单轴液压角振动台振动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动台是实验室内模拟真实的振动环境的重要试验设备,其中电液伺服角振动台作为一种独特的环境模拟设备在导弹、火箭、卫星等国防领域有着重要的作用。为了更真实的模拟实际的振动环境,只对电液伺服角振动台进行正弦振动控制已经无法满足要求,随机振动控制的研究在角振动控制技术领域显得越来越重要。
     随机振动控制要求振动试验系统具有高频响性能,电液伺服角振动台的液压动力机构是阀控马达系统,而电液伺服阀控马达系统的固有频率较低,因此研究扩展阀控马达系统频宽的伺服控制方法对于随机角振动控制非常关键。本文针对单轴电液角振动台系统建立完整的阀控马达系统的数学模型,研究有效提高系统频宽的三状态控制策略,根据极点配置原理设计三状态控制器。并通过仿真分析验证三状态控制策略可以有效拓展系统频宽。
     在随机振动控制中,仅依靠伺服控制提高系统频宽不能满足随机振动复现控制精度,主要是由于试验系统中存在的非线性和系统频宽拓展的局限性所致。要高精度复现随机振动形式,必须进行随机振动的复现迭代控制。本文重点分析了随机振动的波形复现迭代控制算法和功率谱复现迭代控制算法。在复现迭代算法中频响函数估计的精确程度对迭代结果有很大的影响,本文分析了传统的频响函数估计方法及其存在的问题,提出了一种基于自适应滤波原理的频响函数辨识方法,分析了自适应滤波原理,采用了改进的变步长自适应滤波算法-LMS算法。该频响函数辨识方法具有自适应滤波的特点,是一种能够随系统频率特性变化而实时调整的频响函数估计方法,并且不需要关注信号噪声的统计特性。本文分析了迭代过程中的响应谱估计、驱动谱修正和时域信号生成等,并对驱动谱修正做出了变系数的改进。最后通过仿真验证振动迭代控制理论的分析结论。
     通过单轴电液角振动试验来验证本文的理论研究内容,单轴角振动试验主要包括了三状态控制器调试试验、频响函数辨识试验、波形复现控制试验和功率谱复现控制试验。
Vibration table is a kind of standard experiment equipment which is used to replicate the real vibrate environment. Among them, electro- hydraulic servo vibration table is a special kind of vibration environment simulated equipment which is widely used in national defense industry, such as missiles, rockets and satellites. To replicate real vibrate environment more accurately, not only is it necessary to study sine vibration control technology , but also is it a key for vibration control technology to study random vibration control’s application in industrial fields.
     Random vibration control system demands that the vibration system has high frequency response. But power mechanism of electro-hydraulic servo angular vibration table is motor controlled by the valves, the frequency response of which is lower. The study of the servo method that can heighten the system frequency response is a key technology to random angular vibration control. The mathematical model of motor controlled by the valves is set up. There variable control is a effective method to improve the system frequency response. In the paper, the author analyses the principle of there variable controller. According the principle, the author design the there variable controller for electro-hydraulic servo angular vibration table. The applicability of the new control method is indicated by the simulation.
     In the random vibration control, random vibration iteration precision is lower than expected only by servo control technology. The main reasons consist of the system’s nonlinear and the restraint of the system frequency response. It is necessary to present random vibration replication control algorithm, to improve the control precision. The paper analyses mainly waveform replication iteration algorithm and PSD replication iteration algorithm. Frequency response function estimated is the foundation of random vibration control and its results estimated is directly related to vibration control accuracy. The paper presents the traditional frequency response function estimating method and analysis defects of this method. The paper introduces the principle of adaptive filtering, adaptive filter structure and the realization of the type of adaptive algorithm, then presents a new frequency response function estimating method based on the principle of adaptive algorithm. The method has the features of adaptive filters. The frequency response function estimated can be adjusted according to the changes of vibration table system, without the effect of the changes of noise’s statistical properties. The paper also analysis other key parts of random vibration replication iteration algorithm, including estimating of response spectrum, correction of driver spectrum iteration, generation of time-domain driver signal. The paper makes improvements to correction of driver spectrum iteration, with different correct modulus in different frequency band. The vibration replication iteration control theory is indicated by the simulation in Matlab.
     The paper analysis electro-hydraulic servo angular vibration test’s results, and indicates the above conclusion. Angle vibration test consists of frequency response function estimating test, waveform replication iteration vibration test and PSD replication iteration vibration test.
