基于有源频率选择表面的电扫描天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着通信产业的发展,用户数量急剧增长,频谱资源日益紧张,为此,一系列新技术应运而生。其中智能天线技术可以有效改善信道链路性能,提升用户容量,提高频谱利用率,成为通信领域研究的热点前沿技术之一。
     常见的智能天线系统,在形式上多是线形或圆形阵列,通过控制阵元之间的相对相位来控制波束形成(Beam-forming)。对相位的控制一般利用移相器实现,并通过一系列相应的算法确定相对相位值,从而控制天线阵列辐射方向。对于整套智能天线系统来说,移相器的开销往往占据整套系统中的较大比重。因此,近年来很多学者开始研究无移相器的智能天线,或称为电扫描天线。
     本文针对基于有源频率选择表面结构的电扫描天线进行理论研究、仿真设计并加工实物测试验证了提出的设计方案和相关理论。
     提出了一种新颖的电扫描天线的结构及工作原理。该天线的电扫描能力是通过改变围绕在一全向天线周围的特殊的有源频率选择表面的工作状态,从而控制天线辐射方向来实现的。通过不同的配置方式,可以实现多种模式的单波束扫描,完成对整个水平面内各方向的平滑电控扫描。此外,还可以实现多波束的电控扫描。
     针对这种特殊形式的天线结构,本文进行了辐射特性的理论研究,将该天线的近场部分为行驻波区、功率交换区和二次辐射区。利用二次辐射的理论从线阵天线辐射开始展开理论推导,进一步推广至共形阵列天线的辐射理论,再进一步推导出ESRRA(Electronically steerable radiators and reflectors array)天线的辐射模型。从而建立了ESRRA天线辐射的阵因子模型。
     有源频率选择表面是实现天线电扫描能力的一种全新方法,本文针对其特殊性,分析了这种频率选择表面应具备的技术指标要求,提出了一系列不等式方程,建立了应用于ESRRA天线的有源频率选择表面的基础理论。有源频率选择表面面临的一个关键问题就是其复杂的馈电网络相互交织所引入的单元之间的阵列耦合和干扰,为了解决这个难题,本文提出了一种新颖的无偏置网络频率选择表面通用拓扑结构,并对其进行了仿真优化。分析结果表明这种拓扑结构不但解决了该问题,还具有很好的通用性。在此基础上为实现针对ESRRA天线的极化敏感方向的要求,首次提出了“磁环路陷阱”(Magnetic loop trap)结构。利用这一结构,很好地实现了前面所提出的窄带宽,反射带高反射率,通带高透过率以及极化方向与单元延伸方向一致等一系列要求。并且,较为系统的提出了一种新颖的有源频率选择表面偏置网络通用结构。这种结构通过电感的加载避免了其对天线工作频段的干扰。仿真和实测结果证明,这种有源频率选择表面很好的满足了前面设计理论所提出的指标要求。
     最后,为验证本论文提出的天线设计理论,加工制作了小型化和高增益两款典型天线实物进行测量。测量结果与理论分析一致。
     综上,通过本文的研究提出了一种新型电扫描天线的实现方法,并从理论分析到实验测试验证了这一方法。实验结果证明这种新型天线具有E面高增益、H平面全向灵活可控、平滑电扫、低功耗、低成本等一系列优点,体现了一种电扫描天线设计新思想。
Recent years, with the development of communication industry, the amount of usersincreased significantly, frequency spectrum resource become more and more critical. Forthe very purpose, a serial new technology emerged. In many of these, smart antennabecome one of the frontier technologies by the means of user capacity and frequencyspectrum using efciency.
     In a common smart antenna system, a linear or circular array is always employed.Beam-forming ability is achived by cntrolling the relative phases of array elements. Phasecontrolling is usually realized by phase shifters, with a serial relative algorithm. Thus,radiation pattern is controlled. Phase shifters always contribute a lot to the total cost ofthe smart antenna system. For this reason, a lot researchs focused on the non-phase-shiftersmart antenna systems or so called electronically steerable antennas.
