refractometry by an integrated optical Young interferometer," Sens. Actuators B Chem. 39(1-3), 266-271,1997.
    [123] A. Ymeti, J. Greve, P. V. Lambeck et al., "Fast, ultrasensitive virus detection using a young interferometer sensor," Nano Letters 7 (2), 394-397, 2007.
    [124] A. B. Matsko, V. S. Ilchenko, "Optical resonators with whispering gallery modes—Part I: Basics," IEEE J. Sel. Top. Quantum Electron. 12(1), 3-14, 2006.
    [125] V. S. Ilchenko, A. B. Matsko, "Optical resonators with whispering gallery modes—Part II: Applications," IEEE J. Sel. Top. Quantum Electron. 12(1), 15-32, 2006.
    [126] D. K. Armani, T. J. Kippenberg, S. M. Spillane, et al., "Ultra-high-Q toroid microcavity on a chip," Nature 421(6926), 925-928, 2003.
    [127] F. Vollmer, D. Braun, A. Libchaber, et al., "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80(21), 4057-4059, 2002.
    [128] A. M. Armani, K. J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Opt. Lett. 31(12), 1896-1898, 2006.
    [129] H. Y. Zhu, I. M. White, J. D. Suter, et al., "Integrated refractive index optical ring resonator detector for capillary electrophoresis," Anal. Chem. 79(3), 930-937, 2007.
    [130] Y. C. Cao, Z. L. Huang, T. C. Liu, et al., "Preparation of silica encapsulated quantum dot encoded beads for multiplex assay and its properties," Anal. Biochem. 351(2), 193— 200,2006.
    [131] N. Skivesen, A. Tetu, M. Kristensen, et al., "Photonic-crystal waveguide biosensor," Opt. Express 15(6), 3169-3176, 2007.
    [132] M. R. Lee, P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15(8), 4530-4535, 2007.
    [133] J. Homola, S. S. Yee, G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B Chem. 54(1-2), 3-15, 1999.
    [134] R. Karlsson, "SPR for molecular interaction analysis: a review of emerging application areas," J. Mol. Recognit. 17(3), 151-161, 2004.
    [135] C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1 (2), 106-114, 2007.
    [136] J. M. K. Ng, I. Gitlin, A. D. Stroock et al., "Components for integrated poly(dimethylsiloxane) microfluidic systems," Electrophoresis 23(20), 3461-3473, 2002.
    [137] M. A. Unger, H. P. Chou, T. Thorsen et al., "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288(5463), 113-116, 2000.
    [138] N. Chronis, G. L. Liu, K.-H. Jeong et al., "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express 11(19), 2370-2378, 2003.
    [139] D. B. Wolfe, R. S. Conroy, P. Garstecki et al., "Dynamic control of liquid-core/liquid- cladding optical waveguides," Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434-12438, 2004.
    [140] B. T. Mayers, D. V. Vezenov, V. I. Vullev et al., "Arrays and cascades of fluorescent liquid-liquid waveguides: Broadband light sources for spectroscopy in microchannels," Anal. Chem. 77(5), 1310-1316, 2005.
    [141] D. V. Vezenov, B. T. Mayers, D. B. Wolfe et al., "Integrated fluorescent light source for optofluidic applications," Appl. Phys. Lett. 86(4), 041104, 2005.
    [142] D. V. Vezenov, B. T. Mayers, R. S. Conroy et al., "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127(25), 8952-8953, 2005.
    [143] S. K. Y. Tang, C. A. Stan, and G. M. Whitesides, "Dynamically reconfigurable liquid- core liquid-cladding lens in a microfluidic channel," Lab on a Chip 8(3), 395-401, 2008.
    [1]H.A.Haus,and Y.Lai,"Theory of cascaded quarter wave shifted distributed feedback resonators," IEEE Journal of Quantum Electronics 28,205-213,1992.
    [2]C.Manolatou,M.J.Khan,S.Fan et al.,"Coupling of modes analysis of resonant channel add-drop filters," IEEE Journal of Quantum Electronics 36,1322- 1331,1999.
    [3]P.Chak,S.Pereira,and J.E.Sipe,"Coupled-mode theory for periodic side-coupled microcavity and photonic crystal structures," Physical Review B 73,035105,2006.
    [4]Y.Xu,Y.Li,R.K.Lee et al.,"Scattering-theory analysis of waveguide-resonator coupling," Physical Review E 62(5),7389-7404,2000.
    [5]S.Fan,P.R.Villeneuve,J.D.Joannopoulos et al.,"Theoretical analysis of channel drop tunneling processes," Physical Review B59,15882-15892,1999.
    [6]S.Fan,P.R.Villeneuve,J.D.Joannopoulos et al.,"Channel drop tunneling through localized states" Physical Review Letters 80,960-963,1998.
    [7]S.Fan,P.R.Villeneuve,J.D.Joannopoulos et al.,"Channel drop filters in a photonic crystal," Optics Express 3,4-11,1998.
    [8] S. Fan, P. R. Villeneuve, J. D. Joannopoulos et al., "Loss-induced on/off switching in a channel add/drop filter," Physical Review B 64, 245302, 2001.
    
