X波段BST微波介电性能测量及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着通信器件的高频化、高速化发展,微波电介质材料在通信领域已经得到了广泛的应用,对高介电常数电介质材料微波性能的准确测量从而使其更好的应用于器件设计越来越受到关注。
     本论文对高介电常数电介质材料钛酸锶钡(BaxSr1-xTiO_3,BST)微波频率(X波段8~12GHz,中心频率10GHz)介电性能与调谐性能的测试方法进行了设计、分析与改进,并应用改进设计后的方法对BST陶瓷与薄膜样品进行了测试,最终基于测试的参数对微波移相器件进行了设计与制作,并对其性能进行了测试。
     首先,选择微波谐振法与非谐振法组合测试的方法,主要包括谐振腔微扰法、矩形波导传输法与共面波导法。通过对传统的X波段谐振腔微扰测试法进行了改进,使其适合对高介电常数样品进行介电常数与损耗角的测量;应用矩形波导设计了移相器测试器件,并对其进行了4段1/4波长匹配以减小测试过程中的回波损耗,使测试结果更为准确,且该方法便于施加外压,适合对陶瓷样品进行实介电常数与调谐率进行测量;对共面波导法TRL测试器件进行设计及改进,使得该方法适合对薄膜样品介电性能与调谐率进行测试,并克服了薄膜厚度测量的误差对测试准确性的影响,对溅射电极的薄膜样品进行了光刻,制作出共面波导测试器件并进行了测试。应用上述测试方法组建成高介电常数陶瓷与薄膜样品的微波介电性能与调谐性能的测试方法系统。
     然后,应用微波网络分析仪组合射频探针平台及相关测试装置对设计制件出的BST基测试器件的微波性能进行测试,从器件的测试结果中推导出BST材料的性能参数,同时进行测试方法的误差分析,确定上述方案的测试误差。
     最后,基于BST的测试结果,应用ADS软件设计了共面波导加载叉指电容结构的BST薄膜微波移相器,并对其进行了器件制作与性能测试,得出器件移相度为25°/cm,最终总结出了器件对材料的要求及器件的设计改进方向。
With the development of high-frequency and high-speed of the communications device, microwave dielectric materials have been widely used. At the same time, more and more attentions have been paid to the accurate measurement of the microwave performance of the high-k dielectric materials so that it can be applied for the design of the device.
     In this paper , the improved methods for microwave performance measurement of the dielectric permittivity and tuning properties of BaxSr1-xTiO3 (BST) were investigated and established at the microwave frequencies of X-band(especially at the main frequency of 10GHz). The microwave properties of BST ceramic and film were measured by the methods. The microwave phase shifting devices were designed and fabricated basing on the measurement results and their performances were also tested.
     First, the microwave resonance method combined with the non-resonance method is used for the measurement. They include cavity perturbation method, rectangular phase shifter method and coplanar waveguide method. The traditional cavity perturbation method was improved for the high permittivity and loss tangent measurement of the dielectric materials at X-band. The rectangular waveguide phase shifter was designed especially for the tuning properties measurement of the dielectric ceramic for the voltage can be easily put on. The 1/4 wavelength matching was designed to reduce the return loss during the testing process. The coplanar waveguide for TRL test method were improved for the use of BST film permittivity and tuning property measurement. The CPW devices were fabricated on the sputtered thin-film electrodes by lithography and they are tested at the same time. All the above methods constitute the test system for the dielectric and tuning properties measurement of the dielectric ceramic and film.
     Then, the combination of microwave network analyzer and the RF probe station were used for the measurement of the devices basing on the BST ceramic or film. And the material properties of BST were derived from the results of the devices performance. The analysis of the test errors caused by the test system, the devices and so on were taken into consideration to make the results more accuracy. The errors of the results were determined.
     Finally, the software of ADS was used for the simulation and design of BST coplanar waveguide phase shifter loading with inter-digital capacitor. The phase shift of 25 degrees per centimeter was got. And this finally determined the device requirement of the BST material and the how can the device can be improved.
