解微分代数方程的波形松弛方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先综述了波形松弛方法的起源,发展和现状,其中包括方法的基本思想和应用领域。然后我们主要研究解线性微分代数方程的波形松弛方法,包括连续时间情形和离散时间情形的波形松弛方法波形松弛方法是一种具有良好并行性的方法,它被广泛应用于常微分方程系统,微分代数系统,延迟微分动力系统,泛函微分动力系统,热传导方程,双曲型微分方程,对流-扩散方程,随机微分动力系统等的数值求解中。
     波形松弛方法是一种动态迭代方法,在应用其求解各种问题时,首先要考虑的是它的收敛性,包括连续情形和离散情形的收敛性。与连续波形松弛方法收敛性紧密相关的是它的分裂函数,而离散波形松弛方法的收敛性不仅依赖于连续情形的收敛性,而且还与离散方法的稳定性有关。本文我们主要研究方法的收敛性,即对反映方法收敛性态的迭代算子谱半径进行研究和分析。
     文中,我们首先总结前人求解1指标的线性微分代数方程组的连续波形松弛方法的主要结果,并且用不同方法给出连续时间波形松弛算子谱半径和文献相同的表达式。此外,我们还给出一类连续波形松弛算子在无限时间区间上的谱半径表达式和收敛性结果。随后,我们主要研究离散波形松弛方法的收敛性。包括求解微分代数系统的线性多步方法,Runge-Kutta方法,边值方法和分块边值方法的波形松弛方法。由于微分代数系统的刚性性质,我们主要研究具有良好稳定性质的隐式方法,其中边值方法是具有良好稳定性质和阶精度的新方法。对于线性多步方法的波形松弛迭代,我们结合离散方法的稳定性性质,分析算子的谱半径,给出方法的收敛性结果。对于解1指标的线性微分代数系统的Runge-Kutta方法,边值方法和分块边值方法的波形松弛迭代,我们首次给出了算子谱半径的表达式,并且结合离散方法的稳定性质给出了方法的离散波形松弛迭代的收敛性结果。最后,我们进行数值实验,数值结果很好地验证前面给出的结论。
In this document, we first summarize the appearance, development and actuality of thewaveform relaxation (WR) method, including the basic idea of the method and its appli-cation. Then we mainly study the WR method for solving differential-algebraic equations(DAEs) at the continuous-time case and discrete-time case. WR method has excellent paral-lel property and has been applied broadly to solving numerical solution of ordinary differen-tial equations, differential-algebraic equations, delay differential equations, functional dif-ferential equations, heat equations, hyperbolic differential equations, convection-diffusionequations, stochastic differential equations and so on.
     WR method is a dynamic method. When using it for solving problems, we should con-sider the convergence of the method. Closely related to the convergence of the continuous-time WR method is the splitting function. Unlike the continuous-time case, the convergenceof discrete-time WR method not only relates to continuous-time WR method, but also de-pends on the stability of the discrete methods. Here we mainly study the convergence of themethod, i.e. studying and analyzing the spectral radius of the WR operator which responsethe convergence of the method.
     In the second chapter, we summarize the main results of continuous-time WRmethod for solving linear index 1 DAEs and get the same expression of spectral radiusof continuous-time WR operator as in the literature in a different way. Besides, we getthe expression of spectral radius of a class of WR operators and convergent result at theinfinite interval case. After that, we study the discrete-time WR method in the third chapterand fourth chapter. Combining the WR method with discrete methods, we get a seriesof discrete-time WR methods. Here we consider implicit discrete methods which haveexcellent stable properties, because differential-algebraic system is stiff. Among thesediscrete methods, boundary value method (BVM) is a new method with well stabilities andaccuracy order. We analyze the spectral radius of the linear multi-step formulae (LMF)WR operator and get its expression by using the stable domain. This result is better thanthat in the exist literature. Meanwhile, we get the spectral radius of Runge-Kutta (RK) WRoperator, BVM WR operator and BBVM WR operator for linear index 1 DAEs for the firsttime.
