复合制导体制下毫米波共形阵列的数字波束形成方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共形天线阵列不仅具有良好的宽角扫描和空气动力学特性,而且还可以减小雷达散射截面积(RCS)和减小天线/天线罩之间的相互作用,因而在弹载、机载、星载等武器系统中有着广泛的应用前景。毫米波雷达导引头可以采用与其外形相匹配的共形天线阵列代替传统的精密万向伺服跟踪系统,为多模导引头的复合制导提供了实现条件,进而可以改善整个制导系统的性能。将共形阵列技术应用于光电复合制导体制的毫米波导引头,是一种创新型应用概念。本文研究的毫米波共形阵列数字波束形成相关技术,为复合制导体制下共形阵列在毫米波导引头中的应用提供理论和技术支持。
     本文首先分析了国内外共形阵列最优波束形成理论的研究进展,围绕国防预研项目及国家自然科学基金项目的研究任务,分两部分针对毫米波导引头共形阵列数字波束形成技术进行研究:(1)研究了复合制导体制下的毫米波导引头共形阵列,包括多模孔径复合中的参数设计、共形阵列与平面阵列的性能分析比较、共形阵列对于不同气动外形(几何模型)的波束性能分析与阵列布阵方式、共形阵列的优化布阵方法以及低副瓣波束形成方法;(2)研究了毫米波导引头共形阵列单脉冲和/差波束形成方法。
     论文内容可概括为如下以下六章:
     第二章对光电复合制导体制下毫米波导引头中的共形天线阵列技术的若干性能进行了分析。首先,对多模导引头的复合方式进行了分析与讨论;其次,对高速应用场合下毫米波圆锥共形阵列的参数设计进行了研究;然后,推导了共形阵列与平面阵列的天线方向图综合模型,并对扫描时的波束特性进行了分析与比较;最后,对毫米波复合制导体制下圆锥共形阵列的波束扫描区域进行了定量分析,针对毫米波导引头与多模传感器的孔径复合问题,提出了一种基于线性优化二分法的圆锥台共形阵列孔径规划方法。仿真结果表明本文的结构参数设计在高速应用场合下可以得到满足需求的毫米波体制圆锥共形阵列的天线方向图。
     第三章研究了光电复合制导体制下不同气动外形导引头共形阵列对波束扫描特性的影响,以及不同布阵方式对导引头共形阵列方向图的影响。在对目前世界上各国在役战术导弹进行分析的基础上,构建了几种典型导引头气动外形的结构模型,讨论了适用于共形阵列的不同阵列布阵方式,并建立了任意气动外形下的方向图综合模型。随后针对矩形栅格阵列布阵方式分析比较了不同气动外形导引头共形阵列的波束性能,选择波束扫描性能最优时的气动外形作为研究对象,讨论了不同布阵方式对共形阵列波束特性的影响。仿真和分析表明,在复合制导体制下的矩形栅格阵列布阵方式下,圆锥型导引头共形阵列的波束扫描特性最优;在已知最优气动外形导引头结构的基础上,采用不同布阵方式对导引头共形阵列进行波束形成,矩形栅格阵列布阵方式最优。
     第四章研究了复合制导体制下毫米波导引头共形阵列的两种优化布阵方法:(1)采用三角栅格阵列布阵方式,提出了一种新的子阵划分方法,开展了基于极化的子阵级自适应处理的布阵方法研究,仿真结果说明利用本文提出的子阵划分方法可以有效抑制由于子阵划分和阵列稀布引起的栅瓣效应,提升导引头共形阵列的子阵级自适应处理性能,极大的减轻自适应处理的运算量;(2)提出了基于最优极化方式的导引头共形阵列稀疏布阵优化设计,仿真结果表明该方法能有效抑制阵列单元稀布而引发的栅瓣效应,极大的降低了阵元分布的密度。
     第五章研究了复合制导体制下毫米波圆锥型导引头共形阵列的低副瓣波束形成方法。首先,回顾了基于自适应阵列理论的波束形成算法;其次,对极化方式下的交替投影优化方法进行了归纳;然后在实现共形阵列单元极化一致性的前提下,兼顾副瓣电平、阵列增益以及主波束宽度的影响,提出了修正的多目标遗传进化算法;最后根据三种优化方法对毫米波圆锥型导引头共形阵列进行低副瓣波束形成的优化。仿真结果表明在毫米波导引头共形阵列单元实现极化方向一致性的基础上,采用多目标遗传进化算法进行低副瓣波束形成优化,在交叉极化电平、主波束宽度以及阵列增益等性能上其综合性能是最优的。
     第六章针对传统阵列划分形式的圆锥型导引头共形阵列在偏离视轴方向时无法形成俯仰差波束的问题,研究了阵列结构不满足对称条件的单脉冲测角接收波束(和/差波束)形成。首先从圆锥型导引头共形阵列的结构特性入手,分析了波束指向偏离视轴方向时的圆锥共形阵列的阵元分布情况,构建了入射坐标系和入射参考平面,在此基础上分别提出了基于平面投影方法的共形阵列单脉冲和/差波束形成方法和基于等效源理论的共形阵列单脉冲和/差波束形成方法。仿真结果表明,两种方法均能有效解决在波束指向偏离视轴时的和/差波束形成问题,其中基于等效源理论的和/差波束形成方法具有更好的波束性能,而基于平面投影方法的和/差波束形成方法具有使用灵活、波束形成快速等优点。
     第七章:对全文工作进行了总结,并对未来的工作进行了展望。
The benefits of conformal arrays include reduction of aerodynamic drag, wide angle coverage, reduction of Radar Cross-Section (RCS) and elimination of radome-induced bore-sight error, etc. So conformal arrays will find their potential and promising applications in a variety of fields, ranging from space-borne, airborne, ship-borne, and missile-borne radar, space vehicles and wireless communications to sonar, etc. The antenna conforming to the shape of Millimeter Wave radar seeker surface can substitute the precise universal servo tracking system, have ability of more space and load to install new types of equipment, and then improves the system performance. Conformal arrays in millimeter wave radar seeker with optic/electric compound guidance system is of an innovative concept. This dissertation mainly study the technology about digital beam-forming methods for millimeter wave conformal array, and provide theory and technoligical support for the application of conformal array in millimeter wave compound guidence system.
     The research development of optimal beam-forming for conformal arrays at home and abroad is analyzed in detail. Then, around research tasks of Advanced Defense Research Programs of China and National Science Foundation of China, the principal study content about digital beamforming methods for millimeter wave radar seeker conformal array of this dissertation is:(1) aperture compound and parameter design in compound guided system, performance analysis and comparison of conformal array and planar array, performance analysis of conformal array seekers with different aerodynamic shape (geometry) and array configuration, optimal array configure method of conformal array, and low sidelobe beam-forming method for conformal arrays; (2) mono-pulse sum/difference beam synthesis method of millimeter wave radar seeker conformal arrays.