引文
1胡志强,法庆衍,洪宝林.随机振动试验应用技术.中国计量出版社,1996:172~173,141~142
    2关广丰.六自由度液压振动试验系统控制策略研究.哈尔滨工业大学博士学位论文. 2007:6~8,88~89,104~106
    3张巧寿.振动试验系统现况与发展.航天技术与民品. 2000,8:1218~1222
    4史正强.液压角振动台信号处理方法的研究.哈尔滨工业大学硕士学位论文. 2008:42~44
    5王平.三轴角振动液压转台理论分析和实验研究.哈尔滨工业大学硕士学位论文. 2004:3~5
    6李毅.自适应滤波及滤波算法研究.西北工业大学硕士学位论文. 2003:4~6
    7张蕊华.三轴仿真转台电液位置伺服系统的分析和研究.哈尔滨工业大学硕士论文. 2002:6~15
    8程鑫.三轴液压角振动台的结构优化和控制系统研究.哈尔滨工业大学硕士学位论文. 2007:37~40
    9李军伟.仿真转台电液伺服系统及其中框同步控制技术的研究.哈尔滨工业大学博士学位论文. 2003:27~31
    10 Wu Shenlin, Zhao Keding, Li shangyi, Liu Qinghe. The Design Characteristic and Experiment Study on Electro-hydraulic Servo Motor with Super-low-speed High Frequency Response and High Accuracy. Proceedings of the 1 st International Symposium on Fluid Power Transmission and Control. Beijing, 1991:148~151
    11赵克定.宽调频超低速高频响电液伺服系统的设计特点.机床与液压. 1984,4:15~23
    12刘春芳.液压三轴仿真转台低速性能及其控制策略的研究.哈尔滨工业大学博士学位论文. 2003:61~68
    13李敏霞.电液伺服振动台的振动控制技术及应用.振动、测试与诊断. 1997,17(3):56~57
    14杨志东.三轴六自由度液压振动试验系统控制策略的研究.哈尔滨工业大学硕士学位论文. 2004:21~30
    15韩京清,黄远灿.二阶跟踪微分器的频率特性.数学的实践与认识. 2003,33(3):72~73
    16韩京清,王伟.非线性跟踪微分器.系统科学与数学. 1994,14(2):178~179
    17韩京清,袁露林.跟踪微分器的离散形式.系统科学与数学. 1999,19(3):272~273
    18张志利,李祥州,成跃.基于轴角编码器二阶跟踪微分的角加速度测量. 2008,28(4):28~29
    19韩京清.自抗扰控制技术.前沿科学. 2007, 1:24~25
    20关广丰,从大成,韩俊伟,李洪人. 6自由度随机振动控制算法.机械工程学报. 2008,9:71~73
    21韩俊伟,于丽明,赵慧,王忠义.地震模拟振动台三状态控制的研究.哈尔滨工业大学学报. 1999,23(3):27~28
    22李洪人.液压控制系统.国防工业出版社,1990:77~79
    23袁宏洁,李传日.正弦加随机振动控制技术研究.航空学报. 2000,21(4):383
    24勒蒙.三轴液压角振动台的控制研究.哈尔滨工业大学硕士学位论文. 2007:30~31
    25段虎明,秦树人,李宁.频率响应函数估计方法综述.振动与冲击. 2008,27(5):48~50
    26 M.Tanka, Y.Kaneda. A Fast Projection Algorithm for Adaptive Filtering[J]. IEICE Trans. on Fundamentals of Electronics, communications and Computer Science. 1995, E78-A(10):1355~1361
    27滑广军,吴运新,吴吉平.一种新的频响函数无偏估计方法.振动、测试与诊断. 2003,23(3):175~176
    28 A Zergunie, C F N Cowan. Noval LMS-LMF Adaptive Scheme for Echo Cancellation[J]. Electronic Letter, 1996,32(19):1776~1778
    29龚耀寰.自适应滤波[M].电子工业出版社,1989:89~91
    30倪镜根,李锋.一种新的变步长最小均方自适应滤波算法.信息和电子工程. 2008,20(3):10~11
    31 Rik Pintelon and Johan Schoukens. Measurement of Frequency Response Functions in the Presence of Correlated Input/Output Errors. IEEE Instrumentation and Measurement Technology Conference, Budapest, 2001:2~4
    32王丰林,谭家玉,彭玉才.一种基于自适应滤波的系统辨识方法.黑龙江商学院学报(自然科学版). 1994,4(10):4~5
    33 S.Haykin. Adaptive Filtering Theory[M]. Prentic-Hall Inc. 1985:41~43
    34李敏霞.地震模拟振动台试验系统频率特性估计的研究与应用.世界地震工程. 1996,4:19~21
    35彭军,何群,薛景锋,孙浩.低频标准角振动台.测量与标准. 2005, 25(6):46~48
    36王述成,陈章位.随机振动试验中时域随机化技术的研究.机械工程学报. 2005,5:230~232
    37 Vinay K.Ingle. Digital Signal Processing Using . 1998:32~35
    38王宏禹.随机信号数字处理[M].科学出版社,1988:321~325
    39戴诗亮.随机振动试验技术.清华大学出版社,1984:160~165
    40严侠,牛宝良,朱长春.三轴六自由度液压振动台随机振动控制分析和仿真.机床与液压. 2007,35(10):165~167
    41 S.Welaratna. A New Algorithm Vibration Control. Evaluation Enginering. 1994:52~55
    42韩俊伟,李玉亭,胡宝生.大型三向六自由度地震模拟振动台.地震学报. 1998,20(3):327~329
    43王刚.数字式随机振动控制技术.战术导弹技术. 1999(3):58~62
    44 S. M.凯依.现代谱估计原理与应用.黄建国,武延祥,杨世兴译。科学出版社,1999:110~118
    45陈后金.数字信号处理.高等教育出版社,2004:100~105
    46 Klaus L. Vibration Testing Tystem. United States Patent: 4011749. 1977-03-15
    47田永波.电液伺服地震模拟振动台的数字控制.武汉理工大学硕士论文. 2004:4~6
    48王述成.振动试验实时控制系统研究.浙江大学工学博士学位论文. 2006:12~14
    49 Underwood M. A and Keller T. Rencent System Developments for Multi-actuator Vibration Control System. Sound and Vibration. 2001,35(10):83~85
    50胡志强.液压振动台应用前景的探讨.测试技术. 1993,12(5):2~5
    51中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 2423.56-2006.电工电子产品环境试验设备基本参数检定方法.振动试验用液压振动台. 2007
    52杨志钦.电液振动台设计.强度与环境. 1991,(3):50~58
    53陈维山,赵杰.机电系统计算机控制.第3版.哈尔滨工业大学出版社,2006:49~59
    54 Bart Peeters and Jan Debille. MIMO Random Vibration Control Algorithm and Simulations. Proceedings of the 72 nd Shock and Vibration Symposium, San Destin, FL, USA, 2001:5~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700