引文
[1] Lelarasmee E, Ruehli A, Sangiovanni-Vincentelli A. The Waveform Relaxation Method forTime-Domain Analysis of Large Scale Integrated Circuits. Computer-Aided Design of Inte-grated Circuits and Systems, IEEE Transactions on, 1982, 1(3):131–145
    [2] White J, Vincentelli A, Odeh F, et al. Waveform relaxation: Theory and practice. TRANS.SOC. COMP. SIMUL., 1985, 2(2):95–134
    [3] White J, Sangiovanni-Vincentelli A. Relaxation techniques for the simulation of VLSI cir-cuits. Kluwer Academic Publishers Norwell, MA, USA, 1987
    [4] Riechelt M, White J, Allen J, et al. Waveform relaxation applied to transient device simula-tion. Circuits and Systems, 1988., IEEE International Symposium on, 1988, pages 1647–1650
    [5] Erdman D, Rose D. A Newton waveform relaxation algorithm for circuit simulation.Computer-Aided Design, 1989. ICCAD-89. Digest of Technical Papers., 1989 IEEE Inter-national Conference on, 1989, pages 404–407
    [6] Skjellum A. Concurrent Dynamic Simulation: Multicomputer Algorithms Research Appliedto Ordinary Differential-Algebraic Process Systems in Chemical Engineering: [PhD Disser-tation]. California Institute of Technology, 1990
    [7] La Scala M, Bose A, Tylavsky D, et al. A highly parallel method for transient stability anal-ysis. IEEE Transactions on Power Systems, 1990, 5(4):1439–1446
    [8] Saleh R, White J. Accelerating relaxation algorithms for circuit simulation using waveform-Newton and step-size refinement. Computer-Aided Design of Integrated Circuits and Sys-tems, IEEE Transactions on, 1990, 9(9):951–958
    [9] Crow M, Ilic M. The parallel implementation of the waveform relaxation method fortransientstability simulations. Power Systems, IEEE Transactions on, 1990, 5(3):922–932
    [10] Erdman D, Rose D. Newton waveform relaxation techniques for tightly coupled systems.Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 1992,11(5):598–606
    [11] La Scala M, Bose A. Relaxation/Newton methods for concurrent time step solution ofdifferential-algebraic equations in power system dynamic simulations. Circuits and Systems I:Fundamental Theory and Applications, IEEE Transactions on [see also Circuits and SystemsI: Regular Papers, IEEE Transactions on], 1993, 40(5):317–330
    [12] Secchi A, Morari M, Biscaia Jr E. Waveform relaxation method in the concurrent dynamicprocess simulation. Computers & Chemical Engineering, 1993, 17:453–465
    [13] Peterson L, Mattisson S. Dynamic partitioning for concurrent waveform relaxation-basedcircuit simulation. Circuits and Systems, 1993., ISCAS’93, 1993 IEEE International Sympo-sium on, 1993, pages 1639–1642
    [14] Peterson L, Marrisson S. The design and implementation of a concurrent circuit simulationprogram for multicomputers. Computer-Aided Design of Integrated Circuits and Systems,IEEE Transactions on, 1993, 12(7):1004–1014
    [15] La Scala M, Sblendorio G, Sbrizzai R. Parallel-in-time implementation of transient stabilitysimulations on a transputer network. Power Systems, IEEE Transactions on, 1994, 9(2):1117–1125
    [16] Miekkala U, Nevanlinna O. Convergence of Dynamic Iteration Methods for Initial ValueProblems. SIAM Journal on Scientific and Statistical Computing, 1987, 8:459
    [17] Miekkala U, Nevanlinna O. Sets of convergence and stability regions. BIT Numerical Math-ematics, 1987, 27(4):554–584
    [18] Nevanlinna O. Remarks on Picard―Lindelof iteration: Part I. BIT, 1989, 29(2):328–346
    [19] Nevanlinna O. Remarks on Picard-Lindelof iteration: part II. BIT, 1989, 29(3):535–562