    [9] L. L. Lin, Z. Y. Li, and B. Lin, "Engineering waveguide-cavity resonant side coupling in a dynamically tunable ultra compact photonic crystal filter," Physical Review B 72, 165330,2005.
    [10] D. Park, S. Kim, I. Park et al., "Higher order optical resonant filters based on coupled defect resonators in photonic crystals ," J. Light. Techn. 23(5), 1923-1928, 2005.
    [11] H. Ren, C. Jiang, W. Hu et al., "Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity," Opt. Express 14, 2446- 2458, 2006.
    [12] Z. Zhang, and M. Qiu, "Coupled-mode analysis of a resonant channel drop filter using waveguides with mirror boundaries," J. Opt. Soc. Am. B 23, 104-113, 2006.
    [13] B. S. Song, T. Asano, Y. Akahane et al., "Role of interfaces in heterophotonic crystals for manipulation of photons," Physical Review B 71,195101, 2005.
    [14] H. Takano, B. S. Song, T. Asano et al., "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal" Opt. Express 14, 3491-3496, 2006.
    [15] S. Noda, A. Chutinan, M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure." Nature 407(6804), 608-610, 2000.
    
    [16] Y. Akahane, T. Asano, B. S. Song et al., "High-Q photonic nanocavity in a two- dimensional photonic crystal" Nature 425(6961), 944-947, 2003.
    [17] H. Takano, B. S. Song, T. Asano et al., "Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal," Applied Physics Letters 86, 241101, 2005.
    [18] P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency," Physical Review B 54, 3837-3842, 1996.
    [19] A. A. Tovar and L. W. Casperson, "Generalized reverse theorems for multipass applications in matrix optics," J. Opt. Soc. Am. A 11, 2633, 1994.
    [20] N. Yokoi, T. Fujisawa, K. Saitoh et al., "Apodized photonic crystal waveguide gratings," Opt. Express 14, 4459, 2006.
    [21] H. H. Li, K. Xu, J. Wu et al., "Apodization technique for the periodically coupled resonators in photonic crystals," Micro. Opt. Techn. Let. 49, 397-399, 2007.
    [22] B. Maes, P. Bienstman and R. Baets, "Switching in coupled nonlinear photonic-crystal resonators," J. Opt. Soc. Am. B 22, 1778, 2005.
    [23] A. C. Lupu, P. Win, H. Sik et al., "Spectral response apodization of Bragg-like optical filters with a novel grating chirp design," Proc. OFC/IOOC 2, 271-273, 1999.
    [24] T. Erdogan, "Fiber Grating Spectra," J. Lightwave Techol. 15,1277-1294,1997.
    
    [25] A. G. Imenes and D. R. McKenzie, "Flat-topped broadband rugate filters," Appl. Optics 45,7841-7850, 2006.
    [26] X. C. Li, J. Wu, K. Xu, A. Q. Liu, J. T. Lin, "A side-coupled photonic crystal filter with sidelobe suppression," Applied Physics A 89, 327-332, 2007.
    [27] T. Fujisawa and M. Koshiba, "Analysis of photonic crystal waveguide gratings with coupled-mode theory and a finite-element method," Appl. Optics 45 (17), 4114-4121, 2006.
    [28] C. Chen, X. Li, H. Li et al., "Bandpass filters based on phase-shifted photonic crystal waveguide gratings," Opt. Express 15 (18), 11278-11284,2007.
    [29] C. Chen, X. C. Li, K. Xu et al., "Photonic crystal waveguide sampled gratings," Opt. Commun. 276 (2), 237-241,2007.
    [30] C. Chen, X. C. Li, H. H. Li et al., "Phase-shifted photonic crystal waveguide gratings and their application for wavelength demultiplexing," Opt. Eng. 47 (2), 4,2008.
    [31] K. Ogusu and K. Takayama, "Transmission characteristics of photonic crystal waveguides with stubs and their application to optical filters," Opt. Lett. 32 (15), 2185- 2187,2007.
    [1]J.B.Knight,A.Vishwanath,J.P.Brody et al.,"Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds," Phys. Rev. Lett. 80 (17), 3863-3866, 1998.
    [2] D. B. Wolfe, R. S. Conroy, P. Garstecki et al., "Dynamic control of liquid-core/liquid- cladding optical waveguides," Proc. Natl. Acad. Sci. U.S.A. 101 (34), 12434-12438, 2004.
    [3] S. Vyawahare, Manipulating fluids: advance in micro-fluidics, opto-fluidics and fluidic self assembly, Thesis, California institute of technology, 2006.
    [4] Z. G. Wu and N. T. Nguyen, "Hydrodynamic focusing in microchannels under consideration of diffusive dispersion: theories and experiments," Sens. Actuator B-Chem. 107 (2), 965-974, 2005.
    [5] B. T. Mayers, D. V. Vezenov, V. I. Vullev et al., "Arrays and cascades of fluorescent liquid-liquid waveguides: Broadband light sources for spectroscopy in microchannels," Anal. Chem. 77 (5), 1310-1316, 2005.
    [6] D. R. Lide, CRC Handbook of Chemistry and Physics, 88th ed. CRC Press, Boca Raton, FL, 2008.
    [7] Nidhi Nath and Sneh Anand, "Evanescent wave fiber optic fluorosensor: effect of tapering configuration on the signal acquisition," Opt. Eng. 37 (1), 220-228,1998.
    [8] C. R. Pollock, Fundamentals of Optoelectronics, Irwin, Chicago, 1995.
    [9] A. W. Snyder, "Understanding monomode optical fibres," Proceedings of the Ieee 69 (1), 8,1981.
    
