MIMO雷达信号检测的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前在通信中已经广泛采用MIMO技术来克服多径效应的影响和提高传输率。在综合脉冲孔径雷达(Synthetic Impulse and Aperture Radar,SIAR)的启发下,利用通信界成熟的MIMO技术,MIMO技术被应用于雷达技术中,产生了两种类型的MIMO雷达。一种是Eran Fishler提出的收发全分集MIMO雷达。在常规雷达中,目标的起伏会使回波闪烁,引起雷达性能的下降,因而是被视为有害的。收发全分集MIMO雷达却相反,它正是利用了目标的起伏来改善雷达的性能。这种雷达的优势包括硬件简单、有效口径大、通过空间分集对抗目标衰落等。另外一种是由林肯实验室的学者首先提出的发射分集的MIMO雷达。在这种雷达中,收发阵列天线单元布置与相控阵雷达相同,因此可以把它看成是相控阵雷达的扩展。它的特点是发射相互正交的信号,而在接收端采用波束形成的方法进行处理。这种雷达的优点主要是利用发射信号的多样性提高雷达参数的可辨识性,提高角度分辨力。相比较而言,发射分集的MIMO雷达技术与现在使用的雷达技术更加接近,在工程上比较容易实现。
     围绕两种类型的MIMO雷达,本文对检测相关问题展开研究。主要包括以下几个方面:
     (1)研究了收发全分集MIMO雷达的原理特点和信号模型。针对经典的慢起伏雷达目标截面积RCS模型,X~2分布模型,理论分析了收发全分集MIMO雷达的检测性能,通过比较传统的相控阵,得出结论:收发全分集MIMO雷达在低信噪比时,检测性能优于相控阵;高信噪比时,检测性能略差于相控阵。
     (2)将隐马尔可夫模型(Hidden Markov Model,HMM)应用于收发全分集的MIMO雷达目标检测。收发全分集MIMO雷达的天线阵元布置间距很大,接收天线从不同的角度观测目标,目标的回波在不同的角度上呈现各向异性,各个方向回波强度变化大;杂波的回波则呈现各向同性,各个方向回波强度基本相同。针对发全分集MIMO雷达的这一特点,可以用隐马尔可夫模型对目标和杂波回波分别建模,实现对目标回波和杂波的分离。
     (3)研究了基于正交波形的发射分集MIMO雷达的原理。首先分析了这种雷达系统的特点,信号模型。构建了基于正交波形的发射分集MIMO雷达仿真系统,用仿真系统验证了发射分集MIMO雷达在抗截获性能、检测弱目标的能力、速度分辨力、距离分辨力等方面相对于传统相控阵雷达的优势。对仿真系统的处理流程进行分析,以信噪比为指标研究了系统的检测性能,结论是:采用频分的线性调
     频信号时,通过长时间积累,发射分集MIMO雷达与相控阵雷达的检测信噪比相同,可以获得相同的检测性能。
     (4)将空时自适应处理(Space-time Adaptive Processing,STAP)应用于正交波形的发射分集MIMO雷达。针对发射分集MIMO雷达发射正交信号的特点,将空时自适应处理技术进行了扩展,提出了波形-空间-时间三维信号处理方法,研究了三维信号空间中的目标、杂波、干扰信号模型。
     (5)将Hough变换应用于发射信号分集的MIMO雷达检测问题中。首先针对常规Hough变换计算量大的问题,提出改进的方法,采用斜率-截距参数空间,通过平移参数空间单元格的方法来实现Hough变换,对具有相同到达时间的一组数据同时处理,降低了计算量。更进一步提出利用回波信号的相位实现相干积累,在低信噪比时提高检测性能。最后研究了将Hough变换应用于MIMO雷达长时间积累中的方法。
MIMO technique has been widely employed in communication system to combatmulti-path effect and improve transmission rate.Inspired by the SIAR(SyntheticImpulse and Aperture Radar) and MIMO communication technique,two kinds ofMIMO radar are put forward recently.The first one is based on both transmitting andreceiving diversities that is firstly presented by Eran Fishler.It is referred to TR-MIMOradar(Transmitting Receiving MIMO radar) or S-MIMO(Statistical MIMO radar).Inconventional radar,detection performance will be impacted when target RCSfluctuating.However,in TR-MIMO radar,a target's RCS spatial variations can beexploited to improve system performance.TR-MIMO has simple hardware structureand big effective aperture.Furthermore,it can combat target RCS fluctuating throughspace diversity.The other kind of MIMO radar is based on only transmitting diversitythat is firstly put forward by D.J.Rabideau.It is referred to T-MIMO(TransmittingMIMO) which has the same antenna configuration with the phased array radar.Therefore,it can be considered to be an extension of phased array radar.On transmit,the elements(or subarrays) of T-MIMO radar transmits omnidirectional,orthogonallycoded waveforms.On receive,the DBF(Digital beamforming) is employed.It has beenshown that waveform diversity enables the MIMO radar superiority in severalfundamental aspects,such as significantly improved parameter identifiability andangular resolving power.
