低温烧结BSCT-MgO复合铁电材料及其介电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现钛酸锶钡钙(BSCT)基调谐性材料LTCC应用化,本文的目标是低温烧结下制备适中介电常数、低介电损耗、高可调性和介电温度稳定性好的陶瓷材料。本课题研究MgO在BSCT-MgO复相材料的作用和机理,Mn掺杂和B_2O_3-ZnO玻璃的掺杂对BSCTM材料的介电性能改善和低温烧结的影响。纳米MgO粉体和共沉淀的BSCT粉体具有精细结构,采用B_2O_3-Li_2CO_3烧结助剂,发现单一相材料在1000℃下未达到致密烧结,且含有较多的气孔。MgO的加入使复合材料气孔消失,结构变得致密。MgO增加,BSCT晶粒逐渐减小,介电常数也随之降低,居里温度向低温移动,MgO添加量为60wt%时,晶粒减小为0.7-1.5μm,介电常数为90,损耗维持在1×10~(-3)数量级,居里温度为-27℃。950℃烧结时,BSCT-1wt%MgO在室温、1kV/mm直流偏场条件下的可调性高达18%,介电温度曲线较为平坦,这一优异性能可以与1200℃制备的纯BSCT材料的可调性20%相媲美。实现了低温烧结制备高调谐性、介温性能稳定的BSCT基铁电材料。MgO的加入,改善了高温下B_2O_3-Li_2O液相的粘度,提高了液相的流动性,便于扩散与传质。MgO的加入,提高了B_2O_3-Li_2O液相对BSCT晶粒的润湿性,良好的润湿环境促使“小颗粒粉体—MgO-B_2O_3-Li_2O液相—BSCT晶粒”模式进行顺畅,晶粒更好地吸收液相传质,从而促进晶粒发育,材料致密化程度增加。
     BSCTM复相材料的居里温度随着Mn离子掺杂量增大向负温度移动,可调性呈先增大后减小趋势。当Mn=0.50mol%时,950℃烧结的BSCT-45wt%MgO复相材料在0.71kV/mm下的可调性高达4.8%,实现了低温烧结制备高可调性材料的目的。BSCT-45wt%MgO材料,添加10wt% B_2O_3-ZnO玻璃时,1000℃烧结形成大量的玻璃相,破坏了BSCT中Ti离子非谐运动的连续性,导致可调性丧失。为了改善这一材料,采用提高铁电相和降低玻璃量,BSCT-22wt%MgO复相材料添加2.5wt%和5.0wt% B_2O_3-ZnO玻璃后,1000℃烧结,在1MHz下的介电常数ε、介电损耗tanδ和可调性(直流偏场)依次为235.7, 1.52×10~(-3), 5.29%(0.66kV/mm)和299.8, 1.43×10~(-3), 4.17%(0.75kV/mm);其介电常数温度稳定性得到极大改善;在20Hz~2MHz的频率范围内,介电常数基本稳定不变。
In order to achieve the application of LTCC on barium strontium calcium titanate(BSCT)-based tuning materials,this article aims to prepare moderate dielectric constant, low dielectric loss, high tunability and good dielectric temperature stability of BSCT based ceramics at low sintering temperature. In this thesis, we have had more focus on role mechanism of MgO and Mn-doping and B_2O_3-ZnO glass doping on low-temperature sinterability and dielectric properties of Ba_(0.55)Sr_(0.4)Ca_(0.05)TiO_3–MgO composite ferroelectric ceramics. Nano-MgO powder and Ba_(0.55)Sr_(0.4)Ca_(0.05)TiO_3 powder prepared by co-precipitation both had superfine structure. Using B_2O_3-Li_2CO_3 as sintering additives, we found that a single phase material (pure BSCT or MgO) sintered at 1000℃contain more pores and non-dense structure. After doping MgO low-dielectric, non-ferroelectric phase, BSCT-MgO composite material become less pores and more densely. When increasing the content of MgO in composite material, the size of BSCT grains and dielectric constant gradually reduced, curie temperature also shifted to lower temperature. When w(MgO)=60wt%, the size of BSCT grains reduced to 0.7-1.5μm, whose dielectric constant, dielectric loss and curie temperature were about 90, 1×10~(-3) and -27℃, respectively. BSCT-1wt%MgO composite material sintered at 950℃had more relatively flat dielectric-temperature curve and higher tunability 18% (room temperature, 1kV/mm), these excellent performance are compatible with the tunability 20% of pure