     The main content of this dissertation is summarized as the following chapters:
     Chapter 2 analyzes some performances of conformal arrays in millimeter wave optic/electric compound guidance system. Firstly, multi-mode seeker compound mode is discussed; secondly, in high speed applications parameter design of millimeter wave conical array is studied; thirdly, conformal array and planar array antenna models are established, and characteristics of scan beam are analyzed and compared; Finally, the quantitative analysis of beam scan region in millimeter wave conical array in compound guided system is studied. For the aperture compound problem of millimeter wave conformal array, based on the dichotomy of linear optimization, the conical array aperture programming method is proposed. Simulation results show that antenna patterns meet the requirements, and the advantages of multi-mode seeker are fully played with the given configuration parameters in high speed applications.
     In Chapter 3, the beam scanning characteristics of different aerodynamic shape conformal arrays in millimeter wave optic/electric compound guidance system, and array pattern performance of different conformal array configuration are studied. After analyzing the world's tactical missile in service, several typical aerodynamic seeker conformal array models are constructed, and the conformal array pattern synthesis models of arbitrary shape are established. With regular array configuration beam performance of different aerodynamic shapes is compared. Then the aerodynamic shape of the best performance is selected to analysis the beam performance of different array configuration. Simulation and experimental results show that, with rectangular grid array configuration, the scanning beam performance of conical array is optimal; and the rectangular grid array configuration is optimal in the optimal aerodynamic shape.
     Chapter 4 developes two optimization methods for array configuration of conformal arrays in millimeter wave optic/electric compound guidence system:(1) With triangular grid array configuration, a new subarray partition method is proposed, and based on subarray adaptive processing considering the polarization, the subarray configuration method is proposed. Simulation results show that the proposed method can effectively suppress the gatelobe caused by the subarray division and sparse array configuration, enhance adaptive subarray processing performance, and greatly reduce the computational burden. (2) Based on the optimal polarization mode, sparse array configuration method of conformal arrays is proposed. Simulation results show that the proposed method can greatly reduce the element density, and effectively suppress the gatelobe caused by the sparse array configuration.
     Chapter 5 mainly studies low sidelobe beamforming method of conical arrays in millimeter wave optic/electric compound guidence system. Firstly, the traditional plane arrays optimization algorithm based on adaptive array theory is given. Secondly, the alternating projection optimization method considering polarization mode is summarized. Thirdly, after the element polarization of conformal array is adjusted to be consistent, a multi-objective genetic algorithm, considering the sidelobe level, the array gain and the main beam width, is proposed. Lastly, the three optimization methods are used to synthesis low sidelobe pattern of millimeter wave conical array. Simulation results show that after polarization direction of all elements in millimeter wave conformal array achieve consistency, the method based on multi-objective genetic algorithm is have advantages in the cross polarization level, beam width and the array gain.