     In this dissertation,the target detection for these two kinds of MIMO radar isinvestigated,and the main research focus on the following issues:
     1.The principles and characteristics of TR-MIMO radar are studied.Basing onthe classic RCS model,x~2,the detection performance of TR-MIMO radar is analyzed.And then,the detection performance of TR-MIMO radar is compared with that ofphased array radar when the RCS modeling is SwerlingⅠ.It is conclude that at lowsignal noise ratio(SNR),the MIMO system outperforms the phased-array system.
     2.A new detection algorithm for MIMO radar based on the Hidden Markovmodels(HMM) is proposed.The distance among antennas is large in TR-MIMO radar.So,the target is observed from different aspects.Therefore,the returns of targetexhibit anisotropic,which is opposite to the returns of clutter.According to thischaracteristic,the target can clutter can be modeled with different HMMs respectivelyto realize the separation of them.
     3.The principles and characteristics of T-MIMO radar are studied.Thecharacteristic and the signal model of the system are investigated firstly.A simulationplatform for T-MIMO radar is built,through which the MIMO radar performance and itsadvantages over the traditional phased radar are verified,such as anti-interception ofradar signal,weak target detection in strong clutter,and low velocity target detection.Furthermore,the detection performance is studied through signal noise ratio.It isconcluded that when the LFM signal is employed,the MIMO system has the sameperformance with conventional radar.
     4.A preliminary investigation into space-time-waveform adaptive for T-MIMOradar is presented.Existing space-time adaptive processing(STAP) algorithm isextended to the waveform-time-space adaptive processing(WTSAP) case.The signalmodel required to generate simulated data is developed.Simulation results show asignificant improvement in detector performance as compared to conventional phasedarray radar.
     5.The Hough Transform(HT) algorithm is applied to MIMO radar detection.Amodified algorithm is proposed to overcome the computational complexity.Theslope-intercept space is employed and the HT is realized through shifting the parameterspace cells.The computational load is reduced when processing the data with the samearrival time.Furthermore,the phase information of returns are exploited to realizecoherent integration,the detection performance can be improved when signal noise ratiois low.Finally,the method of using HT in long time integration is studied.
引文
[1]Brooker.E.Phase arrays aroud the world-progress and future trends.Porceeding of the IEEE international symposim on phase array systems and technology.Boston.IEEE Press.2003.1-8
    [2]Dogandzic A, Nehorai A.Cramer-Rao bounds for estimating range, velocity, and direction with an active array.IEEE Transactions on Signal Processing, 2001,Vol.49,No.6: 1122-1137
    [3]Pasupathy S, Venetsanopoulos A N.Optimum active array processing structure and space-time factorability.IEEE Transactions on Aerospace and Electronic Systems,1974,Vol.10,No.6: 770-778
    [4]Swindelehurst L, Stoica P.Maximum likelihood methods in radar array signal processing.Proceedings of the IEEE, 1998,Vol.86,No.2:421-441
    [5]Farina A.Antenna Based Signal Processing Techniques for Radar Systems.Norwood: Artech House, 1992:13-36
    [6]Haykin.S.Radar array processing.New York.Springer-Verlag.1993:23-78
    [7]Wang H, Cai L.On adaptive spatio-temporal processing for airborne surveillance radar systems.IEEE Transactions on Aerospace and Electronic Systems, 1994,Vol.30,No.8:660-670
    [8]Ward J.Cramer-Rao bounds for target angle and Doppler estimation with space-time adaptive processing radar.Proceedings of 29th Asilomar Conference.Signals, System.Computer.Pacific Grove,CA:IEEE Computer Society Press,1995,Vol.2:1198-1202