    [20] Song Y. Convergence and comparisons of waveform relaxation methods for initial valueproblems of linear ODE systems. Computing, 1993, 50(4):337–352
    [21] Jeltsch R, Pohl B. Waveform relaxation with overlapping splittings. SIAM Journal on Scien-tific Computing, 1995, 16(1):40–49
    [22] Pohl B. On the convergence of the discretized multisplitting waveform relaxation algorithm.Applied Numerical Mathematics, 1993, 11(1-3):251–258
    [23] Frommer A, Pohl B. A comparison result for multisplittings and waveform relaxation meth-ods. Numerical Linear Algebra with Applications, 1995, 2(4):335–346
    [24] Yuan D, Burrage K. Convergence of the parallel chaotic waveform relaxation method for stiffsystems. Journal of Computational and Applied Mathematics, 2003, 151(1):201–213
    [25] Yuan D. On the convergence of the discretized parallel chaotic waveform relaxation method.Applied Mathematics and Computation, 2003, 146(2-3):885–895
    [26] El-Kyal M, Machmoum A. Superlinear convergence of asynchronous multi-splitting wave-form relaxation methods applied to a system of nonlinear ordinary differential equations.Mathematics and Computers in Simulation, 2008, 77(2-3):179–188
    [27] Garrappa R. An analysis of convergence for two-stage waveform relaxation methods. Journalof Computational and Applied Mathematics, 2004, 169(2):377–392
    [28] Wang J, Bai Z. Convergence analysis of two-stage waveform relaxation method for the initialvalue problems. Applied Mathematics and Computation, 2006, 172(2):797–808
    [29] Zhou S. An analysis of convergence for nonstationary two-stage multisplitting waveformrelaxation methods. International Journal of Computer Mathematics, 2007, 84(11):1701–1713
    [30] Reichelt M, White J, Allen J. Optimal Convolution SOR Acceleration of Waveform Relax-ation with Application to Parallel Simulation of Semiconductor Devices. SIAM Journal onScientific Computing, 1995, 16:1137
    [31] Janssen J, Vandewalle S. On SOR Waveform Relaxation Methods. SIAM Journal on Numer-ical Analysis, 1997, 34:2456–2481
    [32] Hu M, Jackson K, Janssen J, et al. Remarks on the optimal convolution kernel for CSORwaveform relaxation. Advances in Computational Mathematics, 1997, 7(1):135–156
    [33] Burrage K, Jackiewicz Z, Renaut R. The performance of preconditioned waveform relaxationtechniques for pseudospectral methods. Numerical Methods for Partial Differential Equa-tions, 1996, 12(2):245–263
    [34] Burrage K, Jackiewicz Z, N?rsett S, et al. Preconditioning waveform relaxation iterations fordifferential systems. BIT Numerical Mathematics, 1996, 36(1):54–76
    [35] Chan M, Jin X. Strang-type preconditioners for systems of LMF-based ODE codes. IMAjournal of numerical analysis, 2001, 21(2):451–462
    [36] Arnold M, Gu¨nther M. Preconditioned Dynamic Iteration for Coupled Differential-AlgebraicSystems. BIT Numerical Mathematics, 2001, 41(1):1–25
    [37] Chan R, Jin X, Tam Y. Strang-type preconditioners for solving system of odes by boundaryvalue methods. Electronic Journal of Mathematical and Physical Sciences: Regular Edition,2002, 1(1):14–46
    [38] Pan J, Bai Z, Ng M. Two-step waveform relaxation methods for implicit linear initial valueproblems. Numerical Linear Algebra with Applications, 2005, 12(2-3):293–304
    [39] Lumsdaine A, Wu D. Krylov Subspace Acceleration of Waveform Relaxation. SIAM Journalon Numerical Analysis, 2003, 41:90
    [40] Zhang H. A note on windowing for the waveform relaxation method. Applied Mathematicsand Computation, 1996, 76(1):49–63