BSCT sintered at 1200℃, this technology can have realized low-temperature sintering of BSCT based ferroelectric materials with high tunability, stable dielectric-temperature properties. MgO doping did not only improve the viscosity of B_2O_3-Li_2O liquid to increase the flow of liquid and mass diffusion, but also increased wettability of B_2O_3-Li_2O liquid at high temperature for BSCT grains, thus "Small particles—MgO-B_2O_3-Li_2O liquid—BSCT grains "pattern was carried out more smoothly by good wetting environment, Grains growth were accelerated by mass transfer in liquid phase, therefore densification of BSCTM material also increased.
     With the increasing of the amount of Mn ions, the curie temperature of BSCTM composite material shifted to lower temperature and tunability first increased and then decreased. When sintering temperature lower to 950℃and Mn= 0.50mol%, the tunability of BSCT-45wt%MgO composite material under a DC field of 0.71 kV/mm achieves 4.8%. It had realized preparation technology of high tunability of ferroelectric material at lower sintering temperatures. After doping 10wt% B_2O_3-ZnO glass, BSCT-45wt% MgO material sintered at 1000℃had very small tunability because a large number of glass phase destroyed the continuity of the non-harmonic movement of Ti ions in BSCT. In order to improve this poor performance, we can increase the ferroelectric phase and reduce the amount of B_2O_3-ZnO glass. Adding 2.5wt% and 5.0wt% B_2O_3-ZnO glass to BSCT-22wt%MgO composite material can be sintered at 1000℃with excellent dielectric properties, when measure at 1MHz, theirε, tanδand tunability (under a DC field) were 235.7, 1.52×10~(-3), 5.29% (0.66kV/mm) and 299.8, 1.43×10~(-3), 4.17% (0.75kV/mm), respectively, the temperature stability of dielectric constant is improved, dielectric constant remains stable between 20Hz and 2MHz.
引文
[1]徐廷献.电子陶瓷材料[M].天津:天津大学出版社, 1993.
    [2]张磊,梁辉,徐廷献,唐劲.钛酸锶钡电介质材料的显微结构和基本性能[J].压电与光电, 2002, 24(6):468-472.
    [3]孟庆端,孙立功,田葳,阎保定.宽带双周期性BST电容加载共面波导移相器[J].电子元件与材料, 2007, 26(3):38-40.
    [4]惠春,徐爱兰,高顺华.一种用于相控点阵天线的新型钛酸锶钡电光移相器[J].西安电子科技大学学报, 1999, 26 (4) : 5142519.
    [5] N. SETTER, R. WASER. Electroceramic materials[J]. Acta mater, 2000, 48: 151-178.
    [6]范福康.几种电子陶瓷材料的研究与思考[J].电子元件与材料, 2001, 20(3): 23-24.
    [7] L.C.Sengupta, S.Sengupta. Novel Ferroelectric Materials for Phased Array Antennas[J]. IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, 1997, 44(4): 792~797.
    [8]金宇龙,周洪庆,吴洪忠.钛酸锶钡(BST)铁电移相器材料的研究现状[J] .电子元件与材料, 2003, 22( 2): 38-40.
    [9] Long Wu, Yih-Chien Chen, Li-Jen Chen. Preparation and microwave characterization of Ba1-xSrxTiO_3 ceramics[J]. Jpn. J. Appl. Phys, 1999, 38: 5612-5615.