    [9]文树梁,袁起,秦忠宇.宽带相控阵雷达的设计准则与发展方向.系统工程与电子技术,2005, Vol.27,No.6:1007-1011
    [10]李治铭,陆中行.有源相控阵雷达距离高分辨试验研究.现代雷达,1997,Vol.19,No.3:14-20
    [11]梁甸龙,孔铁生,吴曼青.相控阵雷达数字自适应波束形成技术.电子学报,1994,Vol.22,No.3:93-97
    [12]孙胜贤,龚耀寰,王维学.相控阵部分自适应形成收发算法.电子学报,2002,Vol.30,No.12:1755-1758
    [13]Herbert, G.M.Effects of platform rotation on STAP performance.IEE Proceedings Radar,Sonar, Navigation,2005, Vol.152,No.1:2-8
    [14]William L Melvin.A STAP overview.IEEE Aerospace Electronic systems Magazine. 2004.Vol.19, No.1:19-34
    [15]Klemm.W.L.Principle of space-time adaptive radar.London:IEE Press.2002.14-56
    [16]Guerci.J.R Space-time adaptive processing for radar.Norwood, MA: Artech House.2003.20-36
    [17]Chernyak.V.S.Fundamentalsof multisiteradarsystems.NewYork:Gordonand reach,1998.20-46
    [18]Papoutsis.I., Baker.C.J.,Griffiths.H.D.Fundamental performance limitations of radar networks,Proceedings of 1st EMRS DTC Technical Conference., Edinburgh, 2004.1-8
    [19]Viswanathan.R.Varshney P.K.Distributed detection with multiple sensors 1: Fundamentals.Proceedings of the IEEE, 1997.Vol.85,No.1: 54-63
    [20]Blum.R.S.,Kassam S.A., Poor.H.V.Distributed detection with multiple sensors Ⅱ: Advanced topics.Proceedings of the IEEE, 1997.Vol.85,No.1:64-79
    [21]Blum.R.S.Distributed detection for diversity reception of fading signals in noise.IEEE Transactions on Information Theory.1999.Vol.45,No.1:158-164
    [22]Luce A.Experimental results on SIAR digital beamforming radar.Proceedings of the IEEE International Radar Conference.Brighton, UK:1992.505-510
    [23]Dorey J, Gamier G Auvray G.RIAS.Synthetic Impulse and Antenna Radar.Proceedings of International Conference on Radar.Paris:1989.556-562
    [24]Fletcher.A.S., Robey.F.C., Performance bounds for adaptive coherence of sparse array radar.Proceedings of the Adaptive Sensor Array Processing Workshop, Lexington:2003.1-6
    [25]Bliss D.W., Forsythe.KW.Multiple-input multiple-output (MIMO) radar and imaging:Degrees of freedom and resolution.Proceedings of 37th Asilomar Conference on Signals,Systems and Computers, Pacific Grove,CA :2003.54-59.
    [26]Rabideau D J, Parker P.Ubiquitous MIMO Multifunction Digital Array Radar.Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers, Pacific Grove,CA:2003.1057-1064
    [27]何子述,韩春林,刘波.MIMO雷达概念及其技术特点分析.电子学报.2005, Vol.33,No.12A:2441-2445
    [28]Fishler E., Haimovich A., Blum R., et al.MIMO radar: An idea whose time has come.Proceedings of 2004 IEEE Radar Conference, Philadelphia, Pennsylvania: 2004.71-78.
    [29]Fishler E., Haimovich A., Blum R., et al.Performance of MIMO radar systems: Advantages of angular diversity.Proceedings of 38th Asilomar Conference Signals, System.Computer. Pacific Grove, CA: 2004, 305-309.
    [30]Fishler E., Haimovich A., Blum R., et al.Spatial diversity in radars-models and detection performance.IEEE Transactions on Signal Processing, 2006.Vol.54,No.3: 823-838
    [31]Foschini G J, Golden G D, Valenzuela R A, et al.Simplified processing for high spectral efficiency wireless communication employing multi-element arrays.IEEE Journal on Selected Areas in Communications, 1999, Vol.17,No.11: 1841-1852
    [32]Alamouti S M.A Simple Transmit Diversity Technique for Wireless Communications.IEEE Journal on Selected Areas in Communications, 1998, Vol.16,No.8: 1451-1458
    [33]Foschini G J, Gans M J.On limits of wireless communications in fading environment when using multiple antennas.Wireless Personal Communications, 1998, Vol.6,No.3: 311-335
    [34]Skolnik M.I.Radar Handbook.New York: McGraw-Hill Companies, 2003:55-102
