战场侦察雷达地面运动目标检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地面动目标检测的最大难点:1)雷达下视时地杂波特别强;2)由于平台运动,
    地杂波存在着空时耦合,杂波谱展宽;3)为避免距离模糊,采用较低的重复频率,
    但会存在多普勒模糊,地杂波谱扩散到整个多普勒域。
     本文主要研究动目标检测的多通道处理方法,它利用两个以上的子天线。先
    对每个子天线接收到的信号进行成像处理,然后利用信号的幅相信息进行对消处
    理。首先,结合动目标检测方法,对机载远程战场侦察雷达实验系统录取的双通
    道数据的处理进行了研究。内容包括两通道均衡方法研究,波束扫描角精确估计
    方法研究,多普勒中心估计方法研究,方向图误差补偿方法研究,动目标的检测
    和干涉定位方法研究。接着,结合 MCARM(多通道机载雷达测量)数据的特点,对
    MCARM 数据的处理进行了研究。MCARM 数据是美国为研究 STAP 及其相关技术而实
    际录取的一大批机载雷达数据,有 22 个子阵。主要研究 MCARM 数据动目标的检测、
    定位和测速的方法,利用定位和测速信息进一步降低虚警概率的方法和相位误差
    补偿方法。并给出了 MCARM 数据的处理结果,处理结果表明了这些方法的有效性。
     把多普勒波束锐化(DBS)技术用于波束扫描的战场感知雷达的地面动目标检
    测模式,可以快速得到大面积的低分辨地面场景图像,而且可同时进行地面动目
    标检测,并把动目标标定到场景图像上。DBS 是通过机载雷达波束照射区内的地物
    相对于雷达不同的速度形成的不同多普勒频率来提高横向分辨率的。针对大斜视
    DBS 中的距离单元走动问题,提出了一种补偿技术来提高大斜视时 DBS 的分辨率的
    方法。这种方法的核心是校正越距离单元走动,它是把走动校正跟距离压缩结合
    起来做。其方法是在距离脉冲压缩的频域参考函数上乘一个与脉冲数有关的线性
    相位因子。仿真结果与实测数据处理结果都表明这种方法能有效提高大斜视时 DBS
    的分辨率,运算量又不大。因而,这是一种有效的方法。
The most difficult problem in Ground Moving Target Detection (GMTD/GMTI) is as follows. 1)
    The ground clutter is very strong when radar works in its down-look mode. 2) The clutter has the
    character of space-time coupling and the clutter spectrum spreads due to the movement of platform.
    3) The lower repeat frequency results in Doppler blur and the clutter spectrum spreads in the whole
    Doppler domain.
     This dissertation mainly discusses GMTI based on real multi-channel data, which uses two or
    more sub-apertures. We make Doppler Beam Sharpening (DBS) for the receive signal of every
    sub-aperture, then make difference image. Firstly, The study of real two-channel data recorded by
    the airborne battlefield radar is made based on the methods of GMTI, which including the study of
    methods of two-channel equilibrium, that of the precious estimate of beam scanning angle, that of
    the Doppler center, that of the compensation for pattern error and that of GMTI and that of location
    of the moving target using the phase-comparison mono-pulse method. Then the study of
    Multi-Channel Airborne Radar Measurements (MCARM) data is made based on the character of
    MCARM data. We mainly discuss the methods of GMTI, location, and the measure of velocity, the
    decrease of false alarm probability and the compensation for phase error. Furthermore, the
    processing results of MCARM are given, which proves that these methods above are effective.
     The using of DBS into the GMTI mode of battlefield awareness radar adopting beam scanning
    may get the ground scene image at large area, at the same time, making GMTI and marking the
    moving target on scene image. DBS is a kind of technique which improves the resolution of airborne
    radar. To the problem of the across moving range bin in high squint DBS, a kind of compensating
    technique is proposed to improve the resolution of high squint DBS. The kernel of this method is the
    emendation of the across moving range bin, which combines the emendation and the range
    compression. It multiplies a gene with liner phase relating to the number of pulse by the frequency
    region reference function of range compression. The results of simulation and that of processing
    show that it can improve the resolution of high squint DBS and its computational load is low. As a
    result, it is an effective method.
引文
[1] M.L.Skolnik. RadarHandbook. Second edition. Mcgraw-Hill. 1990. pp16.5-16.8.
    [2] M.L.Skolnik. RadarHandbook. Second edition. Mcgraw-Hill. 1990. pp16.8-16.14
    [3] E.Yadin. Evaluation of Noise and Clutter Induced Relocation Errors. IEEE International Radar
     ConferenceRADAR’95.AlexandriaVA. May1995. pp650-655.
    [4] R.A.Monzingo,T.W.Miller. Introduction toAdaptiveArrays.Wiley, NewYork.1980.
    [5] B.Widrow et.al.Adaptive antenna system. Proc.IEEE. 1967,Vol.55. pp2143-2158.
    [6] S.P.Applebaum.Adaptive arrays. IEEETans.AP-24 (5) 1976.
    [7] S.P.Applebaum, D.J.Chapman. Adaptive arrays with main beam constraints. IEEE Trans.
     AP-24 (5), 1976.
    [8] L.E.Brennan, J.D.Mallett, and I.S.Reed. Theory of adaptive radar. IEEE Trans.AES-9(2), 1973.
     pp237-251.