    [10] Selvam I P,Ashita P A. Novel Synthesis of Nanocrystalline (Ba1?xSrx)TiO_3 [J]. Ferroelectrics, 2005, 324: 31-35.
    [11] Lei Zhang, Wei-Lie Zhong, Chun-Lei Wang. Finite-size effects in ferroelectric solid solution BaxSr1-xTiO_3[J]. J. Phys. D: Appl. Phys., 1999, 32: 546-551.
    [12]刘梅冬,许毓春.压电铁电材料与器件[M].武汉:华中理工大学出版社, 1990.
    [13]钟维烈.铁电体物理学[M].北京:科学出版社, 2000.
    [14] Wei Qin, Wenbiao Wu, Jinrong Cheng. Calcium-doping for enhanced temperature stability of [(Ba0.6Sr0.4)1-x]CaxTiO_3 thin film dielectric properties[J]. Materials Letters, 2007, 61: 5161–5163.
    [15] Bing Qin, Dengren Jin, Jinrong Cheng, Zhongyan Meng. Shanghai Univ. Dielectric Properties of (Ba, Sr, Ca)TiO_3 Ceramics for Tunable MicrowaveDevices. IEEE Xplore 10.1109/ISAF.2006.4387908: 368-371.
    [16] Sengupta S, Green S M. Pulsed laser ablation of ferroelectric composites for phased array antenna applications[J]. Appl Surf Sci, 1998, 127–129: 486–490.
    [17] Jaganmohan B. L. Rao, Dharmesh P. Patel, Vladimir Krichevsky. Voltage-Controlled Ferroelectric Lens Phased Arrays[J]. IEEE Transactions on Antennas Propagation, 1999, 47(3): 458–468.
    [18] Wilber, William D. Apparatus and method for reducing the temperature sensitivity of ferroelectric microwave devices[P]. US Patent: 6160524, 2000-12-12.
    [19] Se-Ho Kim, Jung-Hyuk Koh. The microwave properties of Li doped 0.7(Ba,Sr)TiO_3–0.3MgO thick film interdigital capacitors on the alumina substrates[J]. Microelectronic Engineering, 2010, 87: 79–82.
    [20]关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社, 1992.
    [21] Xiaoyong Wei, Xi Yao. Nonlinear dielectric properties of barium strontium titanate ceramics [J]. Materials Science and Engineering B, 2003, 99: 74–78.
    [22] Wenhui Ma and L. Eric Cross。Flexoelectric polarization of barium strontium titanate in the paraelectric state[J]. Applied physics letters, 81(18): 3440-3442.
    [23]赵登霞. BST铁电移相器材料及其高频介电性能测试研究[D].西安:西安电子科技大学, 2007.
    [24]张晓玲,李军显,孟庆端,普杰信.新型BST薄膜可调带阻滤波器[J].电子元件与材料, 2006, 25(8): 52-54.
    [25]姚军,张理,邱传凯.一种应用于K波段的MEMS电磁带隙可调带阻滤波器[P]. CN: 222614.9, 2008-08-22.
    [26] Kohlstedt H, Mustafa Y, Gerber A, et al. Current status and challenges of ferroelectric memory devices[J]. Microelectron Eng. , 2005, 80: 296-304.
    [27]安文书,陈雷,盖希强. FM20L08型铁电存储器的原理及其应用[J].国外电子元器件, 2006, 6: 52-55.
    [28]邵秀梅,马学亮,于月华,方家熊.基于弛豫铁电单晶的热释电焦平面研究[J].光学工程, 2011, 38(2): 46-49.
    [29]王剑,罗军.舰载相控阵雷达的现状及发展趋势[J].电讯技术, 2005, 45(3): 7-14.
    [30]石星.毫米波相控阵雷达及其应用发展[J].电讯技术, 2008, 48(1): 6-12.