    [35]Fishler E., et al.Performance of MIMO radar systems: Advantages of angular diversity.Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers.Pacific Grove, CA: 2004.305-309
    [36]Skolnik M.Introduction to Radar Systems.McGraw-Hill, 3rd ed.,2002,102-160
    [37]任立刚,宋梅,郗松楠,等.移动通信中的MIMO技术.现代电信科技,2004, Vol.1 : 42~45
    [38]Jian Li, Stoica P.MIMO radar with collocated antennas.IEEE Signal Processing magazine, 2007.Vol.24,No.5.106-114
    [39]Alexander M.Haimovich, Rick S.Blum.MIMO radar with widely sepatated antennas.IEEE Signal Processing magazine.2008.Vol.25,No.1: 116-129
    [40]Lehmann N., Fishler E., Haimovich A.M., et al.Evaluation of transmit diversity in MIMO-radar direction finding.IEEE Transactions on Signal Processing.2007.Vol.55,No.2:2215-2225
    [41]Foschini G.J.Layered space-time architecture for wireless communication in a fading environment when using multiple antennas.Bell Labs Technology.1996.Vol.1: 41-59
    [42]Robey F C, et al.MIMO radar theory and experimental results.Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers.Pacific Grove, CA:2004.300-304
    [43]Tabrikian J.Barankin Bounds for Target Localization by MIMO Radars.Proceedings of Fourth IEEE Workshop on Sensor Array and Multichannel, Waltham, MA :2006.278-281
    [44]Bekkerman I, Tabrikian J.Target detection and localization using MIMO radars and sonars.IEEE Transactions on Signal Processing, 2006,Vol.54,No.10: 3873-3883
    [45] Bekkerman I, Tabrikian J. Spatially coded transmission for active arrays. Proceedings of. International Conference on Acoustics, Speech, Signal Processing, Montreal, Canada: 2004 .Vol.2. 209-212
    [46] Tabrikian J, Bekkerman I. Transmission diversity smoothing for multi-target localization. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA:2005, Vol.4.1041-1044
    [47] Sammartino P F. Target Model Effects on MIMO Radar Performance. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France:2006.Vol.5.1127-1129
    [48] Khan H A, Malik W Q, Edwards D J, et al. Ultra wideband Multiple-Input Multiple-Outputradar. Proceedings of IEEE International Radar Conference, Arlington,Virginia :2005.900-904
    [49] Deng H. Polyphase code design for orthogonal netted radar systems. IEEE Transactions on Signal Processing, 2004,Vol.52,No.11: 3126-3135
    [50] Deng H. Discrete frequency-coding waveform design for netted radar systems. IEEE Signal Processing Letters, 2004,Vol.11,No.2:179-182
    [51] Khan H A, Edwards D J.Doppler problems in orthogonal MIMO radars.Proceedings of IEEE Conference on Radar, Massachusetts:2006,Vol. 1.24-27
    [52] Yang Y, Blum R S.Waveform Design for MIMO Radar Based on Mutual Information and Minimum Mean-Square Error Estimation. Proceedings of 40th Conference on Information Sciences and Systems, Princeton :2006,Vol.1. 111-116
    [53] Fuhrmann D R, Antonio G S. Transmit beamforming for MIMO radar systems using partial signal correlation. Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove,CA: 2004,Vol. 1.295-299
    [54] Antonio G S, Fuhrmann D R.Beampattern synthesis for wideband MIMO radar systems. Proceedings of 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive, Puerto Vallarta Mexico: 2005 .Vol.1.105-108
    [55] Forsythe K W, Bliss D W.Waveform Correlation and Optimization Issues for MIMO Radar. Proceedings of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, Pacific Grove,CA :2006, Vol.1:1306-1310 [56] Lu X, Jian Li, Stoica P.Adaptive Techniques for MIMO Radar.Fourth IEEE Workshop on Sensor Array and Multichannel Processing, Waltham, MA :2006.258-262
    [57]Lu X, Jian Li,Stoica P.Radar Imaging via Adaptive MIMO Techniques.Proceedings of 14th European Signal Processing Conference (EUSIPCO'06), Toledo, Spain:2006.1-5
    [58]保铮,张庆文.一种新型的米波雷达——综合脉冲与孔径雷达.现代雷达,1995,Vol.17,No.1:1-13