     In this essay, a research on the electronically steerable antenna based on active fre-quency selective surface is studied. The theoretically discussion, simulation and prototypetesting are token out to verificate the theory and design.
     A novel structure and relative theory is presented. The ability of electronically steer-ing is achived by controlling the status of the specially designed active frequency selectivesurface which surrounding a ominidirectional antenna. Single beam modes which coverthe whole horizontal plane and continuously tunable is achived by diferent configura-tions. Further more, multi-beam mode is also achived.
     Focusing on this special antenna structure, radiation feature is studied. Near field ofthis antenna is divided into three parts. Re-radiation theory is used to deduce the radiationfrom a common linear arry to circular array, further to a conformal array, and finally toESRRA (Electronically steerable radiators and reflector array) antenna. The array modleis established.
     Active frequency selective surface (AFSS) is a new method to realize electronical-ly steerable ability. In essay, the special requirements of AFSS for purpose of realizingESRRA antenna are studied and a serial of inequations are established. The basic theoryof AFSSes for ESRRA is established. A critical problem for AFSS is the couple inter-ference between unit cells caused by biasing network. To solve this problem, a novel non-biasing-network AFSS topology is presented. Relative simulation is accomplishedand the correctness of this design is proved. A novel magnetic loop trap structure is p-resented. An AFSS with narrow reflection band; high reflection rate in reflection band;high transmission rate in transparent band and polarization sensitive direction being thesame with the unit cells extend direction is achived. Furthermore, a new biasing networkis established systematically. Inductors are mounted on the gap of the biasing networkto isolation the interference. Both the simulation and tested results show that the AFSSmeets the requirements mentioned before.
     To prove the correctness of the theory, a compact an another high gain ESRRAantenna are fabricated. The test results perfectly meet the theory.
     In totally, a novel method to build electronically steerable antenna is established.Measured results show that this antenna is high gain in E-plane, flexible continuouslysteerable in H-plane, low power consumption and low cost.
引文
[1] Goodman D J. Trends in cellular and cordless communications[J]. Communica-tions Magazine, IEEE,1991,29(6):31–40.
    [2] Winters J. Optimum Combining for Indoor Radio Systems with Multiple Users[J].Communications, IEEE Transactions on,1987,35(11):1222–1230.
    [3] Winters J H, Salz J, Gitlin R D. The impact of antenna diversity on the capacityof wireless communication systems[J]. Communications, IEEE Transactions on,1994,42(234):1740–1751.
    [4] Costa F, Monorchio A, Talarico S, et al. An Active High-Impedance Surface forLow-Profile Tunable and Steerable Antennas[J]. Antennas and Wireless Propaga-tion Letters, IEEE,2008,7:676–680.
    [5] Cheng J, Hashiguchi M, Iigusa K, et al. Electronically steerable parasitic arrayradiator antenna for omni-and sector pattern forming applications to wireless adhoc networks[J]. Microwaves, Antennas and Propagation, IEE Proceedings-,2003,150(4):203–208.
    [6] Gray D, Jun Wei L, Thiel D V. Electronically steerable Yagi-Uda microstrippatch antenna array[J]. Antennas and Propagation, IEEE Transactions on,1998,46(5):605–608.
    [7] Christodoulou C G, Tawk Y, Lane S A, et al. Reconfigurable Antennas for Wirelessand Space Applications[J]. Proceedings of the IEEE,2012,100(7):2250–2261.
    [8] Ouedraogo R O, Rothwell E J, Greetis B J. A Reconfigurable Microstrip Leaky-Wave Antenna With a Broadly Steerable Beam[J]. Antennas and Propagation,IEEE Transactions on,2011,59(8):3080–3083.
    [9] Jazi M N, Denidni T A. Agile Radiation-Pattern Antenna Based on Active Cylindri-cal Frequency Selective Surfaces[J]. Antennas and Wireless Propagation Letters,IEEE,2010,9:387–388.
    [10] Piazza D, Kirsch N J, Forenza A, et al. Design and Evaluation of a ReconfigurableAntenna Array for MIMO Systems[J]. Antennas and Propagation, IEEE Transac-tions on,2008,56(3):869–881.