    [41] Leimkuhler B. Timestep Acceleration of Waveform Relaxation. SIAM Journal on NumericalAnalysis, 1998, 35:31
    [42] Sand J, Burrage K. A Jacobi Waveform Relaxation Method for ODEs. SIAM Journal onScientific Computing, 1998, 20:534
    [43] Lumsdaine A, Wu D. Spectra and Pseudospectra of Waveform Relaxation Operators. SIAMJournal on Scientific Computing, 1997, 18:286
    [44] Jackiewicz Z, Owren B, Welfert B. Pseudospectra of waveform relaxation operators. Com-puters and Mathematics with Applications, 1998, 36(8):67–85
    [45] Lubich C, Ostermann A. Multi-grid dynamic iteration for parabolic equations. BIT NumericalMathematics, 1987, 27(2):216–234
    [46] Ta’asan S, Zhang H. On the Multigrid Waveform Relaxation Method. SIAM Journal onScientific Computing, 1995, 16:1092
    [47] Vandewalle S, Horton G. Fourier mode analysis of the multigrid waveform relaxation andtime-parallel multigrid methods. Computing, 1995, 54(4):317–330
    [48] Ta’asan S, Zhang H. Fourier-Laplace analysis of the multigrid waveform relaxation methodfor hyperbolic equations. BIT Numerical Mathematics, 1996, 36(4):831–841
    [49] Van Lent J, Vandewalle S. Multigrid methods for implicit runge-kutta and boundary valuemethod discretizations of parabolic PDEs. SIAM journal on scientific computing, 2005,27(1):67–92
    [50] Janssen J, Vandewalle S. Multigrid waveform relaxation on spatial finite element meshes: thecontinuous-time case. SIAM Journal on Numerical Analysis, 1996, 33(2):456–474
    [51] Janssen J, Vandewalle S. Multigrid waveform relaxation on spatial finite element meshes: thediscrete-time case. SIAM Journal on Scientific Computing, 1996, 17(1):133–155
    [52] Bellen A, Zennaro M. The use of Runge-Kutta formulae in waveform relaxation methods.Applied Numerical Mathematics, 1993, 11(1-3):95–114
    [53] Bellen A, Jackiewicz Z, Zennaro M. Contractivity of Waveform Relaxation Runge-KuttaIterations and Related Limit Methods for Dissipative Systems in the Maximum Norm. SIAMJournal on Numerical Analysis, 1994, 31(2):499–523
    [54] Hout K. On the convergence of waveform relaxation methods for stiff nonlinear ordinarydifferential equations. Applied Numerical Mathematics, 1995, 18(1):175–190
    [55] Bj?rhus M. A note on the convergence of discretized dynamic iteration. BIT NumericalMathematics, 1995, 35(2):291–296
    [56] Jackiewicz Z, Kwapisz M, Lo E. Waveform Relaxation Methods for Functional Differen-tial Systems of Neutral Type. Journal of Mathematical Analysis and Applications, 1997,207(1):255–285
    [57] Bartoszewski Z, Kwapisz M. On the Convergence of Waveform Relaxation Methods forDifferential-Functional Systems of Equations. Journal of Mathematical Analysis and Appli-cations, 1999, 235(2):478–496
    [58] Zubik-Kowal B, Vandewalle S. Waveform Relaxation for Functional-Differential Equations.SIAM J Scientific Computing, 1999, 21(1):207– 226
    [59] Gander M, University S, Scientific Computing D, et al. Analysis of Parallel Algorithms forTime Dependent Partial Differential Equations: [PhD Dissertation]. Stanford University, 1998
    [60] Gander M. A waveform relaxation algorithm with overlapping splitting for reaction diffusionequations. Numerical Linear Algebra with Applications, 1999, 6(2):125–145
    [61] Gander M, Halpern L. Optimized Schwarz Waveform Relaxation Methods for AdvectionReaction Diffusion Problems. SIAM Journal on Numerical Analysis, 2007, 45:666
    [62] Daoud D, Caltinoglu I. Overlapping Schwarz waveform relaxation method for the solution ofthe reaction–diffusion equation. Journal of Mathematical Analysis and Applications, 2007,333(2):1153–1164