    [59]张庆文,保铮.综合脉冲与孔径雷达时空三维匹配滤波及性能分析.电子科学学刊,1994,Vol.16,No.5:481-489
    [60]陈伯孝.SIAR.四维跟踪及其长相干积累等技术研究:[博士学位论文].西安:西安电子科技大学,1997
    [61]陈伯孝,张守宏.相位编码信号在稀布阵综合脉冲与孔径雷达中的应用.西安电子科技大学学报,1997, Vol.24,No.3:335 -341
    [62]吴剑旗,阮信畅.稀布阵综合脉冲与孔径雷达主要性能分析.现代电子,1994,Vol.48,No.3:1-6
    [63]张玉洪.最佳稀布阵列理论及其在高分辨米波雷达中的应用:[博士学位论文].西安:西安电子科技大学,1988
    [64]陈伯孝,张守宏.基于稀布阵综合脉冲孔径雷达的长时间相干积累方法.电子科学学刊,1998, Vol.20,No.4:573-576
    [65]陈伯孝,张守宏.稀布阵综合脉冲孔径雷达时域与频域脉冲综合方法.现代雷达,1998, Vol.20,No.1:12-17
    [66]陈伯孝,张守宏.降低稀布阵综合脉冲孔径雷达距离旁瓣的方法研究.西安电子科技大学学报(雷达信号处理专辑),1997,24:103-108
    [67]张庆文,保铮,张玉洪.稀布阵综合脉冲和孔径雷达的接收信号处理.现代雷达.1992.Vol.14,No.5:32-42
    [68]Baixiao C, Shouhong Z, Yajun W, et al.Analysis and experimental results on sparse array synthetic impulse and aperture radar.Proceedings of CIE International Conference on Radar,Beij ng:2001, Vol.1.76-80
    [69]Baixiao C, Hongliang L, Shouhong Z.Long-time coherent integration based on sparse-array synthetic impulse and aperture radar..Proceedings of CIE International Conference on Radar,Beijng:2001, Vol.1.1062-1066
    [70]Harry L, Van Trees.Detection estimation and Modulation Theory, Vol.I.New York: John Wiley, 2003:350-352
    [71]Baum L.E., Petrie T., GxSoules et al.A maximaization technique occuing in the statistica analysis of probabilistic function of Markov chain.Ann.Math.Stat.1970, Vol.41:164-171.
    [72]Baum L.E..An inequality and associated maximization technique in statistical estimation of probabilistic functions of Markov process. Inequalities. 1972, Vol.3:1-8. [73] Bahl L.R., Jelinek E. Decoding for Channels with Insertions, Deletions, and Substitutions with Applications to Speech Recognition. IEEE Transactions on Information Theory, 1975, Vol.21,No.2:404-411.
    [74] Jelinek F.. Continuous Speech Recognition by Statistical Methods. Proceedings of the IEEE. 1976, Vol.64, No.4:532-536.
    [75] Levinson S.E., Rabiner L.R., Sondhi.M. An Introduction to the Application of the Theory of Probabilistic Functions of a Markov Process to Automatic Speech Recognition.BSTJ. 1983, Vol.62, No.4:1035-1047.
    [76] Rabiner L.R., Juang B.H. An Introduction to Hidden Markov Models. IEEE ASSP Magazine. 1986,Vol. 3,No.1:4-16
    [77] Rabiner L.R. A tutorial on hidden Markov models, selected applications in speech recognition. Proceedings of the IEEE. 1989, Vol.77, No.2: 257-286.
    [78] Samaria F. Face recognition using Hidden Markov Models.: [Ph D dissertation]. Cambridge: Engineering Department. Cambridge University, 1994.
    [79] Nefian, A.V.; Hayes, M.H., III. Hidden Markov Models for face recognition. Processing of International Conference on Acoustics, Speech, and Signal Processing Seattle: 1998. Vol.5.2721 - 2724
    [80] Ara V. Nefian. Embeded Bayesian network for face recognition. ICME, Switzerland,2002:133-136.
    [81] Flake, LR, Detecting anisotropic scattering with hidden Markov models. IEE Proceedings Radar sonar Navigation,1997,Vol.144,No.2:81-86
    [82] Stein D.W.J., Dillard GMApplying hidden Markov models to radar detection in clutter. Proceedings of IEE Radar conference. Edinburgh: 1997. No.449.586-590
    [83] Paul R. Runkle, Priya K.Bharadwaj, Luise Couchman.Hidden Markov Models for Multiaspect Target Classification. IEEE Transactions on. Signal Processing. 1999. Vol.47,No.7:2035-3040.
    [84] Bingnan Pei, Zheng Bao. Multi-Aspect radar target recognition method based on scattering centers and HMMs classifiers. IEEE Transactions on Aerospace and Electronic Systems. 2005.Vol.41,No.3:1067-1074.
    [85] Paul R. Runkle. Multi-aspect Target detection for SAR imagery using hidden markov models. IEEE Transactions on Geoscience and Remote Sensing.2001.Vol.39,No.1: 46-54
    [86]Rabiner, L.R, A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, 1989, Vol.77,No.2: 257-286.