引文
[1] Pozer D M. Microwave engineering[M]. Second edition.张肇仪,周乐柱,吴德明,译.北京:电子工业出版社, 2005:498-537
    [2]李晓蓉,陈章友,吴正娴.微波技术[M].上海:科学出版社. 2005:248-261
    [3] Courrèges S, Li Y, Zhao Z Y, et al. Two-pole x-band-tunable ferroelectric filters with tunable center frequency, fractional bandwidth and return loss[J]. IEEE Trans. on Microwave Theory and Tech.,2009,57(12):2872-2881
    [4] Courrèges S, Li Y, Zhao Z Y, et al. A low loss X-band quasi-elliptic ferroelectric tunable filter[J]. IEEE Microwave and Wireless Components Letters,2009,19(4): 203-205
    [5] Hayden J S. High-performance digital X-band and Ka-band distributed MEMS phase shifters[D]. University of Michigan, Electrical engineering,2002:66-99
    [6] Feng Z P, Fathelbab W M, Lam P G, et al. Narrowband barium strontium titanate (BST) tunable bandpass filters at X-band[J]. IEEE, MTT-S International Microwave Symposium, 2009, 3:1061-1064
    [7] Chen L F, Ong C K and Neo C P, et al. Microwave electronics[M].John Wiley & Sons Ltd.,2004:37-42
    [8] Tagantsev A K, Sherman V O, Astafiev K F, et al. Ferroelectric materials for microwave tunable applications[J]. Journal of Electroceramics, 2004, 11:5-66
    [9] Setter N, Damjanovic D, Eng L,et al. Ferroelectric thin films: review of materials, properties, and applications[J]. J. Appl. Phys., 2006, 100:051606
    [10] Cole M W, Ngo E, Hirsch S, et al. The fabrication and material properties of compositionally multilayered Ba1?xSrxTiO3[J]. J. Appl. Phys., 2007, 102: 34104()
    [11] Dedyk A I, Nenasheva E A, Kanareykin A D, et al. Tunability and leakage currents of (Ba, Sr)TiO3 ferroelectric ceramics with various additives[J]. J. Electroceram, 2006, 17:433–437
    [12] Cole M W, Joshia P C, Ervina M H, et al. The influence of Mg doping on the materials properties of Ba1-xSrxTiO3 thin films for tunable device applications[J].Thin Solid Films, 2000, 374:34-41
    [13] Shen H, Gao Y H, Zhou P, et al. Effect of oxygen to argon ratio on properties of (Ba, Sr)TiO3 thin films prepared on LaNiO3 /Si substrates[J]. J. Appl. Phys., 2009,105: 061637
    [14] Tang H J, Yang C R, Zhang J H, et al. Tunable coplanar waveguide phase shifter using BaxSr1?xTiO3 thin films on LaAlO3 substrates[J]. J. Infrared Milli Terahz Waves, 2010, 31:852–857
    [15] Chun Y H, Hong J S, Bao P, et al. An electronically tuned bandstop filter using BST varactors[J]. Proceedings of the 1st European Wireless Technology Conference. 2008:278-281
    [16] Gil M, Damm C, Giere A, et al. Electrically tunable split-ring resonators at microwave frequencies based on BST film[J]. Electronics Letters, 2009, 45(8):1-2
    [17] Chun Y H, Hong J S, Bao P, et al. BST-varactor tunable fual-mode filter using variable ZC transmission line[J]. IEEE Microwave and Wireless Components Letters, 2008, 18(3):167-169
    [18] Liu Y, Taylor T R, Speck J S, et al. High-isolation BST-MEMS switches[J]. IEEE MTT-S International Microwave Symposium Digest, 2002:227-230
    [19] Noeth A, Tom Y, Muralt P, et al. Tunable thin film bulk acoustic wave resonator based on BST thin film[J]. IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(2):379-385
    [20] Morton M A and Papapolymerou J. A packaged MEMS-based 5-bit X-band high-passlow-pass phase shifter[J]. IEEE Trans. on Microwave Theory and Tech. ,2008,56(9):2025-2031
    [21] Fu C L, Cai W, Chen H W, et al. Voltage tunable Ba0.6Sr0.4TiO3 thin films and coplanar phase shifters[J]. Thin Solid Films, 2008, 516:5258-5261