    [63] Haynes R, Russell R. A Schwarz Waveform Moving Mesh Method. SIAM Journal on Scien-tific Computing, 2007, 29:656
    [64] Martin V. An optimized Schwarz waveform relaxation method for the unsteady convectiondiffusion equation in two dimensions. Computers & Fluids, 2004, 33(5-6):829–837
    [65] Martin V. An optimized Schwarz waveform relaxation method for the unsteady convectiondiffusion equation in two dimensions. Applied Numerical Mathematics, 2005, 52(4):401–428
    [66] Crisci M, Russo E, Vecchio A. Discrete-time waveform relaxation Volterra-Runge-Kuttamethods: Convergence analysis. Journal of Computational and Applied Mathematics, 1997,86(2):359–374
    [67] Crisci N F, Russo E. Convergence results for continuous-time waveform methods for Volterraintegral equations. Journal of Computational and Applied Mathematics, 1996, 71(1):33–45
    [68] Brunner H, Crisci M, Russo E, et al. Continuous and discrete time waveform relaxationmethods for Volterra integral equations with weakly singular kernels. Ricerche Mat. LI (fasc.2), 2002, pages 201–222
    [69] Sand J, Skelboe S. Stability of backward Euler multirate methods and convergence of wave-form relaxation. BIT Numerical Mathematics, 1992, 32(2):350–366
    [70] Roy Choudhury S. Waveform relaxation techniques for linear and nonlinear diffusion equa-tions. Journal of computational and applied mathematics, 1992, 42(2):253–267
    [71] Leimkuhler B, Ruehli A. Rapid convergence of waveform relaxation. Applied NumericalMathematics, 1993, 11(1-3):211–224
    [72] Leimkuhler B. Relaxation techniques in multibody dynamics. Transactions of the CanadianSociety for Mechanical Engineering, 1993, 17(4):459–471
    [73] Leimkuhler B. Estimating Waveform Relaxation Convergence. SIAM Journal on ScientificComputing, 1993, 14:872
    [74] Jazkiewicz Z, Kwapisz M. Convergence of waveform relaxation methods for differential-algebraic equations. SIAM J Nurner. Anal, 1996, 33(6):2303–2317
    [75] Jiang Y, Wing O. Monotone Waveform Relaxation for Systems of Nonlinear Differential-Algebraic Equations. SIAM Journal on Numerical Analysis, 2000, 38:170
    [76] Jiang Y, Chen R, Wing O. A convergence theorem on waveform relaxation for nonlinearcircuitsin circuit simulation. Circuits and Systems, 2000. IEEE APCCAS 2000. The 2000IEEE Asia-Pacific Conference on, 2000, pages 481–484
    [77] Jiang Y, Chen R, Wing O. Convergence analysis of waveform relaxation for nonlineardifferential-algebraic equations of index one. Circuits and Systems I: Fundamental Theoryand Applications, IEEE Transactions on [see also Circuits and Systems I: Regular Papers,IEEE Transactions on], 2000, 47(11):1639–1645
    [78] Jiang Y. Periodic waveform relaxation solutions of nonlinear dynamic equations. AppliedMathematics and Computation, 2003, 135(2-3):219–226
    [79] Jiang Y. On Time-Domain Simulation of Lossless Transmission Lines with Nonlinear Termi-nations. SIAM Journal on Numerical Analysis, 2004, 42:1018
    [80] Jiang Y. A general approach to waveform relaxation solutions of nonlinear differential-algebraic equations: the continuous-time and discrete-time cases. Circuits and Systems I:Regular Papers, IEEE Transactions on [see also Circuits and Systems I: Fundamental Theoryand Applications, IEEE Transactions on], 2004, 51(9):1770–1780
    [81] Jiang Y. Waveform Relaxation Methods of Nonlinear Integral-differential-algebraic Equa-tions. Journal of Computational Mathematics, 2005, 23(1):49–66