    [87]Allen.M.R, Jauregui, J.M.Fopen-SAR detection by direct use of simple scattering physics.IEEE international Radar Conference, Alexandria, VA: 1995.152-157
    [88]Nanis J.Gx, Halversen, S.D., Owirka, G.J.Adaptive filters for detection of targets in foliage.IEEE national radar conference.Atlanta, GA: 1994,101-103
    [89]Halverson S.D, et.al.A comparison of ultra- wideband SAR target detection algorithms.SPIE,1994,2230:230-243
    [90]强伯涵.现代雷达发射机的理论设计和实践.北京:国防工业出版社.1985.5-20
    [91]Brennan L E, Reed I S.Theory of Adaptive Radar.IEEE Transactions on Aerospace and Electronic System, 1973, Vol.9,No.2: 237-252.
    [92]王永良,彭应宁.空时自适应信号处理.北京:清华大学出版社,2000.1-60
    [93]王永良,李天泉.机载雷达空时自适应信号处理技术回顾与展望.中国电子科学研究院学报2008.Vol.3, No.3: 272-276
    [94]Ward J.Space-time adaptive processing for airborne radar.MIT Lincoln Laboratory Technical Report.ESC-TR-94-109, 1994, 12
    [95]Reed I.S., Mallett J.D., Brennan L.E..Rapid convergence rate in adaptive arrays.IEEE Transactions on Aerospace and Electronic System.1974.Vol.10,No.6: 853-863
    [96]Jaffer, A.G, Baker, M.H., Ballance, W.P., and Staub, J.R.Adaptive Space-limp Prmessing Techniques For Airborne radrs.Rome laboratory Technical Rept.1991: 91-162
    [97]Brennan L.E., Mallett J.D., Reed I.S..Adaptive arrays in airborne MTI radar.IEEE Transactions on Antennas and Propagation, 1976, Vol.24,No.5: 607-615
    [98]Klemm R.Some properties of space-time covariance matrices.International Conference Radar.1986: 357-362
    [99]Klemm R..Adaptive airborne MTI: An auxiliary channel approach.IEE Proceedings.1987 Pt.F Vol.134, No3: 269-276
    [100]Wang H., Cai L..On adaptive spatial-temporal processing for airborne surveillance radar systems.IEEE Transactions on Aerospace and Electronic System.1994, Vol.30,No.3: 660-670
    [101]Barile E.C., Fante R.L., Tones J.A.Some limitations on the effectiveness of airborne radar.IEEE Transactions on Aerospace and Electronic System.1992, Vol.28,No.4: 1015-1023
    [102]Rechardson P.Relationships between DPCA and adaptive space-time processing techniques for clutter suppression.Proceedngs of International Conference on Radar:Paris.1994.295-300
    [103] Brennan L.E., Piwinski D.J., Standaher M.F. Comparison of space-time adaptive processing approaches using experimental airborne radar data. Proceedings of IEEE National Radar Conference, Massachusetts, USA: 1993.176-181
    [104] Brown R., Wicks M., Zhang Y., et al. A space-time adaptive processing approach for improved performance and affordability.Proceedings of IEEE National Radar Conference., MI,USA: 1996. 321-326
    
    [105] Wang H., Zhang Y., Zhang Q.An improved and Affordable Space-Time Adaptive Processing Approach.Proceedings of CIE Internationl.Conference on Radar: Beijing.1996. 72-77
    [106] Zhang Y., Wang H..Further Results of S- △ STAP approach to airborne surveillance radars. Proceedings of National Radar Conference. Syracuse, New York: 1997. 337-342
    [107] Heimovich A., Berin M.Eigenanalysis based space-time adaptive radar performance analysis. IEEE Transactions on Aerospace and Electronic System.1997, Vol.33,No.4:1170-1179
    [108] Goldstein J.S., Reed I.S.Subspace selection for partially adaptive sensor array processing. IEEE Transactions on Aerospace and Electronic System.1997, Vol.33,No.2: 988-996
    [109] Kreithen D.E., Pulsone N.B., Rader C.M., et al. The MIT Lincoln Laboratory KASSPER algorithm testbed and baseline algorithm suite.2002 Sensor Array and Multichannel Signal Processing Workshop Proceedings: 38-42
    [110] Roman J.R., Rangaswamy M., Davis D.W., et al. Parametric adaptive matched filter for airborne radar. IEEE Transactions on Aerospace and Electronic Systems.2000.Vol.36 ,No.2:677-692
    [111] Michels J.H., Rangaswamy M. , Himed B..Performance of parametric and covariance based STAP tests in compound-Gaussian clutter. Digital Signal Processing.2002, Vol.12,No.3:307-328.