    [31]花良发.俄罗斯战略相控阵雷达部署现状及发展[J].火力与指挥控制, 2007, 32(2): 1-4.
    [32]周雁翎.用于铁电透镜相控阵天线的铁电移相器有限元分析[J].现代电子,2001, 77(4): 6-9.
    [33]黄志文,陈洪. Fe2O_3掺杂的BST/MgO铁电移相器材料[J].电子元件与材料,2008, 7: 17–19.
    [34]张光义,赵玉洁.相控阵雷达技术[M].北京:电子工业出版社, 2006.
    [35]张光义,王德纯,华海根等.空间探测相控阵雷达[M].北京:科学出版社, 2001.
    [36] Maillous R. J. Phased Array Antenna Handbook[M]. Artech House, 1994.
    [37]张直中.机载和星载合成孔径雷达导论.北京:电子工业出版社, 2004.
    [38] Kozyrev A, Osadchy V, Pavlov A, et al. Application of ferroelectrics in phase shifter design [J]. IEEE MTT-S Dig, 2000, 3(6): 1355-1358.
    [39] Robert R. R, Jennifer T. B, Frederick W. Van K, Félix A. M, Gregory W, Chadwick C. K-Band Phased Array Antennas Based on Ba0.60Sr0.40TiO_3 Thin-Film Phase Shifters[J]. IEEE Transactions on microwave theory and techniques, 2000, 48(12), 2504-2510.
    [40]金宇龙,周洪庆,吴洪忠,刘敏,蒋微波,黄志文.钛酸锶钡(BST)铁电移相器材料的研究现状[J].电子元件与材料, 2003, 22(2): 38-40.
    [41] Varadan V K. Voltage tunable dielectric ceramics which exhibit low dielectric constants and applications thereof to antenna structure [P]. US-5557286, 1996. 9.
    [42]张伟伟,周颖娟,朱守正.一种新型BST薄膜移相器的电路设计[J].国外电子元器件, 2006, 9:4-6.
    [43] Amit S. Nagra, Robert A. York. Distributed analog phase shifters with low insertion loss [J]. IEEE Trans on microwave theory and techniques. 1999, 47 (9): 1705-1711.
    [44]李士根.铁氧体移相器[J].磁性材料与器件, 1987, 2: 30-35.
    [45]蒋微波.相控阵雷达中的多晶微波铁氧体材料及器件[J].磁性材料与器件,2004, 6: 31-39.
    [46]钟维烈.铁电体物理学[M].第一版.北京:科学出版社, 1996.
    [47] Kenneth M. Johnson. Variation of Dielectric Constant with Voltage in Ferroelectrics and its Application to Parametric devices[J]. J. Appl. Phys., 1962, 33(9): 2826-2831
    [48] Hongcheng Li, Weidong Si et al. Oxide Thin Films for Tunable Microwave Devices[J]. Journal of Electro ceramics, 2000, 4(2, 3): 393-405
    [49] A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, et al. Ferroelectric Materials for Microwave Tunable Applications[J]. Journal of Electroceramics, 2003, 11: 566.
    [50] J. W. Liou, B. S. Chiou. Analysis of the dielectric characteristics for polycrystalline Ba0.65Sr0.35TiO_3 frequency dependence in the paraelectric state[J]. J. Mater. Sci. Mater. Electron., 2000, 11: 637-644.
    [51] J. W. Liou, B. S. Chiou. Dielectric characteristics of doped Ba1-xSrxTiO_3 at the paraelectric state, Mater. Chem. Phys. 1997, 51: 59-63.
    [52] T.Hu, H.Jantunen, A.Uusimaki, S.Leppavuori, S.Gevorgian, Electric-field controlled permittivity ferroelectric composition for microwave LTCC Modules[J]. J. Ceram. Soc., 2004, 87(4): 578-583.
    [53] K. Zhou, S. A. Boggs, R. Ramprasad, M. Aindow, C. Erkey, and S. P. Alpay. Dielectric response and tunability of a dielectric-paraelectric composite[J]. Applied physics letters, 2008, 93: 102908.
