微网逆变器及其协调控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微网是整合各种分布式能源优势、减弱分散的分布式发电对大电网的不利影响、充分挖掘分布式发电经济效益的有效方式,已经成为分布式发电领域的研究热点和重要发展方向。本文针对微网逆变器及其协调控制展开研究,借鉴同步发电机组的运行特性、控制策略以及电力系统的电压、频率控制结构,建立了微网逆变器的数学模型、各种运行模式下的控制器以及微网分层控制结构,本文的主要研究内容有:
     (1)深入调研了微网产生和发展的背景、概念以及国内外发展现状;基于现有各国建立的多个微网实验平台和示范工程,归纳总结了微网的控制结构和微网逆变器的控制策略;
     (2)重点提出了一种统一的微网逆变器接口一虚拟同步发电机(virtual synchronous generator, VSG);详细阐述了VSG的基本原理和实现方法,提出了瞬时无功理论和准谐振滤波器两种提取基波分量的方法来模拟同步电抗:基于VSG和同步发电机定子电气部分的数学模型,详细对比了它们的等效输出阻抗特性、外特性、动态特性以及功角特性;
     (3)借鉴电力系统调速器和励磁控制器的基本原理,设计了VSG的数字调速器和励磁控制器,有效模拟了同步发电机组的功频特性和电压调节特性:VSG以PQ.模式联网运行时,详细分析了有功功率闭环控制的稳定性、动态性能和抗扰性能;无功功率控制方面,在励磁调节器的基础上,提出了一种前馈补偿和闭环控制器相结合的无功功率复合校正系统,快速准确的达到无功功率无差控制的目的;为了满足微网逆变器按照调度经常切入切出的需要,设计了VSG独立运行模式下的频率控制器和电压控制器,以及独立运行模式向并网模式切换的预并列控制单元;
     (4)借鉴电力系统分层控制思想,提出了一种适宜于微网的分层控制结构;阐述了将电力系统分层调频方法引入到微网的可行性,侧重研究了微网一次调频和二次调频。根据经济调度对功率分配的影响,提出了一种变频率调节系数的调速器,以便最大限度的利用现有发电容量参与一次调频;对比分析了分散式和集中式两种二次调频的实现方式,揭示了分散式频率无差控制无法实际应用的原因;
     (5)研究了微网孤岛模式下电压分层控制策略。为了方便的实现并联组网模式下电压控制与PQ模式下无功功率控制之间的平滑切换,提出了一种调差系数可调的新型励磁调节器,阐述了不考虑线路阻抗情况下VSG间无功功率分配的原理;一次电压控制中,提出了一种在线计算一次电压控制器参考输入电压的新算法,用以解决无功功率分配精度和母线电压跌落问题;设计了微网二次电压控制器,在matlab/simulink仿真平台上验证了一次电压控制器改进算法的效果和孤岛运行时微网分层控制的正确性;
     (6)介绍了基于实验平台的微网系统整体结构,给出了微网逆变器实验样机的硬件结构和软件架构,详细进行了单台微网逆变器惯性时间常数的模拟、独立运行、PQ并网、两台微网逆变器并联组网以及电压频率恢复等各种实验。
Microgrid is an effective approach to integrate the advantages of all kinds of distributed resources, to take less impact on distribution grid and improve the economic profits of distributed generations. It has become a hot topic and important direction in distributed generation area. Research on microgrid inverter and coordinated control of multiinverter was focus on in this paper. According to the behavior and control strategy of synchronous generator and control structure of utility, the mathematic model of microgrid inverter, controllers for different operation modes and hierarchical control structure of microgrid were established. The main content of this paper are as follow:
     First of all, a survey of the background, concept and development at home and broad of microgrid were provided; Control structures of microgrid and operation strategies of inverters were summarized based on many experimental platforms and projects in many countries.