    [112] Parker P. .Performance of the space-time AR filter in non-homogeneous clutter.Proceedings of IEEE International Radar Conference. Huntsville, USA: 2003. 67-70
    [113] Russ J.A., Casbeer D.W., Swindlehurst A.L.STAP detection using space-time autoregressive filtering.Proceedings of IEEE Radar Conference, Philadelphia, Pennsylvania.2004, 541-545
    [114] Melvin W.L..Eigenbased modeling of nonhomogeneous airborne radar environments. Proceedings of the IEEE National Radar Conf. Dallas, Tx: 1998.171-176
    [115] Melvin W.L..Space-time adaptive radar performance in heterogeneous clutter. IEEE Transactions on Aerospace and Electronic Systems. 2000.Vol. 36,No.2: 621-633
    [116] Melvin W.L., Guerci J.R., Callahan M.J., et al. Design of adaptive detection algorithms for surveillance radar.Proceedings of International Radar Conference.Alexandria, VA.2000,608-613
    [117]Melvin W.L., Wicks M.C..Improving practical space-time adaptive radar.Proceedings of IEEE National Radar Conference, Syracuse, New York.1997: 48-53
    [118]Little M.O., Berry W.P.Real-time multichannel airborne radar measurements.Proceedings of IEEE National Radar Conference, Syracuse, New York.1997: 138-142
    [119]Rabideau D.J., Steinhardt A.O.Improved adaptive clutter cancellation through data-adaptive training.IEEE Transactions on Aerospace and Electronic Systems.1999.Vol.35,No.3:879-891.
    [120]Himed Y.Salama, Michels J.H.Improved detection of close proximity targets using two-step NHD.Proceedings of International Coference On Radar.Alexandria.2000: 781-786
    [121]Wang Y.L., Chen J.W., Zhen.Bao, et al.Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments.IEEE Transactions on Aerospace and Electronic Systems.2003, Vol.39,No.1: 71-81
    [122]Guerci J.R.Theory and application of covariance matrix tapers for robust adaptive beamforming.IEEE Transactions on Signal Processing.1999, Vol.47,No.4: 977-985
    [123]Tinston.M.A., Oqle W.C., Picciolo M.L.Classification of training data with reduced-rank generalizedinner-product .ProceedingsofIEEERadarConference.Philadelphia,Pennsylvania: 2004.236-241.
    [124]Capraro C.T., et al.Improved STAP performance using knowledge-aided secondary data selection.Proceedings of IEEE Radar Conference.Philadelphia, Pennsylvania: 2004.361-365
    [125]Gerlach K, Blunt S.D., Picciolo M.L.Robust adaptive matched filtering using the FRACTA algorithm.IEEE Transactions on Aerospace and Electronic System.2004, Vol.40,No.3:929-945
    [126]Blunt S.D., Gerlach KEfficient robust AMF using the FRACTA algorithm.IEEE Transactions on Aerospace and Electronic System.2005, Vol.41,No.2: 537-548
    [127]董瑞军.机载雷达非均匀STAP方法及其应用:[博士学位论文].西安.西安电子科技大学,2002.9
    [128]Tsakalides P., Trinci F., Nikias C.L.Performance assessment of CFAR processors in pearson-distributed clutter.IEEE Transactions on Aerospace and Electronic System.2000,Vol.36,No.4:1377-1386
    [129]Liu W., FU J.S.A new method for analysis of M-pulses CA-CFAR in Weibull bacdground. Proceedings of IEEE Internatinal Radar Conference. Virginia, USA: 2000. 509-514
    [130] Gini.F, Farina.A and Montanari.M.Vector subspace detection in Compound-Gaussian clutter part Ⅱ: performance analysis. IEEE Transactions on Aerospace and Electronic System. 2002.Vol.38,No.4:1312-1323
    [131] Hough P.V.C., Method and means for recognizing complex patterns, U.S. Patent 3,069,654. Dec. 1962
    [132] Duda, R. O., and Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Communication of the ACM.1972.Vol.15,No.1:11-15
    [133] SkIansky,J. On the Hough technique for curve detection. IEEE Transactions on Computers. 1978. Vol.27. No.10: 923-926
    [134] Ballard D. H.. Generalizing the Hough Transform to Detect Arbitrary Shapes. Pattern Recognition .1981.Vol.13,No.2:111-122
    [135] Illingworth, J., Kittler J. A survey of the Hough transforms. Computer Vision, Graphics, and Image Processing.1988. Vol.44,No.1:87-116,
    [136] Carlson B.D., Evans E.D., Wilson S.L. Search Radar Detection and Track with the Hough transform, Part Ⅰ: System concept, IEEE Transactions on Aerospace and Electronic Systems.l994.Vol.30,No.1:102-108
    [137] Carlson B.D., Evans E.D., Wilson S.L. Search Radar Detection and Track with the Hough transform, Part Ⅱ: Detection Statistics, IEEE Transactions on Aerospace and Electronic Systems.1994. Vol.30,No.1: 109-115
    [138] Carlson B.D., Evans E.D., Wilson S.L. Wilson, Search Radar Detection and Track with the Hough transform, Part III: Detection performance with binary integration, IEEE Transactions on Aerospace and Electronic Systems.l994.Vol.30,No.1: 116-125
    [139] Stacy L.Tantum, et al. Comparison of algorithms for land mine detection and discrimination using ground-penetrating radar. Proceedings of SPIE.2002. Vol. 4742:728-735.