    [54] R. S. Devan and B. K. Chougule. Effect of composition on coupled electric, magnetic, and dielectric properties of two phase particulate magnetoelectric composite[J]. Journal of applied physics, 2007, 101: 014109.
    [55] Qing Xua, XiaoFei Zhang, Yu-Heng Huang, et al. Effect of MgO on structure and nonlinear dielectric properties of Ba0.6Sr0.4TiO_3/MgO composite ceramics prepared from superfine powders[J]. Journal of Alloys and Compounds, 2009, 488: 448-453.
    [56] Vladimir O. Sherman, Alexander K. Tagantsev, Nava Setter, David Iddles, Tim Price. Ferroelectric-dielectric tunable composites[J]. Journal of applied physics. 2006. 99: 074104.
    [57] U.-Chan Chung, C. Elissalde, and M. Maglione. Low-losses, highly tunable Ba0.6Sr0.4TiO_3/MgO composite[J]. Applied physics letters, 2008, 92: 042902.
    [58] C. V. Weiss, M. B. Okatan, S. P. Alpay, M. W. Cole, E. Ngo, R. C. Toonen. Compositionally graded ferroelectric multilayers for frequency agile tunable devices[J]. J Mater Sci, 2009, 44: 5364-5374.
    [59]李真,吴昌英,韦高,高峰.不同工序添加MgO的Ba0.6Sr0.4TiO_3陶瓷及其性能[J].电子元件与材料, 2009, 28(4): 7-10.
    [60]张小玲,黎明发,叶先贤.不同温压MgO掺杂Ba0.6Sr0.4TiO_3显微结构[J].武汉理工大学学报, 2009. 31(15): 21-24.
    [61]岳志峰,梁辉,李晓雷,徐明霞,季惠明. MgO-Ba0.6Sr0.4TiO_3复合粉体的制备[J].压电与声光, 2008, 30(2): 211-213.
    [62] E. Ngo, P. C. Joshi, M. W. Cole, C. W. Hubbard. Electrophoretic deposition of pure and MgO-modified Ba0.6Sr0.4TiO_3 thick films for tunable microwave devices [J]. Applied physics letters, 2001, 79(2): 248-250.
    [63] A. Ioachim , H.V. Alexandru , C. Berbecaru , S. Antohe , F. Stanculescu , M.G. Banciu , M.I. Toacsen , L. Nedelcu, D. Ghetu , A. Dutu, G. Stoica. Dopant influence on BST ferroelectric solid solutions family[J]. Materials Science and Engineering C, 2006, 26: 1156-1161.
    [64]薛昊,艾晨,王希林,王寒风,周和平. MnO2掺杂对Ba0.6Sr0.4TiO_3陶瓷介电调谐性能的影响[J].稀有金属材料与工程, 2006, 35(2): 263-266.
    [65] M. W. Cole, E. Ngo, S. Hirsch, M. B. Okatan, and S. P. Alpay. Dielectric properties of MgO-doped compositionally graded multilayer barium strontium titanate films[J].Applied physics letters, 2008, 072906:1-3.
    [66] Jiandong Cui, Guixia Dong, Zhimin Yang, Jun Du. Low dielectric loss and enhanced tunable properties of Mn-doped BST/MgO composites[J]. Journal of Alloys and Compounds, 2010, 490: 353-357.
    [67] M. Jain, S.B. Majumder, R.S. Katiyar, F.A. Miranda, F.W. Van Keuls, Improvement in electrical characteristics of graded manganese doped barium strontium titanate thin films[J]. Appl. Phys. Lett. 2003, 82: 1911-1913.
    [68] B. Su, T.W. Button, Microstructure and dielectric properties of Mg-doped barium strontium titanate ceramics[J]. J. Appl. Phys. , 2004, 95: 1382-1385.