    [22] Fu CL, Pan F S, Chen H W, et al. coplanar phase shifters based on ferroelectric thin films[J]. Int. J. Infrared Milli. Waves, 2007, 28:229-235
    [23] Li C C and chen K M. determination of electromagnetic properties of materials using flanged open-ended coaxial probe-full-wave analysis[J]. IEEE Trans. on Instrumentation and Measurement, 1995, 44(1):19-27
    [24] Stuchly M A and Stuchly S S. Coaxial line reflection methods for measuringdielectric properties of biological substances at radio and microwave frequencies-a review[J]. IEEE Trans. on Instrumentation and Measurement, 1980, 29(3):176-182
    [25] Ghodgaonkar D K, Varadan V V, Varadan V K, et al. Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies[J]. IEEE Trans. on Instrumentation and Measurement, 1990, 39(2):387-394
    [26] Fannin P C, Relihan T, and Charles S W. Investigation of ferromagnetic resonance in magnetic fluids by means of the short-circuited coaxial line techniques[J]. J. Phys. D: Appl. Phys., 1995, 28:2003-2006
    [27] Ludwig R and Bretchko P. RF circuit design: theory and applications[M].张肇仪,徐承和.译.北京:电子工业出版社, 2002:169-174
    [28]陈邦媛.射频通信电路[M].第二版.北京:科学出版社,2006:56-66
    [29] Lee T H. The design of CMOS radio-frequency integrated circuits[M].余志平,周润德译.北京:科学出版社, 2004:177-192
    [30] Balmus S B, Pascariu G N, Creanga F, et al. The cavity perturbation method for the measurement of the relative dielectric permittivity in the microwave range[J], Journal of Optoelectronics and Advanced Materials. 2006, 8(3):971-977
    [31] Chen L F, Ong C K,. Tan B T G. A resonant cavity for high-accuracy measurement of microwave dielectric properties[J]. Measurement Science and Technology. 1996, 7:1255–1259
    [32] Dube D C, Lanagan M T, Kim J H, et al. Dielectric measurements on substrate materials at microwave frequencies using a cavity perturbation technique[J], J. Appl. Phys., 1988,63(7):2466-2468
    [33] Sheen J. Measurements of microwave dielectric properties by an amended cavity perturbation technique[J]. Mesurement,2009,42:57-61
    [34] Sheen J. Amendment of cavity perturbation technique for loss tangent measurement at microwave frequencies[J]. J. Appl. Phys.,2007,14(102):1-6
    [35] Verma A, Dube D C. Measurement of dielectric parameters of small samples at X-Band frequencies by cavity perrurbation technique[J]. IEEE Trans.,Instrument and Measurement, 2005, 54(5):2120-2123
    [36] Carter R G. Accuracy of microwave cavity perturbation measurements[J]. IEEE Trans. Microwave Theory Tech.,2001,49(5):918-923
    [37] Shihe L, Cevdet A, Renato G. Precise calculations and measurements on the complex dielectric constant of lossy materials using TM010 cavity perturbation techniques[J]. IEEE Trans. on Microwave Theory Tech., 1981, MTT-29: 1041-1048
    [38]金浩,董树荣,王德苗.微扰法测量介质陶瓷薄膜的介电特性[J].微波学报,2003,19(3):67-71
    [39]胡作启,伍双杰,王成.改进的谐振腔微扰法测定电介质X波段介电常数[J].华中科技大学学报(自然科学版), 2010, 38(8):49-52
    [40] Baker-Jarvis J, Vanzura E J, and Kissick W A. Improved technique for determining complex permittivity with the transmission/reflection method[J]. IEEE Trans. on Microwave Theory Tech.,1990, 38(8):1096-1103
    [41] Vanzura E J, Baker-Jarvis J R, Grosvenor J H, et al. Intercomparison of permittivity measurements using the transmission/reflection Method in 7-mm Coaxial Transmission Lines[J]. IEEE Trans. on Microwave Theory Tech.,1994, 42(11):2063-2069
    [42] Esteban H, Catala-Civera J M, Cogollos S, et al. Characterization of complex permittivity properties of materials in rectangular waveguides using a hybrid iterative method[J]. IEEE Microwave and Guided Wave Letters, 2000, 10(5):186-188