     When pointing direction offset the visual axial, conical array is unsymmetrical. In Chapter 6, to synthesize mono-pulse sum and difference beams for Millimeter Wave conical arrays, which the traditional divided method cannot afford, a novel approach based on the equivalence principle is proposed. Firstly, structure characteristics of conformal array are analyzed. Secondly, array element distribution is analyzed, when the beam direction is offset the visual axial. Thirdly, the incident coordinate system and the incident reference plane are constructed respectively. Lastly, the method based on plane projection and the method based on the equivalent principle are proposed to form the mono-pulse sum/difference beam of conformal arrays. Simulation results show that both methods can effectively form the sum/difference beam with the beam direction offset the visual axial, the method based on the equivalent principle can achieve better beam performance, but the method based on the plane projection is more flexible and rapid.
     Chapter 7 concludes this dissertation and some proposals for future work are also presented.
引文
[1]何庆强,王秉中,殷忠良等.导引头共形相控阵天线新技术[J].系统工程与电子技术,2006,28(12):1816-1819.
    [2]张光义,赵玉洁.相控阵雷达技术[M].北京:电子工业出版社,2006.
    [3]李世忠,李相平,李亚昆,张刚.毫米波导引头的技术特点及发展趋势[J].制导与引信,2007,28(1):11-15.
    [4]宋银锁,马妙技.导引头共形相控阵天线进展[J].航空兵器,2008,(6):44-47.
    [5]Josefssion Lars, Persson Patrik. Conformal array antenna theoryand design [M]. Hoboken, New jersey:John Wiley & Sons Inc,2006.
    [6]Mitchell P. J.制导武器的共形天线阵列[J].航空兵器,1997,4:43-47.
    [7]Chireix H. Antennes a Rayonnement Zenithal Reduit [J]. L'Onde Electrique,1936, 15:440-456.
    [8]Knudsen H. L. The field radiated by a ring quasi-array of an infinite number of tangential or radial dipoles [J]. Proceedings of IRE,1953,41(6):781-789.
    [9]Dorey J, Gamier G, Auvray G. RIAS, Synthetic impulse and antenna radar [C]. Proc. International Conference on Radar, Paris,1989,24-28 April,556-562.
    [10]Colin J. M. Phased array radars in France:present and future [C]. IEEE International Sym-posium on Phased Array Systems and Technology,15-18 October,458-462.
    [11]Gething P. J. D. High-frequency direction finding [J]. Proceedings of IEE,1966, 113(1):49-61.
    [12]Davies D.E.N. Circular arrays:their properties and potential applications [C]. IEE Pro-ceedings of 2nd International Conference on Antennas and Propagation,1981, April,1-10.
    [13]Davies D. E. N. Circular arrays in rudge et al. (eds.):the handbook of antenna design [M]. Peter Peregrinus Ltd., London,1983.
    [14]Rehnmark S. Instantaneous bearing discriminator with omnidirectional coverage and high accuracy [C]. IEEE MTT-S International symposium digest,1980, May, 120-122.
    [15]Christopher E. J. Electronically scanned TACAN antenna [J]. IEEE Transactions on antennas and propagation,1974,22(1):12-16.
    [16]Shestag L.N. A cylindrical array for the TACAN system [J]. IEEE Transactions on antennas and propagation,1974,22(1):17-25.
    [17]Wait J.R. Electromagnetic radiation from cylindrical structures [M]. Pergamon Press, Lon-don,1959.
    [18]Hessel A. Mutual coupling effects in circular arrays on cylindrical surfaces-aperture design implications and analysis [C]. Proceedings of phased array symposium, 1970, Polytechnic Institute of Brooklyn.
    [19]Pathak P.H, Burnside W.D, Marhefka R.J. A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface," IEEE Trans. on antennas and propagation,1980,28(5):631-642.
    [20]Villeneuve A.T, Behnke M.C, Hummer W. H. Wide-angle scanning of linear arrays located on cones [J]. IEEE Trans. on antennas and propagation,1974,22 (1):97-103.
    [21]Munger A.D, Vaughn Guy, Provencher J. H. Conical array studies [J]. IEEE Trans. on antennas and propagation,1974,22(1):35-43.
    [22]Sengupta D.L, Smith T.M, Larson R.W. Radiation characteristics of a spherical array of circularly polarization elements [J]. IEEE Trans. on antennas and propagation,1968,16 (1):2-7.