    [69] Tianjin Zhang, Juan Jiang, Baishun Zhang, et al, Effects of B2O_3-SiO2 doping on electrical properties of Ba0.65Sr0.35TiO_3 ceramic[J]. Trans. Nonferrous Met. Soc. China, 2005, 15(2): 230-232.
    [70] Haitao Jiang, Jiwei Zhai , Xiujian Chou, Xi Yao. Influence of Bi2O_3 and CuO addition on low-temperature sintering and dielectric properties of Ba0.6Sr0.4TiO_3 ceramics[J]. Mater. Res. Bull., 2009, 44: 566-570.
    [71] Se-Ho Kim, Jung-Hyuk Koh, ZnBO-doped (Ba, Sr)TiO_3 ceramics for the low-temperature sintering process[J]. J. Eur. Ceram. Soc., 2008, 28: 2969-2973.
    [72] D. Zhang, T.W. Button, V. O. Sherman,et al, Effects of glass additions on the microstructure and dielectric properties of barium strontium titanate(BST) ceramics[J]. J. Eur. Ceram. Soc., 2010, 30: 407-412.
    [73] I.A. Souza , A.Z. Sim?es, E. Longo,et al, Synthesis of Ba0.5Sr0.5(Ti0.80Sn0.20)O_3 prepared by the soft chemical method[J]. Mater. Lett. , 2007, 61: 4086-4089.
    [74] Levin EG, Robbins CR, McMurdie HF (1964) Phase Diagrams for Ceramics. Ed. By Reser MK, The Am. Ceram. Soc. Inc., Ohio, USA. pp 91.
    [75] Y.B. Khollam, H.S. Potdar, S.B. Deshpande, et al. Synthesis of star shaped Ba1?xSrxTiO_3 (BST) powders[J]. Mater. Chem. Phys., 2006, 97: 295-300,
    [76] H.F.Zhang, S.W.Or, H.L.W.Chan. Synthesis of fine-crystalline Ba0.6Sr0.4TiO_3-MgO ceramics by novel hybrid processing route[J]. J. Phys. Chem. Solids, 2009, 70: 1218-1222.
    [77] Tao Hu. BST-based low temperature co-fired ceramic (LTCC) modules for microwave tunable components[D]. University of Oulu, Finland, 2004.
    [78] M. Rhim, S. Hong, H. Bak, and O. K. Kim, Effects of B2O_3 addition on the delectric and ferroelectric properties of Ba0.7Sr0.3TiO_3 ceramics[J], J. Am. Ceram.Soc., 2000, 83 (5): 1145-48.
    [79] Hee-Wook You, Sang-Mo Koo, Jae-Geun Ha, Jung-Hyuk Koh, Jae-Yeong Park. Microstructure and dielectric properties of Li2CO_3 doped 0.7(Ba,Sr)TiO_3–0.3MgO ceramics[J]. Current Applied Physics, 2009, 9: 875-879.
    [80] Tao Hu, Heli Jantunen, Anatoli Deleniv,et al, Electric-field-controlled permittivity ferroelectric composition for microwave LTCC modules[J]. J. Am. Ceram. Soc., 2004, 87 (4): 578-83.
    [81] Qing Xu, Xiao Fei Zhang, Yu-Heng Huang, et al. Effect of MgO on structure and nonlinear dielectric properties of Ba0.6Sr0.4TiO_3/MgO composite ceramics prepared from superfine powders[J]. J. Alloys Compd., 2009, 488: 448-453.
    [82] Sung-Gap Lee, Dae-Seok Kang. Dielectric properties of ZrO2-doped (Ba, Sr, Ca)TiO_3 ceramics for tunable microwave device applications[J]. Mater. Letters, 2003, 57: 1629-1634.
    [83] Sung-Gap Leea, Chang-Il Kim, Byung-Chul Kim. Dielectric properties of screen-printed (Ba, Sr, Ca)TiO_3 thick films modified with Al2O_3 for microwave device applications[J]. J. Eur. Ceram. Soc., 2004, 24: 157-162.