    [140] Kathrnn Long, et al. Image Processing of Ground Penetrating Radar Data for Landmine Detection. Proceedings of SPIE.2006.Vol.6217.62172R: 1-12
    [141] Fabio Dell'Acqua, Gamla, P. Detection of urban structures in SAR images by robust fuzzy clustering algorithms: the example of street tracking, IEEE Transactions on Geoscience and Remote Sensing.2001.Vol.39,No.10: 2287-2297
    [142] Amberg V. et al. Structure extraction from high resolution SAR data on urban areas, Proceedings of IEEE international Geoscience and Remote Sensing Symposium. Anchorage, Alaska :2004.Vol 3.1784-1787
    [143]Leung H.et al.Evaluation of multiple target track initiation techniques in real radar tracking environments, Radar, Sonar and Navigation, lEE Proceedings,.1996.Vol 143, No.4:246-254
    [144]Lai, E.S.T.et al.Pattern recognition of radar echoes for short-range rainfall forecast.Proceedings of 15th International Conference on Pattern Recognition.Barcelona,Spain :2000.Vol 4,299-302
    [145]Moshe Elazar.Search Radar Track-before-detect using the Hough transform.March 1995.ADA 295245
    [146]何伍福.海杂波环境中基于hough变换、混沌和分行的检测技术:[硕士学位论文].武汉:海军工程学院.2004.3
    [147]Chen J,Leung H,Lo T,et al, A modified probabilistic data association filter in real clutter environment, IEEE Transactions on Aerospace Electronic Systems.1996.Vol.32, No.1:300-314.
    [148]Ying Wang et al.Recognition of roads and bridges in SAR images.Proceedings of IEEE International radar conference, Alexandria, VA :1995.399-404.
    [149]Byoung-Ki Jeon et al.Road detection in spaceborne SAR images based on ridge extraction.Proceedings of International Conference on Image Processing.Kobe Japan: 1999.Vol.2:735-739.
    [150]lisaka, J et al.Automated detection of road intersections from ERS-1 SAR imagery.Geoscience and Remote Sensing Symposium IGARSS '95.Quantitative Remote Sensing for Science and Applications.1995.Vol.1 : 676-678
    [151]Runhong Pan et al.A research of moving targets detection and imaging by SAR.Geoscience and Remote Sensing IGARSS '97.Remote Sensing-A Scientific Vision for Sustainable Development.1997.Vol.1 : 498-500
    [152]Lombardo.P.Estimation of target motion parameters from dual-channel SAR echoes via time-frequency analysis.Proceedings of IEEE National Radar Conference.Syracuse, New York .1997: 13-18
    [153]I-I Lin et al.Ship and ship wake detection in the ERS SAR imagery using computer-based algorithm.Geoscience and Remote Sensing IGARSS '97.Remote Sensing-A Scientific Vision for Sustainable Development.1997.Vol.1: 151-153
    [154]曲长文.合成孔径雷达运动目标检测与成像算法研究.[博士学位论文].武汉:海军工程大学,2004
    [155]Mao Yinfang et al.SAR/ISAR imaging of multiple moving targets based on combination of WVD and HT.Radar, Proceedings of CIE International Conference.Beijing, China: 1996.342-345.
    [156]Sauer, T Schroth, A.Robust range alignment algorithm via Hough transform in an ISAR imaging system.IEEE Transactions on Aerospace and Electronic Systems.1995.Vol.31,No.5 :1173-1177
    [157]苏峰.基于Hough变换的检测与跟踪.[硕士论文].烟台:海军航空工程学院.2002,3.
    [158]Nadav Leavanon.Radar principle.John wiley & Sons Inc., 1988.20-129
    [159]李刚等.基于混合积累的SAR微弱运动目标检测.电子学报,2007,Vol.35,No.3:576-579

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700