    [23]Hoffman Murray. Conventions for the analysis of spherical arrays [J]. IEEE Trans. on antennas and propagation,1963,16 (7):390-393.
    [24]Liebman P. M, Schwartzman L, and Hylas A.E. Dome radar-a new phased array system [C]. Proceedings of IEEE International Radar Conference, Washington D.C., 1975,349-353.
    [25]Bearse S.V. Planar array looks through lens to provide hemispherical coverage [J]. Mi crowaves,1975, July,9-10.
    [26]Caille G, Vourch E, Martin M.J, et al. Conformal array antenna for observation platforms in low earth orbit [J]. IEEE Antenna's and Propagation Magazine,2002, 44(3):103-104.
    [27]Baratault P, Gautier F, Albarel G. evolution des Antennes pour Radars Aeroporte s.De la Parabole aus Peaux Actives [J]. Rev. Techn., Thomson-CSF,1993,749-793.
    [28]Josefsson L. Smart Skins for the Future [C]. RVK 99, Karlskrona, Sweden,1999, June,682-685.
    [29]柴舜连,姚德豪.任意旋转对称面共形阵互耦的分析[J].电子科学学刊,1996,18(6):627-631.
    [30]高铁.单元极化对共形阵峰值副瓣电平影响的研究[J].系统工程与电子技术, 1994,35-42.
    [31]Keller J.B. Geometrical theory of diffraction [J]. Opt Soc Am,1962,52:116-130.
    [32]Kouyoumjian R.G, Pathak P.H. A Uniform Geometrical Theory of Diffraction for an edge in a perfectly conducting surface [J]. Proc.IEEE,1974,62(11):1448-1461.
    [33]Yathak P H, Wang N. Ray analysis of coupling between antennas on a convex mutual surface [J]. IEEE Trans on Antennas and Propagation,1981,25(2):911-922.
    [34]Bucci O.M. A generalized projection technique for the synthesis of conformal arrays [C]. Antennas and propagation society international symposium, 1995(4):1986-1989.
    [35]Bucci O.M. Power synthesis of reconfigurable conformal arrays with phase-only control [J]. IEE Proc-Microw Antenna propag,1998, (145):131-136.
    [36]Bucci O.M. Power pattern synthesis of reconfigurable conformal arrays with near-field constraints [J]. IEEE Transactions on Antennas and Propagation,2004, 52(1):132-141.
    [33]Bucci O.M. An effective approach for the optimal focusing of array fields subject to arbitrary upper bounds [J]. IEEE Transactions on Antennas and Propagation,2000, 48(12):1837-1847.
    [34]Bucci O.M. Optimal synthesis of difference patterns subject to arbitrary sidelobe bounds by using arbitrary array antennas [J]. IEE Proc-Microw Antenna propag. 152(3):129-137.
    [35]Werner D.W. Particle swarm optimization of a modified Bernstein polynomial for conformal array excitation synthesis [C]. Antennas and Propagation Society international Symposium,2004, (3):2293-2296.
    [36]Werner D.W. An efficiency constrained application of a modified Bernstein polynomial for conformal array amplitude excitation optimization [C]. Antennas and Propagation Society International Symposium,2005, Vol. 1B,759-762.
    [37]Werner D.W. Efficiency constrained particle swarm optimization of a modified bernstein polynomial for conformal array excitation amplitude synthesis [J]. IEEE Transactions on Antennas and Propagation,2005,53(12):2662-2673.
    [38]Vaskelainen Leo.I. Iterative least-squares synthesis methods for conformal array antennas with optimized polarization and frequency properties [J]. IEEE Transactions on Antennas and Propagation,1997,45(7):1179-1185.
    [39]Vaskelainen Leo.I. Phase synthesis of conformal array antennas [J]. IEEE Transactions on Antennas and Propagation,2000,48(6):987-991.
    [40]Vaskelainen Leo.I. Constrained leastsquares optimization in conformal array antenna synthesis [J]. IEEE Transactions on Antennas and Propagation,2007, 55(3):859-867.
    [41]Fondevila Gomez. Very fast method to synthesis conformal arrays [J]. Electronics Letters.2007, (43):856-857.
    [42]Morton T.E. Pattern synthesis of conformal arrays for airborne vehicles [C].IEEE Aerospace conference,2004, (2):1030-1039.
    [1]Josefssion L, Patrik P. Conformal array antenna theory and design [M]. Willey Inter Science Publication,2006.
    [2]林德福,祁载康,王志伟.多模复合导引头总体技术研究[J].战术导弹技术,2005,(4):32-35.
    [3]李保平.红外/毫米波多模寻的系统关键技术分析[J].红外与激光工程,2002,32(2):179-183.