    [43] JoséM. Catalá-Civera, Antoni J C, et al. Accurate determination of the complex permittivity of materials with transmission reflection measurements in partially filled rectangular waveguides[J]. IEEE Trans. on Microwave Theory Tech., 2003, 51(1):16-24
    [44] Abbas Z, Pollard R D, and Kelsall R W. A rectangular dielectric waveguide technique for determination of permittivity of materials at W–band[J]. IEEE Trans. on Microwave Theory Tech.,1998, 46(12):2011-2015
    [45] Carlsson E and Gevorgian S. conformal mapping for multilayer substrate[J]. IEEE Trans. on Microwave Theory Tech.,1999, 47(8):1544-1552
    [46]周希朗.变型共面波导的保角变换分析[J].通信学报, 1997, 18(11):65-70
    [47] Suherman P M, Jackson T J, and Lancaster MJ. Comparison of techniques formicrowave characterization of BST thin films[J]. IEEE trans. on Microwave Theory Tech., 2007, 55(2):397-401
    [48] Niculae V. TRL calibration kit for characterizing waveguide-embedded microstrip circuits at millimeter-wave frequencies[J]. IEEE Instrumentation and Measurement Technology Conference, 2002:1349-1354
    [49] Tsuji M, Nishikawa T, Wakino K, et al. An accurate measurement method of high permittivity materials by numerical analysis of coplanar waveguide[J]. Microwave Conference Proceedings, 2005:1-4
    [50] Tsuji M, Tsuda S, Nishikawa T, et al. Evaluation method of high-permittivity materials in microwave region using coplanar waveguide[J]. Electronics and Communications in Japan, 2007, 90(3):17-25
    [51] Lue H T and Tseng T Y. Application of on-wafer TRL calibration on the measurement of microwave properties of Ba0.5Sr0.5TiO3 thin films[J]. IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, 2001,48(6):1640-1647
    [52] Wang Z Y, Liu J S, and Liu L T. Permittivity measurement of Ba0.5Sr0.5TiO3 ferroelectric thin films on multilayered silicon substrates[J]. IEEE Trans. on Instrumentation and Measurement, 2006, 55(1):350-356
    [53] Bhakdisongkhram G, Okamura S, and Shiosaki T. Precise measurement of the dielectric properties of BST thin films by on-wafer through-reflect-line (TRL) calibration method[J]. Journal of the European Ceramic Society, 2006, 26:1835–1839
    [54] Pond J M, Kirchoefer S W, Newman H S, et al. Ferroelectric thin films on ferrites for tunable microwave device application.Applications[J]. Microwave and Guided Wave Letters, 2000, 10(5):186-188
    [55] Kozyrev A, Osadchy V, Pavlov A, et al. Application of ferroelectrics in phase shifter design[J]. IEEE MTT-S International Microwave Symposium Digest, 2000:1355-1358
    [56] Acikel B, Taylor TR, Hansen P J, et al. A new high performance phase shifter using BaxSr1-xTiO3 thin films[J]. IEEE Microwave and Wireless Components Letters, 2002, 12(7):237-239
    [57] Erker E G, Nagra AS, Liu Y, et al. Monolithic Ka-band phase shifter using voltagetunable BaSrTiO3 parallel plate capacitors[J]. Microwave and Guided Wave Letters, 2000, 10(1): 10-12
    [58] Ustinov A B, Srinivasan G, and Kalinikos B A. Ferrite-ferroelectric hybrid wave phase shifters[J]. Appl. Phys. Lett., 2007, 90:031913
    [59] Chen L F, Ong C K,. Tan B T G. Amendment of cavity perturbation method for permittivity measurement of extremely low-loss dielectrics[J]. IEEE Trans on Instrument and Measurement,1999,48(6):1031-1037
    [60] Yang R Y, Hung C Y, Su Y K, et al. Loss characteristics of silicon substrate with different resistivities[J]. Microwave and Optical Technology Letters. 2006, 48(9):1773-1776

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700