    [84] Sung-Gap Lee, Chang-Il Kim, Jeong-Phill Kim, et al. Structural and dielectric properties of barium strontium calcium titanate thick films modified with MnO2 for phased array antennas[J]. Mater. Letters , 2003, 58: 110-114.
    [85] L.B. Kong, S. Li, T.S. Zhang, J.W. Zhai, F.Y.C. Boey, J. Ma. Electrically tunable dielectric materials and strategies to improve their performances[J]. Progress in Materials Science, 2010, 55: 840-893.
    [86] C. HUBER, M. TREGUER-DELAPIERRE, C. ELISSALDE, F. WEILL, and M. MAGLIONE. Design of new tunable ferroelectric composites[J]. Ferroelectrics, 2003, 294: 13-24.
    [87] Tao Hu, Heli Jantunen, Anatoli Deleniv,Seppo Leppa¨vuori, and Spartak Gevorgian. Electric-Field-Controlled Permittivity Ferroelectric Composition for Microwave LTCC Modules[J]. J. Am. Ceram. Soc., 2004, 87(4): 578-83.
    [88] T. Tick, J. Per¨antie, H. Jantunen, A. Uusim¨aki. Screen printed low-sintering-temperature barium strontium titanate (BST) thick films[J]. Journal of the European Ceramic Society, 2008, 28: 837-842.
    [89] Wontae Chang, Louise Sengupta.MgO-mixed Ba0.6Sr0.4TiO_3 bulk ceramics and thin films for tunable microwave applications[J]. Journal of applied physics, 2002, 92(7): 3942-3946.
    [90] CUI JianDong, WANG Yi, DONG GuiXia and DU Jun. Dielectric properties of BST/MZO ceramic composites[J]. Science in China Series E: Technological Sciences, 2009, 52: 127-131.
    [91] M.C. Kao, S.Y. Lee, H.Z. Chen, S.L. Young. Study of leakage current in metal–insulator–metal Mg–Al co-doped barium strontium titanate thin films as a function of temperature and applied field[J]. Thin Solid Films, 2008, 516: 8441-8446.
    [92] Tao Hu, Tim J. Price , David M. Iddles. The effect of Mn on the microstructure and properties of BaSrTiO_3 with B2O_3–Li2CO_3[J]. Journal of the European Ceramic Society, 2005, 25: 2531-2535.
    [93] Xiaohong Wang, Wenzhong Lu, Jian Liu, Yanling Zhou, Dongxiang Zhou. Effects of La2O_3 additions on properties of Ba0.6Sr0.4TiO_3–MgO ceramics for phase shifter applications[J]. Journal of the European Ceramic Society, 2006, 26: 1981-1985.
    [94] W. Chang, L.e Sengupta. MgO-mixed Ba0.6Sr0.4TiO_3 bulk ceramics and thin films for tunable microwave applications[J]. J. Appl. Phys., 2002, 92: 3941-3946.
    [95] H. F. Zhang, S.W. Or and H. L. WaChan, Synthesis of fine-crystalline Ba0.6Sr0.4TiO_3–MgO ceramics by novel hybrid processing route [J]. J. Phys. Chem. Solids, 2009, 70: 1218-1222.
    [96] H. F. Zhu, Y. X. Zhu. A handbook of inorganic chemical product[M]. Beijing: Jindun; 2008.
    [97] K. M. R. Achari and R. B. Ramachander, A study of diffusion mechanisms in sintering by shrinkage Measurements[J]. Bull. Mater. Sci.,1987, 9: 97-101.
    [98] S. H. Kim and J. H. Koh, ZnBO-doped (Ba, Sr)TiO_3 ceramics for the low-temperature sintering process[J]. J. Eur. Ceram. Soc., 2008, 28: 2969-2973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700