    [4]何立萍,成楚之,徐品高.超高速导弹毫米波/红外复合导引头研究[J].红外与激光工程,1996,25(4):56-64.
    [5]张义广,杨军,周军等.主动雷达/红外成像复合导引头技术浅谈[J].红外与激光工程,2007,36(9):43-46.
    [6]宋银锁,马妙技.导引头共形相控阵天线进展[J].航空兵器,2008,(6):44-47.
    [7]胡体玲,李兴国.毫米波/红外复合导引头关键技术分析[J].激光与红外,2007,37(2):101-103.
    [8]孙洪忠.空空导弹主被动雷达多模导引头研究[J].航空兵器,2007,4:12-15.
    [9]Morton T.E, Pasala k.M. Performance analysis of conformal conical array for airborne vehicles [J]. IEEE Trans. on Aerospace and Electronic Systems,2006, 42(3):876-889.
    [10]黄秋,陈亦庆,高志峰等.红外导引头整流罩技术研究[J].应用光学,2009,30(5):840-843.
    [11]Knapp D. J, Mills J. P, Hegg R. G, et al. Conformal opticsrisk reduction demonstration [J]. SPIE,4375:146-153.
    [12]何庆强,王秉中,殷忠良等.导引头共形相控阵天线新技术[J].系统工程与电子技术,2006,28(12):1816-1819.
    [13]Wang B H, Guo Y, Wang Y L. Pattern synthesis of conformal array antenna with polarization diversity [C].1st Asian and Pacific Conference on Synthetic Aperture Radar, November,2007:170-174.
    [14]Wang B.H, Guo Y, Wang Y.L. Frequency-invariant pattern synthesis of conformal array antenna with low cross-polarization [J]. IET Microwave Antennas propag, 2008(2):442-450.
    [15]Vaskelainen L.I. Iterative least-squares synthesis methods for conformal array antennas with optimized polarization and frequency properties [J]. IEEE Transactions on Antennas and Propagation,1997,45(7):1179-1185.
    [16]林昌禄.天线工程手册[M].北京:电子工业出版社,2002.
    [17]丁鹭飞,耿富录.雷达原理(第三版)[M].西安:西安电子科技大学出版社,2002.
    [18]杨金红,高玉春,程明虎,柴秀梅.相控阵天气雷达波束特性[J].应用气象学报,2009,20(1):119-122.
    [19]Seashore. Millimeter wave ICS for precision guided weapons [J]. Microwave Journal,1983,26(6):51-64.
    [20]方斌.红外导引头光学系统设计[J].光电工程,2003,30(6):8-10..
    [21]刘艳,张金锁,李瑾.用于防空导弹的下一代红外成像导引头[J].飞航导弹,2002,(6):51-54.
    [1]Josefssion L, Patrik P. Conformal array antenna theory and design [M]. Willey Inter Science Publication,2006
    [2]李东风,龚中麟.六边形平面天线阵优化稀疏布阵研究[J].电子学报,2002,30(3):376-380.
    [3]姚昆,杨万麟.最佳稀布直线阵列的分区动态规划法[J].电子学报,1994,22(12):87-90.
    [4]鄢社峰,马远良,孙超.任意几何形状和阵元指向性的传感器阵列优化波束形成方法[J].声学学报,2005,30(3):264-270.
    [5]刘先省,张连堂,吴嗣亮,毛二可.基于有向阵元的圆形阵列方向图综合[J].电子学报,2004,32(4):701-704.
    [6]陆必应,梁甸农.利用迭代线性约束最小二乘方法实现不规则阵列的方向图综合[J].国防科技大学学报,2005,27(6):77-81.
    [7]高瑜翔,何子述,徐继麟,韩春林.基于旁瓣电平和主瓣偏移的光控线性相控阵列子阵数确定方法[J].电子与信息学报,2005,27(8):1222-1225.
    [8]Mailloux R. J. Array grating lobes due to periodic phase, amplitude, and time delay quantization [J]. IEEE Transactions on Antennas and Propagation,1984, 32(12):1364-1368.
    [9]石磊,郝保安,王明州.鱼雷共形阵自适应宽带恒定波束形成研究[J].鱼雷技术,2006,14(2):30-33.
    [10]焦永昌,肖高溪,黄立伟,毛乃宏.空间扫描柱面轴向偶极子阵的低副瓣控制[J].电子学报,1996,24(6):77-81.
    [11]齐飞林,刘峥,刘俊,张守宏.制导武器共形天线阵列的配置方式研究[J].系统工程与电子技术,2010,32(2):269-274.
    [12]Wang B.H, Guo Y, Wang Y.L. Frequency-invariant pattern synthesis of conformal array antenna with low cross-polarization [J]. IET Microwave Antennas Propagation, 2008,2(5):442-450.