    [9] R.Klemm. Sub-optimum clutter suppression for airborne phased array radar. Proc.of IEE Int.
     Conf.onRadar’82. London, UK.1982. pp473-476.
    [10] R.Klemm. Optimum clutter suppression in airborne phased array radar. Proc.of IEEE
     –ICASSP82. Paris, France.1982. pp1509-1512.
    [11] R.Klemm. Adaptive clutter suppression for airborne phased array radars. IEE Proc.F, 130(1).
     1983. pp125-132.
    [12] R.Klemm. Adaptive airborne MTI: An auxiliary channel approach. IEE.Proc. F134(3), 1987.
     pp 269-276.
    [13] R.Klemm. Adaptive airborne MTI with two dimensional motion compensation. IEE Proc. F,
     1991.138(6). pp551-558.
    [14] R.Klemm. Adaptive airborne MTI: comparison of sideways and forward-looking radar. Proc.
     of 1995 IEEE Int. Radar Conf.Alexandria,VA,USA.pp614-618.
    [15] R.Klemm. Forward looking radar/SAR: clutter and jammer rejection with STAP. Proc. of
     EUSAR’96. Konigswinter, Germany. pp485-488.
    [16] Bao Zheng et al. Adaptive Spatial-Temporal Processing for Airborne Radars. Chinese Journal
     of Electronics, 2(1),1993.
    [17] G.W.Titi. An Overview of the ARPAMountaintop Program. Proceedings of the 1994 Adaptive
     Antenna Systems Symposium. November 7, 1994. pp53-59.
    [18] M.O.Little and W.P.Berry. Real-time Multi-channel Airborne Radar Measurements. IEEE
     International Radar ConferenceRADAR’97. NewYork 1997.
    [19] S.Barbarossa and A.Farina. Detection and Imaging of Moving Objects with Synthetic
     Aperture Radar-Part 2: Joint Time-Frequency Analysis by Wigner-Ville Distribution. IEE
     Proceedings, 139, Part F,1. pp89-97.
    [20] J,R.Moreira and W.Keydel. ANew MTI-SAR Approach Using the Reflectivity Displacement
     Method. IEEETrans. Geoscience and Remote Sensing. 1995,Vol.33, No.5. pp1238-1244.
    [21] M.Kirscht. Detection Velocity Estimation and Imaging of Moving Target with Single-Channel
     SAR. IEEE InternationalRadarConferenceRADAR’98. pp587-590.
    [22] B.Friedlander and B.Porat. VSAR: AHigh Resolution Radar System for Detection of Moving
     Targets. IEE Proc.August 1997.Part FVol.144, No.4. pp205-218.
     西安电子科技大学硕士学位论文
    
    
    56 战场侦察雷达地面动目标检测
    [23] 林幼权. 机载合成孔径成像与地面动目标检测技术研究. 西安电子科技大学博士研究生
     学位论文. 2000 年 6 月.
    [24] 廖桂生等.机载雷达时-空二维部分联合自适应处理.电子科学学刊. 1993 年11月,Vol.15,
     No.6.
    [25] Yuhong Zhang, HongWang.Further Results of ??-STAPApproach toAirborne Surveillance
     Radars. Processing of the 1997 IEEE NationalRadar Conference. pp.337-342.
    [26] 王彤,保铮,李真芳. 机载慢速目标检测的STAP方法. 电子学报. 2000年9月, vol.28, No.9.
     pp123-125.
    [27] 王彤. 机载雷达简易 STAP 方法及其应用.西安电子科技大学博士研究生学位论文. 2001
     年 12 月.
    [28] 王彤等.地面慢速目标检测方法研究.西安电子科技大学学报. 2001, vol.28,增刊.
    [29] E.Yadin. APerformance Evaluation Mode for a Two Port Interferometer SAR-MTI[C]. USA:
     IEEE 1996 National Radar Conference.1996. pp261-266.
    [30] 张剑云.有关雷达成像的几个问题的研究[D]. 西安:西安电子科技大学博士论文. 1994.
    [31] 廖桂生,保铮. 机载雷达空时二维自适应处理框架及其应用[J]. 中国科学(E). 1997, 27(8).
     pp336-341.
    [32] M.Soumekh. Signal Subspace Fusion of Uncalibrated Sensors with Application in SAR,
     Diagnostic Medicine andVideo Processing. in Proc ICIP, Santa Barbara,CA.Oct.1997.
    [33] Mehrdad Soumekh,Braham Himed. SAR-MTI Processing of Multi-Channel Airborne Radar
     Measurement(MCARM)Data.
    [34] 王彤,保铮,廖桂生. 机载火控雷达近距离地面慢速目标检测.电子学报. 2001,vol.29,
     No.6.
    [35] 李真芳,保铮. 基于实测数据的地面慢速运动目标检测. 电子学报. 2003, vol.31, No.9.
    [36] B.Cantrell.AShort-PulseArea MTI. NRLReport 8162. September 1997.
    [37] M.Hartless and J.Barry. Shipboard Infrared Search and Track. Final Report of Contract
     N66001-94-C-6001, NCCOSC. December 1994.
    [38] M.Soumekh. Moving Target Detection in Foliage Using along Track Monopulse Synthetic
     Aperture Radar Imaging. IEEETransactions on Imaging Processing.August 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700