     Secondly, a new kind of unified microgrid inverter was proposed—virtual synchronous generator (VSG in short); fundamental theory and implemental method of VSG were expatiated. Instantaneous reactive power theory and quasi-resonant filter were adopted to imitate the synchronous reactance; Equivalent output impedance, external characteristic, dynamic performance and power angle feature were compared relatively between synchronous generator and VSG
     Thirdly, a digital governor and an excitation controller, extracting from the essence of governor and excitation controller of synchronous generator, were designed to embody as same power-frequency characteristic and voltage regulating characteristic as synchronous generator set. When PQ control of VSG operated in grid-connected mode, stability, dynamic performance and anti-disturbance characteristic of the active power control system were analyzed in detail relatively. A reactive power controller composing of a feedforward loop and a close loop was proposed to achieve the aim of no steady error of reactive power fast and accurately. VSG often switches in and off from grid according to the economic dispatching, so a frequency controller and voltage controller of VSG for independent operation and a resynchronous unit from independent operation to grid-connected mode were designed.
     Fourthly, a hierarchical control structure suitable for microgrid was presented according to the hierarchical control of utility; the possibility of employing the hierarchical frequency regulation of utility was described. Both the first frequency regulation and the second frequency regulation were focus on. Economic dispatching had a significant impact on the power distribution among the microgrid inverters, so a governor with variable frequency regulation coefficient was proposed. In this way, more generation capacity of inverters would participate in the first frequency regulation of microgrid; the second frequency regulation both in decentralized and centralized way were compared and analyzed. The reason why the decentralized way was unpractical was revealed.
     Then, the hierarchical voltage control was researched. A new excitation controller with adjustable voltage regulation coefficient was developed to satisfy the switching requirement between parallel control in islanded mode and reactive power control in grid-connected mode. A new online algorithm of reference voltage for the first voltage controller of VSG was proposed to solve the problem of distribution accuracy of reactive power and voltage drop; the second voltage controller of microgrid was designed. This new algorithm of the first voltage controller and hierarchical control of microgrid in islanded operation were testified on Matlab/simulink platform.
     Finally, the framework of microgrid based on experimental platform was introduced. The hardware scheme and software flow chart of the experimental prototype of microgrid inverter were provided. Many experiments of single inverter, such as the effect of inertia time constant, independent operation, PQ control, and two inverters in parallel control including voltage/frequency restoration were verified on experimental prototype of microgrid inverter.
引文
[1]世界风能协会.2008年全球风电市场统计[EB/OL][2009].http://www.cwea.org.cn/download/display_info.asp?cid=9&sid=&id=29.
    [2]中国可再生能源学会风能专业委员会.2009年中国风电装机容量统计[J].风能,2010,1:28-33.
    [3]Arnulf Jager-Waldau. PV Status Report 2010[EB/OL][2010]. http://re.jrc.ec.europa.eu/refsys/.
    [4]王建,李兴源,邱晓燕.含分布式发电装置的电力系统研究综述[J].电力系统自动化,2005,29(24):90-97.
    [5]Wojszczyk Bartosz, Al-Juburi Omar,王靖.分布式发电的高覆盖率对电力系统设计和运行的影响分析(英文)[J].电网技术,2009,33(15):37-46.
    [6]Rafael Amaral Shayani, M. A. G. de Oliveira. Photovoltaic Generation Penetration Limits in Radial Distribution Systems[J]. IEEE Transactions on Power Systems,2010,26(3): 1625-1631.
    [7]M. Z. C. Wanik, I. Erlich, A. Mohamed, et al. Influence of Distributed Generations and Renewable Energy Resources Power Plant on Power System Transient Stability[C]. IEEE International Conference on Power and Energy (PECon2010), Kuala Lumpur, Malaysia, 2010.
    [8]M. Hlatshwayo, S. Chowdhury, S. P. Chowdhury, et al. Impacts of DG Penetration in the Reliability of Distribution Systems[C]. International Conference on Power System Technology(POWERCON), Hangzhou, China,2010.
    [9]孙鸣,余娟,邓博.分布式发电对配电网线路保护影响的分析[J].电网技术,2009,33(8):104-107.
    [10]A. Latheef, M. Negnevitsky, K. Muttaqi, et al. Present understanding of the impact of Distributed Generation on Power Quality[C]. AUPEC'08 Power Engineering Conference, Sydney, NSW,2008.
    [11]V. H. M. Quezada, J. R. Abbad, T. G. S. Roman. Assessment of energy distribution losses for increasing penetration of distributed generation[J]. IEEE Transactions on Power Systems, 2006,21(2):533.