    [13]Vaskelaine L.I. Constrained least-squares optimization in conformal Array antenna synthesis [J]. IEEE Transactions on Antennas and Propagation,2007,55(3):859-867.
    [14]Josefssion Lars, Persson Patrik. Conformal array antenna theoryand design [M]. Hoboken, New jersey:John Wiley & Sons Inc,2006.
    [15]齐飞林,刘峥,杨雪亚,张守宏.毫米波共形相控阵雷达导引头的阵列稀布优化[J].电子与信息学报,2009,31(12):2869-2875.
    [16]Morton T.E, Pasala K. M. Pattern synthesis of conformal arrays for airborne vehicles [C]. IEEE Aerospace Proceeding Conference. Montana:IEEE Press, 2004:1030-1039.
    [1]克拉特E.F.雷达散射截面-预估、测量和减缩[M].北京:电子工业出版社,1988.
    [2]Hebib S, Raveu N, Aubert H. Cantor apiral array for the design of thinned arrays [J]. IEEE Antennas and Wireless Propagation Letters,2006,5:104-106.
    [3]Haupt R. L. Interleaved thinned linear arrays [J]. IEEE Transactions on Antennas and Propagation,2005,53(9):2858-2864.
    [4]Coman C. I, Nicolaescu I, lager I. E, Ligthart L. P. Experimental study of thinned array antennas by means of synthetic aperture radar measurements [C]. European Radar Conference,2004, Amsterdram,165-168.
    [5]束咸荣,晏焕强,郭燕昌.大型稀布相控阵天线设计及其旁瓣电平研究[J].微波学报,1996,12(3):169-174.
    [6]Yang Ho, Ingram M A. Subarray design for adaptive interference cancellation [J]. IEEE Transactions on Antennas and Propagation,2002,50(10):1453-1459.
    [7]Gershman A. B, Ermolaev V. T. Optimal subarray size for spatial smoothing [J]. IEEE Signal Processing Letters,1995,2(2):28-30.
    [8]Hansen R. C, Charlton G. G. Subarray quantization lobe decollimation [J]. IEEE Transactions on Antennas and Propagation,1999,47(8):1237-1239.
    [9]Haupt R. L. Reducing grating lobes due to subarray amplitude tapering [J]. IEEE Transactions on Antennas and Propagation,1985,33(8):846-850.
    [10]Argawal V. D. Grating lobe suppression in phased arrays [J]. Proceedings of the IEEE,1978,66(3):347-349.
    [11]Nickel U. R. O. Subarray configuration for digital beamforming with low sidelobes and adaptive interference suppression [C]. IEEE International Radar Conference,2003,715-719.
    [12]Nemirovsky S, Doron M. A. Sensitivity of MUSIC and Root-MUSIC to gain calibration errors of 2D arbitrary array configuration [C]. IEEE Sensor Array and Multichannel Signal Processing Workshop,2004,594-598.
    [13]Wang Nanyan, Agathoklis P, Antoniou A. A new DOA estimation technique based on subarray beamforming [J]. IEEE Transactions on Signal Processing,2006, 54(9):3279-3290.
    [14]何庆强,王秉中,殷忠良等.导引头共形相控阵天线新技术[J].系统工程与电子技术,2006,28(12):1816-1819.
    [15]Brennan L. E. Adaptive arrays in airborne MTI radar [J]. IEEE Transactions on Antennas and Propagation,1976,24(5):607-615.
    [16]许志勇,保铮,廖桂生.一种非均匀邻接子阵结构及其部分自适应处理性能分析[J].电子学报,1997,25(9):20-24.
    [17]杨运甫,陶然,王越.部分极化情况下SINR最优极化滤波器特性分析[J].自然科学进展,2007,17(3):370-378.
    [18]Vaskelainen L.I. Constrained least-squares optimization in conformal array antenna synthesis [J]. IEEE Transactions on Antennas and Propagation,2007, (55):859-867.
    [19]张祖稷,金林,束咸荣.雷达天线技术[M].北京:电子工业出版社,2007.
    [20]Boeringer D. W, Werner D. H. Particle swarm optimization of a modified Bernstein polynomial for conformal array excitation synthesis [C].2004 IEEE antennas propagation Soc. Int. symp. Dig.,3:2293-2296.
    [21]Robinson J, Rahmat samii. Particle swarm optimization in electromagnetics [J]. IEEE Transactions on Antennas and Propagation,2004,52(2):397-407.
    [22]Boeringer D. W, Werner D. H. Efficiency constrained particle swarm optimization of a modified Bernstein polynomial for conformal array excitation amplitude synthesis [J]. IEEE Transactions on Antennas and Propagation,2005, 53(8):2662-2673.
