新型铁电移相器及其在相控阵中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对移相器的分类以及设计做了一定的介绍,对不同形式的铁电移相器进行了一定的理论研究。
     在对传统的CPW移相器进行研究后,本文提出了三种新的铁电移相器结构,包括微带分支,槽线和SIRW(substrate integrated rectangle waveguide)结构。用HFSS以及FDTD分析了微带分支和SIRW铁电移相器的单层和双层结构。在完成了对移相器的设计分析后,设计了一维铁电天线阵,用以检验移相器的效果。
     在相控天线阵中,移相器,天线,功率分配器为三大主要部分。因此,在本论文中还设计了贴片天线以及等分和不等分功率分配器。由于在整个系统中,移相器的加工难度和加工成本很大,本工作只对天线阵中的功率分配器进行了加工与测试,测试结果与理论分析吻合较好,能够满足功率分配的要求。
     在天线阵方面,设计了两种结构的一维铁电天线阵,一种为三单元不等分天线阵,一种为四单位等分天线阵。从最后的结果来看,两个天线阵都较好地体现了设计的初衷,均能实现相位波瓣的扫描。
The theoretically analyses of some ferroelectric phase shifters have been carried out in this thesis.
    Based on the analysis of the current CPW ferroelectric phase shifter, three novel ferroelectric phase shifter are proposed, including microstrip branch, slot line and SIRW types. The HFSS software and FDTD methods are used to analyze the characteristics of the single-layer and double-layer ferrite phase shifters of microstrip branch and SIRW structures. In addition, the construction and analysis of one-dimension ferroelectric phased array have been investigated, demonstrating the validity of ferroelectric phase shifter design.
    In this work, the patch antenna and the unequal power divider were designed. The measured results of the fabricated power divider have shown good agreement with the simulation data.
    Two one-dimension ferroelectric phased arrays have been proposed. The simulation results have shown that the radiation direction can be controlled by the biasing voltage, demonstrating the scanning effect of the phased array.
引文
[1] Franco De Flaviis, N. G. Alexopoulos, Oscar M. Stafsudd, planer microwave integrated phase-shifter design with high purity ferroelectric material, IEEE Transactions On Microwave Theory and Techniques, 1997
    [2] Well, C.; Wang. P.; Downar, H.; Wenger, J., and Jakoby R.: Ferroelectric Thick Film Ceramics for Tunable Microwave Coplanar Phase Shifters, Frequency 11-12/2000
    [3] 廖承恩等,微波技术基础,西安电子技术大学出版社,1994
    [4] Reinhold Ludwig, Pavel bretchko, RF Circuit Design: Theory and Applications, Publishing House of Electronics Industry, 2002
    [5] Fred Gardiol, Microstrip Circuits, Wiley-lnterscience Publication, 1994
    [6] 林昌禄等,天线工程手册,电子工业出版社,2002
    [7] I.J.鲍尔,P.布哈蒂亚,微带天线,电子工业出版社,1984
    [8] 康行健,天线原理与设计,北京理工大学出版社,1993
    [9] Rainee N. Simons, Coplanar Waveguide Circuits. Components. and Systems, John Wiley&Sons inc. Publication, 2001
    [10] J. Browne, Broadband Amps Sport. Coplanar Waveguide, Microwave RF, 1987
    [11] Technology Close-Up, Microwave RF, 1988
    [12] J. Browne, Broadband Amps Drops through Noise Floor, Microwave RF, 1992
    [13] J. Browne, Coplanar MIC Amplifier Bridges 0.5 To 18.0 GHz, Microwave RF, 1987
    [14] G. Hasnain, A. Dienes, and I. R. Winnery, "Dispersion of picosecond pulses in coplanar transmission lines," IEEE Trans. Microwave Theory Tech., 1989
    [15] Dennis M. Sullivan, Electromagnetic Simulation Using the FDTD Method, IEEE Press Series on RF and Microwave Technology, 2000
    [16] Yongxi Qian, Tatsuo Itoh, FDTD Analysis and Design of Microwave Circuits and Antennas, REALIZE INC., 1999
    [17] D. Deslands, K. Wu, Integrated microstrip and rectangular wave-gulde in planar form, IEEE Microw. Guided Wave Lett, 2001
    [18] K. Wu, Integration and interconnect techniques of planer and non-planar structures for microwave and millimeter-wave circuits-current status and future trend, Asia-Pacific Microwave Conf., 2001
    [19] J. Li, R. G. Bosisio, K. Wu, Computer and measurement simulation of new digital receiver operating directly at millimeter-wave frequencies, IEEE Trans. Microw. Theory Tech., 1995
    [20] Y. Cassivi, L. Perregrini, K. Wu, Dispersion characteristics of substrate integrated rectangular waveguide, IEEE Micro. Wireless Compon. Lett, 2002
    [21] 许煜寰等编,铁电与压电材料,科学出版社,1978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700