    [12]Liang Tao, M. Mueller, C. Schwaegerl. Advanced stochastic analysis of massive DG penetration — A voltage quality case study[C]. IET-CIRED SmartGrids for Distribution, CIRED Seminar, Frankfurt,2008.
    [13]Feng Xingtian, Wei Tongzhen. Study on voltage quality of distribution network with high penetration of DG[C]. International Conference on Power System Technology (POWERCON), Hangzhou, China,2010.
    [14]Lassetter R, Akhil A, Marnay C. Integration of Distributed Energy Resources:The CERTS MicroGrid Concept[EB/OL][April,2002]. http://certs.lbl.gov/certs-der-pubs.html.
    [15]R. Lasseter, R. H. MicroGrids[C]. IEEE Power Engineering Society Winter Meeting, New York,USA,2002.
    [16]R. Lasseter, P. Piagi. Microgird:A Conceptual Solution[EB/OL][2004]. http://certs.lbl.gov/CERTS_P_DER.html.
    [17]卢永,甘德强,Jiang John N美国智能电网和分布式发电重点方向的调研分析[J].电力系统自动化,2010,34(9):12-16.
    [18]姚建国,赖业宁.智能电网的本质动因和技术需求[J].电力系统自动化,2010,34(2):1-4,28.
    [19]常康,薛峰,杨卫东.中国智能电网基本特征及其技术进展评述[J].电力系统自动化,2009,33(17):10-15.
    [20]European Commission. European technology platform smart geids:vision and strategy for Europe's electricity networks of future[EB/OL][Oct.10,2008]. http://ec.europa.eu/research/energy/pdf/smartgrids_en.pdf.
    [21]U. S. Department Of Energy. The U.S. Department of Energy's GridWise Program[EB/OL][Feb.3,2009]. http://www.gridwise.org.
    [22]何光宇,孙英云.智能电网基础[M].北京:中国电力出版社,2009.
    [23]汤奕,M Pipatt Anasompom,邵盛楠.中国与美国和欧盟智能电网之比较研究[J].电网技术,2009,33(15):7-15.
    [24]李振杰,袁越.智能微网一一未来智能配电网新的组织形式[J].电力系统自动化,2009,33(17):42-48.
    [25]王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14,23.
    [26]王帅,李鹏,崔红芬.风电以微网的形式并入智能电网的研究[J].电气技术,2010,(8):38-42.
    [27]余贻鑫,栾文鹏.智能电网[J].电网与清洁能源,2009,25(1):7-11.
    [28]J. A. Pecas Lopes, C. L. Moreira, A. G. Madureira. Defining Control Strategies for MicroGrids Islanded Operation[J]. IEEE Transactions on Power systems,2006,21(2):916-624.
    [29]王成山,王守相.分布式发电供能系统若干问题研究[J].电力系统自动化,2008,32(20):1-4,31.
    [30]Z. Ye, R. Walling, N. Miller, et al. Facility Microgrids[M]. New York:General Electric Global Research Center,2005.
    [31]盛鹃,孔力,齐智平,等.新型电网-微电网(Microgrid)研究综述[J].继电器,2007,35(12):75-80.
    [32]郑漳华,艾芊.微电网的研究现状及在我国的应用前景(J].电网技术,2008,32(16):27-31.58.
    [33]丁明,张颖媛,茆美琴.微网研究中的关键技术[J].电网技术,2009,33(11):6-11.
    [34]M. Adamiak, S. Bose, Y. Liu, et al. Tieline Controls in Microgrid Applications[C]. IREP Symposium Bulk Power System Dynamics and Control, Charleston, USA,2007.
    [35]Kroposki B., Lasseter R., IseT., et al. Making Microgrids Work[J]. IEEE Power and Energy Magazine,2008,6(3):40-53.
    [36]赵宏伟,吴涛涛.基于分布式电源的微网技术[J].电力系统及其自动化学报,2008,20(1):121-128.
    [37]Prasenjit Basak, A. K. Saha, S. Chowdhury, et al. Microgrid:Control Techniques and Modeling[C]. Proceedings of the 44th International Universities Power Engineering Conference (UPEC), Glasgow, UK,2009.