    [23]Haupt R.L. Phase only adaptive nulling with a genetic algorithm [J]. IEEE Transactions on Antennas and Propagation,1997,45(6):1009-1015.
    [24]Yeo Beng-Kiong, Lu Yilong. Array failure correction with a genetic algorithm [J]. IEEE Transactions on Antennas and Propagation,1999,47(5):823-828.
    [25]Bray M.G, Werner D.H, Boeringer D.W. Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning [J]. IEEE Transactions on Antennas and Propagation,2002,50(12):1732-1742.
    [26]Krolik J. L, Swingler D. L. On the mean square error performance of adaptive minimum variance beamformers based on the sample covariance matrix [J]. IEEE Transactions on Signal Processing,1994,42(2):445-448.
    [27]Boon P. N, Meng Hwa Er, Chichung Kot. A flexible array synthesis method using quadratic programming [J]. IEEE Transactions on Antennas and Propagation,1993, 41(11):1541-1550.
    [28]Burintramart S, Sarker T. K, Zhang Yu. Nonconventional least squares optimization for DOA estimation [J]. IEEE Transactions on Antennas and Propagation,2007, 55(3):707-714.
    [29]林昌禄.天线工程手册[M].北京:电子工业出版社,2002.
    [1]Bucci O.M, Franceschetti G, Mazzarella G, Panariello G. Intersection approach to array pattern synthesis [J]. IEE Proceedings,1990,137(6):349-357.
    [2]Bucci O. M, Elia G. D, Romito G. R. Power synthesis of conformal arrays by a generalized projection method [J]. IEE Proceedings Microwave Antennas Propagation,1995,142(6):467-471.
    [3]Vaskelainen L. I. Phase synthesis of conformal array antennas [J]. IEEE Transactions on antennas and propagation,2000,48(6):987-991.
    [4]Vaskelainen L. I. Iterative least-squares synthesis methods for conformal array antennas with optimized polarization and frequency properties [J]. IEEE Transactions on antennas and propagation,1997,45(7):1179-1185.
    [5]Boeringer D. W, Werner D. H. Efficiency-Constrained Particle Swarm Optimization of a Modified Bernstein Polynomial for Conformal Array Excitation Amplitude Synthesis [J]. IEEE Transactions on antennas and propagation,2005, 53(8):2662-2673.
    [6]Morton T. E, Pasala K. M. Performance analysis of conformal conical arrays for airborne vehicles [J]. IEEE Transactions on antennas and propagation,2006, 42(3):876-889.
    [7]Jiao Yong-chang, Wei Wen-yuan, Huang Li-wei, Wu Hong-shi. A new low-side-lobe pattern synthesis technique for conformal arrays [J]. IEEE Transactions on antennas and propagation,1993,41(6):824-831.
    [8]Dohmen Christof, Odendaal J. W, Joubert Johan. Synthesis of conformal arrays with optimized polarization [J]. IEEE Transactions on antennas and propagation, 2007,55(10):2922-2925.
    [9]Zhou P. Y, Ingram M. A, Anderson P. D. Synthesis of minimax sidelobes for arbitrary arrays [J]. IEEE Transactions on antennas and propagation,1998, 46(11):1759-1760.
    [10]Mailloux R. J. Conformal arrays antenna theory and design [reviews and abstracts] [J]. IEEE Antennas and Propagation magazine,2007,49(5):126-127.
    [11]何庆强,王秉中,殷忠良等.导引头共形相控阵天线新技术[J].系统工程与电子技术,2006,28(12):1816-1819.
    [12]Sureau J C, Keeping K J. Sidelobe control in cylindrical arrays [J]. IEEE Transactions on antennas and propagation,1982,30(5):1027-1031.
    [13]Dufort E C. Pattern synthesis based on adaptive array theory [J]. IEEE Transactions on antennas and propagation,1989,37(8):1011-1018.
    [14]Zhou P Y, Ingram M A. Pattern synthesis for arbitrary arrays using an adaptive array method [J]. IEEE Transactions on Antennas and Propagation,1999,47(5): 862-869.
    [15]Vaskelainen L. I. Constrained Least-Squares Optimization in Conformal Array Antenna Synthesis [J]. IEEE Transactions on Antennas and Propagation,2007, 55(3):859-867.
    [16]Steiner M. A minimax approach to the design of Doppler filters [J]. IEEE Transactions on Aerospace and Electronic Systems,1991,27(3),481-486.
    [17]Dinnichert M. Full polarimetric pattern synthesis for an active conformal array [C]. IEEE International Conference on Phased Array Systems and Technology Proceedings, May,2000:415-419.
    [18]齐飞林,刘峥,杨明磊,张守宏.毫米波共形相控阵雷达导引头波束形成[J].系统工程与电子技术,2009,31(8):1874-1878.