    [10] Li Qiao and Shouxian She, "Analysis of propagation characteristics of diffused channel waveguides: weighted residual method," Opt. Lett. 13 (2), 167, 1988.
    [11] A. K. Taneja, S. Srivastava, and E. K. Sharma, "Closed-form expressions for propagation characteristics of diffused planar optical waveguides," Microw. Opt. Techn. Let. 15 (5), 305-310,1997.
    
    [12] E. Verpoorte, "Chip vision - optics for microchips," Lab on a Chip 3 (3), 42N-52N, 2003.
    [13] J. C. McDonald, D. C. Duffy, J. R. Anderson et al. "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis 21(1), 27-40, 2000.
    [14] K. Haubert, T. Drier, and D. Beebe, "PDMS bonding by means of a portable, low-cost corona system," Lab on a Chip 6, 1548-1549, 2006.
    [15] D. Erickson, S. Mandal, A. H. J. Yang et al., "Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale," Microfluid. Nanofluid. 4 (1-2), 33-52, 2008.
    [16] A. Ymeti, J. Greve, P. V. Lambeck et al., "Fast, ultrasensitive virus detection using a young interferometer sensor," Nano Letters 7 (2), 394-397, 2007.
    [17] D. V. Vezenov, B. T. Mayers, D. B. Wolfe et al., "Integrated fluorescent light source for optofluidic applications," Appl. Phys. Lett. 86 (4), 041104, 2005.
    
    [18] S. K. Y. Tang, C. A. Stan, and G. M. Whitesides, "Dynamically reconfigurable liquid- core liquid-cladding lens in a microfluidic channel," Lab on a Chip 8 (3), 395-401,2008.
    [19] A. Q. Liu, H. J. Huang, L. K. Chin, Y. F. Yu, and X. C. Li, Anal. Bioanal. Chem. 391, 2443, 2008.
    [20] I. Fatadin, D. Ives, and M. Wicks, "Intensity and phase measurements of asymmetric mode profiles and the transform in the near- to far-field transitions," Appl. Optics 47 (7), 1002-1009,2008.
    [21]V. Ruddy, B. D. MacCraith, and J. A. Murphy, "Evanescent wave absorption spectroscopy using multimode fibers," J. Appl. Phys. 67 (10), 5,1990.
    [22] R. C. Gauthier, and C. Ross, "Theoretical and experimental considerations for a single-mode fiber-optic bend-type sensor," Appl. Opt. 36,6264,1997.
    [23] M. Ahmad and L. L. Hench, "Effect of taper geometries and launch angle on evanescentwave penetration depth in optical fibers," Biosens. Bioelectron. 20 (7), 1312-1319,2005.
    [24] J. Hu, V. Tarasov, A. Agarwal et al, "Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor," Opt. Express 15(5), 2307-2314,2007.
    [25] A. G. Mignani, R. Falciai, and L. Ciaccheri, "Evanescent wave absorption spectroscopy by means of bi-tapered multimode optical fibers," Appl. Spectrosc. 52 (4), 546-551,1998.
    [26] D. Toptygin, B. Z. Packard, and L. Brand, "Resolution of absorption spectra of rhodamine 6G aggregates in aqueous solution using the law of mass action," Chem. Phys. Lett. 277 (5-6), 430-435,1997.
    [27] P. Hua, B. J. Luff, G. R. Quigley et al., "Integrated optical dual Mach-Zehnder interferometer sensor," Sens. Actuator B-Chem. 87 (2), 250-257, 2002.
    [28] K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. Elsevier, Singapore, 2006.
    [29] S. L. He, R. Liao, and V. Romanov, "Explicit formulas for the identification of a small defect in a planar waveguide," J. Opt. Soc. Am. A 22 (7), 1414-1419, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700