    [38]Yun Wei Li, Vilathgamuwa, D. M., et al. A grid-interfacing power quality compensator for three-phase three-wire microgrid applications[J]. IEEE Transactions on Power Electronics, 2006,21(4):1021-1031.
    [39]Chien-Liang Chen, Yubin Wang, Jih-Sheng Lai, et al. Design of Parallel Inverters for SmoothMode Transfer Microgrid Applications [J]. IEEE Transactions on Power Electronics, 2010,25(1):6-15.
    [40]Huang Wei, Wang Xin, Guo Jiahuan, et al. Discussion on application of super capacitor energy storage system in microgrid [C]. International Conference on Sustainable Power Generation and Supply(SUPERGEN'09), Nanjing, China,2009.
    [41]张华民,周汉涛,赵平,等.储能技术的研究开发现状及展望[J].能源工程,2005,(3):1-7.
    [42]C. L. Moreira, F. O. Resende, J. A. P. Lopes. Using Low Voltage MicroGrids for Service Restoration[J]. IEEE Transactions on Power Systems,2007,22(1):395-403.
    [43]United States Department Of Office Of Electric Transmission And Distribution. "Grid 2030 ":a national vision for electricity's second 100 years[EB/OL][2007-02-01]. http://www.climatevision.gov/sectors/electricpower/pdfs/electric_vision.pdf.
    [44]J. Eto, R. Lasseter, B. Schenkman, et al. Overview of the CERTS Microgrid laboratory Test Bed[C]. Integration of Wide-Scale Renewable Resources Into the Power Delivery System, 2009 CIGRE/IEEE PES Joint Symposium, Calgary, Canada,2009.
    [45]R. H. Lasseter, J. H. Eto, B. Schenkman, et al. CERTS Microgrid Laboratory Test Bed[J]. IEEE Transactions on Power Delivery,2011,26(1):325-332.
    [46]Lynch J. Northern power system update on Mad River microgrid and related activities[EB/OL][2006]. http://der.lb].gov/new_site/2005microgrids_files/present ation_pdfs/CERTS-Lynch.pdf.
    [47]Klinger A. Northern power systems'microgrid power network to address risk of power outrages[EB/OL][2007]. http://www.northernpower.com.
    [48]European Commission. Strategic research agenda for Europe'S Electricity Networks of the Future[EB/OL][2007]. http://www.sm.Artgrids.eu/documents/sra/sra_finalversion.pdf.
    [49]Sanchez M. Overview of microgrid research and development activities in the EU[C]. Montreal 2006-Symposium on Microgrids, Montreal, Canada,2006.
    [50]Y. Kojima, M. Koshio, S. Nakamura, et al. A Demonstration Project in Hachinohe:Microgrid with Private Distribution Line[C]. IEEE International Conference on System of Systems Engineering(SoSE'07), San Antonio, USA,2007.
    [51]S. Morozumi. Micro-grid Demonstration Projects in Japan[C]. Power Conversion Conference (PCC'07), Nagoya,2007.
    [52]S. Morozumi, S. Kikuchi, Y. Chiba, et al. Distribution technology development and demonstration projects in Japan[C]. IEEE Power and Energy Society General Meeting Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, USA,2008.
    [53]国际智能电网建设殊途同归[EB/OL][2010-11-15].http://www.sp.com.cn/rdzl/dljj/201011/t20101115_169986.htm.
    [54]中华人民共和国科学技术部.国家高技术研究发展计划(863计划)先进能源技术领域 智能电网关键技术研发(一期)重大项目申请指南 [EB/OL][2010-10-28].http://program.most.gov.cn/.
    [55]中华人民共和国科学技术部.国家高技术研究发展计划(863计划)先进能源技术领域大型光伏(并网、微网)系统设计集成技术研究示范及装备研制重大项目申请指南[EB/OL][2010-10-28]. http://program.most.gov.cn/.
    [56]王成山,杨占刚,王守相,等.微网实验系统结构特征及控制模式分析[J].电力系统自动化,2010,34(1):99-105.