    [19]翟雨生,程志红,陈光柱,李柳,查蔓丽.基于免疫的多目标优化遗传算法[J].计算机应用研究,2007,24(3):50-52.
    [20]刘若辰,杜海峰,焦李成.一种免疫单克隆策略算法[J].电子学报,2004,32(11):1880-1884.
    [21]李丽荣,郑金华.基于Pareto Front的多目标遗传算法[J].湘潭大学自然科学学报,2004,26(1):39-41.
    [1]胡航,张皓.一种改进的两级子阵级自适应单脉冲方法[J].电子学报,2009,37(9):1996-2003.
    [2]Rocca P, Manica L, Martini A. Design of compromise sum-difference patterns through the iterative contiguous partition method [J]. IET Microw. Antennas Propagation,2009,3(2):348-361.
    [3]崔智社,曾涛,龙腾.采用信息融合技术的IR/MMW复合导引头的目标跟踪[J].红外与毫米波学报,2002,21(6):460-464.
    [4]Morton T.E, Pasala K.M. Performance Analysis of Music for Conformal Conical Array for airborne vehicles[J]. IEEE Aerospace and Electronic Systems,2006,42(3):876-889.
    [5]Janpugdee P, Pathak P.H, Burkholder R.J. A ray description for collective surface fields produced by large conformal arrays on a convex metallic surface [C].2009 3rd European Conference on Antennas and Propagation (Eucap2009),23-27 March,2009, Berlin, Germany,2985-2989.
    [6]何庆强,王秉中,殷忠良等.导引头共形相控阵天线新技术[J].系统工程与电子技术,2006,28(12):1816-1819.
    [7]Vaskelainen L.I. Constrained least-squares optimization in conformal Array antenna synthesis [J]. IEEE Transactions on Antennas and Propagation,2007, 55(3):859-867.
    [8]Bucci O.M, D'Urso M, Isernia T. Optimal synthesis of difference patterns subject to arbitrary sidelobe bounds by using arbitrary array antennas [J]. IEE proceedings-Microwave Antennas Propagation,2005,152(3):129-137.
    [9]Dinnichert M. Full polarimetric pattern synthesis for an active conformal array [C]. IEEE International conference on phased array systems and technology, 415-419,2000.
    [10]齐飞林,刘峥,刘俊,张守宏.制导武器共形天线阵列的配置方式研究[J].系统工程与电子技术,2010,32(2):269-274.
    [11]丁鹭飞,耿富录.雷达原理(第三版)[M].西安:西安电子科技大学出版社,2002.
    [12]齐飞林,刘峥,杨雪亚,张守宏.毫米波共形相控阵雷达导引头的阵列稀布优化[J].电子与信息学报,2009,31(12):2869-2875.
    [13]Vaskelainen L.I. Iterative least-squares synthesis methods for conformal array antennas with optimized polarization and frequency properties [J]. IEEE Transactions on Antennas and Propagation,1997,45(7):1179-1185.
    [14]王布宏,郭英,王永良等.共形天线阵列流形的建模方法[J].电子学报,2009,37(3):481-484.
    [15]Kummer W. H, Villeneuve A. T, Howard J. E & Seaton A. F. Integrated conformal arrays [R]. Final report on contract N00019-69-C-0281, Culver City, Hughes Aircraft Co.Ltd,1970.
    [16]Villeneuve A. T, Kummer W. H. Integrated conformal arrays [R]. Final report on contract N00019-70-C-0397, Culver City, Hughes Aircraft Co.Ltd,1971.
    [17]Kummer W. H, Seaton A. F, Villeneuve A. T. Conformal antenna arrays study [R]. Final report on contract N00019-72-C-0212, Culver City, Hughes Aircraft Co.Ltd,1973..
    [18]Munger A. D, Vaughn G. V, Provencher J. H & Gladman B. R. Conical array studies [J]. IEEE Transactions on Antennas and Propagation,1974, 22(1):35-43.
    [19]莫特.H,林昌禄,向敬成.天线和雷达中的极化[M].成都:电子科技大学出版社,1989.
    [20]林昌禄,聂在平,肖笃犀,汪茂光,阮颖铮.天线工程手册.北京:电子工业出版社,2002.
    [21]Elliott R. S. Antenna theory and design [M]. Prentice-Hall, Englewood Cliffs, New Jersey,1981.
    [22]Elliott R.S Antenna theory and design (Revised Edition) [M]. Hoboken, New Jersey. A John Wiley & Sons. INC,2003.
    [23]Petre P, Sarkar T.K. Planar near-field to far-field transformation using equivalent magnetic current approach [J]. IEEE Transactions on Antennas and Propagation,1992,40(11):1348-1356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700