    [82] Jiang Y. Steady-State Methods of Differential-Algebraic Equaitons in Circult Simulation .Journal of Circuits, Systems, and Computers, 2005, 14(2):383–393
    [83] Jiang Y, Luk W, Wing O. Convergence-Theoretics of Classical and Krylov Waveform Relax-ation Methods for Differential= Algebraic Equations. IEICE TRANSACTIONS on Funda-mentals of Electronics, Communications and Computer Sciences, 1997, 80(10):1961–1972
    [84] Jiang Y, Wing O. On the Spectra of Waveform Relaxation Operators for Circuit Equations.IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and ComputerSciences, 1998, 81(4):685–689
    [85] Jiang Y, Wing O. A Note on the Spectra and Pseudospectra of Waveform Relaxation Operatorsfor Linear Differential-Algebraic Equations. SIAM Journal on Numerical Analysis, 2000,38:186
    [86] Jiang Y, Chen R, Wing O. Improving convergence performance of relaxation-based transientanalysis by matrix splitting in circuit simulation. IEEE Transactions on Circuits and SystemsI: Fundamental Theory and Applications, 2001, 48(6):769–780
    [87] Jiang Y, Chen R, Wing O. Periodic waveform relaxation of nonlinear dynamic systems byquasi-linearization. Circuits and Systems I: Fundamental Theory and Applications, IEEETransactions on [see also Circuits and Systems I: Regular Papers, IEEE Transactions on],2003, 50(4):589–593
    [88] Jiang Y, Chen R. Multisplitting Waveform Relaxation Method for Systems of Linear Integral-differential-algebraic Equations in Circuit Simulation. Journal of Circuits, Systems, and Com-puters, 2000, 10(3-4):205–218
    [89] Jiang Y, Chen R. Computing periodic solutions of linear differential-algebraic equations bywaveform relaxation. Mathematics of computation, 2005, 74(250):781–804
    [90] Miekkala U. Dynamic iteration methods applied to linear DAE. J. Comput. Appl. Math.,1989, 25:133–151
    [91] Hairer E, Wanner G. Solving Odinary Differential Equations. II. Stiff and Differential-Algebraic Problems,. Springer-Verlag, Berlin, 1996
    [92] Petzold L. Recent Developments in the Numerical Solution of Differential/Algebraic Sys-tems. Computational Aspects of Vlsi Design With an Emphasis on Semiconductor DeviceSimulation, 1990, 25
    [93] Brenan K, Campbell S, Petzold L. Numerical solution of initial-value problems in differential-algebraic equations. North-Holland New York, 1989
    [94] Amodio P, Mazzia F, Trigiante D. Stability of some boundary value methods for the solutionof initial value problems. BIT Numerical Mathematics, 1993, 33(3):434–451
    [95] Amodio P, Mazzia F. Boundary value methods for the solution of differential-algebraic equa-tions. Numerische Mathematik, 1993, 66(1):411–421
    [96] Marzulli P, Trigiante D. Stability and convergence of boundary value methods for solvingODE. Journal of Difference Equations and Applications, 1995, 1(1):45–55
    [97] Brugnano L, Trigiante D. Solving Differential Problems by Mutistep Initial and BoundaryValue Methods,. Gordon and Breach Science Publishers, Amstertan, 1998
    [98] Brugnano L, Trigiante D. Boundary value methods: The third way between linear multistepand Runge-Kutta methods. Computers and Mathematics with Applications, 1998, 36(10-12):269–284
    [99] Brugnano L, Trigiante D. Block Boundary Value Methods for linear Hamiltonian systems.Applied Mathematics and Computation, 1997, 81(1):49–68
    [100] Iavernaro F, Mazzia F. Block-Boundary Value Methods for the Solution of Ordinary Differ-ential Equations. SIAM Journal on Scientific Computing, 1999, 21(1):323–339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700