    [57]M. Barnes, J. Kondoh, H. Asano, et al. Real-World MicroGrids-An Overview[C]. IEEE International Conference on System of Systems Engineering(SoSE'07), San Antonio, UAS, 2007.
    [58]Katiraei F., Iravani R., Hatziargyriou N., et al. Microgrids Management[J]. IEEE Power and Energy Magazine,2008,6(3):54-65.
    [59]B. Kroposki, C. Pink, R. Deblasio, et al. Benefits of Power Electronic Interfaces for Distributed Energy Systems[J]. IEEE Transactions on Energy Conversion,2010,25(3): 901-908.
    [60]M. Pedrasa, T. Spooner. A survey of techniques used to control microgrid generation and storage during island operation[C]. The AUPEC 2006 Conference, Melbourne, Australia, 2006.
    [61]Xiongfei Wang, J. M. Guerrero, Zhe Chen, et al. Distributed Energy Resources in Grid Interactive AC Microgrids[C].2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems, Hefei, China,2010.
    [62]Josep M. Guerrero, Luis Garcia de Vicuna, Jose Matas, et al. A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems[J]. IEEE Transactions on Power Electronics,2004,19(5):1205-1213.
    [63]H. Laaksonen, P. Saari, R. Komulainen. Voltage and Frequency Control of Inverter Based Weak LV Network Microgrid[C].2005 International Conference on Future Power Systems, Amsterdam,
    [64]纪明伟,张兴,杨淑英.基于电压源逆变器的微电网控制策略[J].合肥工业大学学报,2009,32(11):1678-1682.
    [65]Josep M. Guerrero, Luis Garcia de Vicuna, Jose Matas, et al. Output Impedance Design of Parallel-Connected UPS Inverters With Wireless Load-Sharing Control[J]. IEEE Transactions on Industrial Electronics,2005,52(4):1126-1135.
    [66]S. Golestan, M. Joorabian, H. Rastegar, et al. Droop based control of parallel-connected single-phase inverters in D-Q rotating frame[C]. IEEE International Conference on Industrial Technology(ICIT 2009), Gippsland, VIC, Australia,
    [67]K. De Brabandere, B. Bolsens, J. Van den Keybus, et al. A voltage and frequency droop control method for parallel inverters[J]. IEEE Transactions on Power Electronics,2007, 22(4):1107-1115.
    [68]J. M. Guerrero, J. C. Vasquez, J. Matas, et al. Hierarchical Control of Droop-Controlled AC and DC Microgrids A General Approach Towards Standardization[J]. IEEE Transactions on Industrial Electronics,2011,58(1):158-172.
    [69]Yan Li, Yun Wei Li. Decoupled power control for an inverter based low voltage microgrid in autonomous operation[C]. IEEE 6th International Power Electronics and Motion Control Conference(IPEMC'09), Wuhan, China,2009.
    [70]Paolo Piagi, Robert H. Lasseter. Autonomous Control of Microgrids[C]. IEEE Power Engineering Society General Meeting, Montreal, Canada,2006.
    [71]Seon-Ju Ahn, Jin-Woo Park, Il-Yop Chung, et al. Power-Sharing Method of Multiple Distributed Generators Considering Control Modes and Configurations of a Microgrid[J]. IEEE Transactions on Power Delivery,2007,25(3):2007-2016.
    [72]J. A. Pecas Lopes, C. L. Moreira, A. G. Madureira, et al. Control Strategies for MicroGrids Emergency Operation[C]. International Conference on Future Power Systems, Amsterdam, Netherlands,2005.
    [73]牟晓春,毕大强,任先文.低压微网综合控制策略设计[J].电力系统自动化,2010,34(19):91-96.
    [74]郑竞宏,王燕廷,李兴旺,等.微电网平滑切换控制方法及策略[J].电力系统自动化,2011,35(18):17-23.
    [75]丁明,杨向真,苏建徽.基于虚拟同步发电机思想的微电网逆变电源控制策略[J].电力系统自动化,2009,33(8):89-93.
    [76]徐德鸿.电力电子系统建模及控制[M].北京:机械工业出版社,2007.
    [77]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [78]Yun Wei Li, Chingnan Kao. An accurate power control strategy for inverter based distributed generation units operating in a low voltage microgrid[C]. IEEE Energy Conversion Congress and Exposition(ECCE), San Jose, California,2009.
    [79]陈伯时.电力拖动自动控制系统[M].机械工业出版社,2007.
    [80]Daniel Nahum Zmood, Donald Grahame Holmes. Stationary Frame Current Regulation of PWM Inverters With Zero Steady-State Error[J]. IEEE Transactions on Power Electronics, 2003,18(3):814-822.
    [81]Michael John Newman, Daniel Nahum Zmood, Donald Grahame Holmes. Stationary Frame Harmonic Reference Generation for Active Filter Systems[J]. IEEE Transactions on Industry Applications,2002,38(6):1591-1599.
    [82]R. Teodorescu, F. Blaabjerg, M. Liserre, et al. Proportional-resonant controllers and filters for grid-connected voltage-source converters[J]. IEE Proceedings Electric Power Applications, 2006,153(5):750-762.
    [83]Josep M. Guerrero, Jose Matas, Luis Garcia de Vicuna, et al. Wireless-Control Strategy for Parallel Operation of Distributed Generation Inverters[J]. IEEE Transactions on Industrial Electronics,2006,53(5):1461-1470.
    [84]郑君里,应启珩,杨为理.信号与系统(下册)[M].北京:高等教育出版社,2001.
    [85]Michael John Newman, Donald Grahame Holmes. Delta Operator Digital Filters for High Performance Inverter Applications[J]. IEEE Transactions on Power Electronics,2003,18(1): 447-454.
    [86]张纯江,张婧,邬伟扬,等.基于Delta算子的谐振控制器实现高频链逆变器波形控制[J].电工技术学报,2008,23(7):81-85.
    [87]Qing Chang Zhong, G. Weiss. Synchronverters:Inverters that Mimic Synchronous Generators [J]. IEEE Transactions on Industrial Electronics,2010,58(4):1259-1267.
    [88]Qing Chang Zhong, G. Weiss. Static Synchronous Generators for Distributed Generation and Renewable Energy[C]. IEEE Power Systems Conference and Exposition, Seattle, USA,2009.
    [89]陈良亮.无输出隔离变压器的逆变器并联系统研究[D].南京:南京航空航天大学,2004.
    [90]汤蕴璆,史乃.电机学[M].北京:机械工业出版社,2003.
    [91]刘取.电力系统稳定性及发电机励磁控制[M].北京:中国电力出版社,2007.
    [92]Kundur Pranha.电力系统稳定与控制(影印版)[M].北京:中国电力出版社,2001.
    [93]孙莹,王葵.电力系统自动化[M].北京:中国电力出版社,2004.
    [94]Dorf Richard C., Bishop Robert H. 现代控制系统[M]北京:清华大学出版社,2008.
    [95]J. M. Guerrero, J. C. Vasquez, J. Matas. Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization[J]. IEEE Transactions on Industrial Electronics,2011,58(1):158-172.
    [96]刘维烈.电力系统调频与自动发电控制[M].北京:中国电力出版社,2006.
    [97]陈珩.电力系统稳态分析[M].北京:水利电力出版社,1995.
    [98]谢力华.逆变电源的数字控制技术及其并联控制策略的研究[D].西安:西安交通大学,2001.
    [99]杨向真,苏建徽,丁明,等.微电网孤岛运行时的频率控制策略[J].电网技术,2010,34(1): 164-168.
    [100]李端超,陈实,吴迪,等.安徽电网自动电压控制(AVC)系统设计及实现[J].电力系统自动化,2004,28(8):20-22.
    [101]J. P. Paul, J. Y. Leost, J. M. Tesseron. Survey of the Secondary Voltage Control in France: Present Realization and Investigations [J]. IEEE Transactions on Power Systems,1987,2(2): 505-511.
    [102]孙元章,姚小寅,刘锋.二级电压控制对电力系统稳定性的影响[J].电机工程学报,2000,20(2):28-32.
    [103]J. D. Hurley, L. N. Bize, C. R. Mummert. The Adverse Effects of Excitation System Var and Power Factor Controllers[J]. IEEE Transactions on Energy Conversion,1999,14(4): 1636-1641.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700