    [11] Lai M I, Wu T Y, Hsieh J C, et al. Design of reconfigurable antennas based onan L-shaped slot and PIN diodes for compact wireless devices[J]. Microwaves,Antennas&Propagation, IET,2009,3(1):47–54.
    [12] Chang won J, Ming-jer L, Li G P, et al. Reconfigurable scan-beam single-arm spiralantenna integrated with RF-MEMS switches[J]. Antennas and Propagation, IEEETransactions on,2006,54(2):455–463.
    [13] Lax B, Button K J, Roth L M. Ferrite Phase Shifters in Rectangular Wave Guide[J].Journal of Applied Physics,1954,25(11):1413–1421.
    [14] Pozar D M, Sanchez V. Magnetic tuning of a microstrip antenna on a ferrite sub-strate[J]. Electronics Letters,1988,24(12):729–731.
    [15] Hu W, Ismail M Y, Cahill R, et al. Liquid-crystal-based reflectarray antenna withelectronically switchable monopulse patterns[J]. Electronics Letters,2007,43(14).
    [16] Harrington R. Reactively controlled directive arrays[J]. Antennas and Propagation,IEEE Transactions on,1978,26(3):390–395.
    [17] Schlub R, Junwei L, Ohira T. Seven-element ground skirt monopole ESPAR an-tenna design from a genetic algorithm and the finite element method[J]. Antennasand Propagation, IEEE Transactions on,2003,51(11):3033–3039.
    [18] Kawakami H, Ohira T. Electrically steerable passive array radiator (ESPAR) an-tennas[J]. Antennas and Propagation Magazine, IEEE,2005,47(2):43–50.
    [19] Qing H, Hanna B, Inagaki K, et al. Mutual Impedance Extraction and Varactor Cal-ibration Technique for ESPAR Antenna Characterization[J]. Antennas and Propa-gation, IEEE Transactions on,2006,54(12):3713–3720.
    [20] Chen S, Hirata A, Ohira T, et al. Fast beamforming of electronically steerable para-sitic array radiator antennas: theory and experiment[J]. Antennas and Propagation,IEEE Transactions on,2004,52(7):1819–1832.
    [21] Taillefer E, Hirata A, Ohira T. Direction-of-arrival estimation using radiation powerpattern with an ESPAR antenna[J]. Antennas and Propagation, IEEE Transactionson,2005,53(2):678–684.
    [22] Plapous C, Jun C, Taillefer E, et al. Reactance domain MUSIC algorithm for elec-tronically steerable parasitic array radiator[J]. Antennas and Propagation, IEEETransactions on,2004,52(12):3257–3264.
    [23] An-Min H, Qun W, Xin-Xin C, et al. Enhanced Reactance-Domain ESPRITMethod for ESPAR Antenna[C]//TENCON2006.2006IEEE Region10Confer-ence..[S.l.]:[s.n.]:1–3.
    [24] Aono T, Higuchi K, Ohira T, et al. Wireless secret key generation exploitingreactance-domain scalar response of multipath fading channels[J]. Antennas andPropagation, IEEE Transactions on,2005,53(11):3776–3784.
    [25] Roig M, Sazegar M, Zheng Y, et al. Tunable Frequency Selective Surface basedon ferroelectric ceramics for beam steering antennas[C]//Microwave Conference(GeMiC),2012The7th German..[S.l.]:[s.n.]:1–4.
    [26] Sievenpiper D F. Forward and backward leaky wave radiation with large efectiveaperture from an electronically tunable textured surface[J]. Antennas and Propa-gation, IEEE Transactions on,2005,53(1):236–247.
    [27] Dimousios T D, Mitilineos S A, Panagiotou S C, et al. Design of a Corner-Reflector Reactively Controlled Antenna for Maximum Directivity and MultipleBeam Forming at2.4GHz[J]. Antennas and Propagation, IEEE Transactions on,2011,59(4):1132–1139.
    [28] Chang D C, Zeng B H, Liu J C. Reconfigurable angular diversity antenna withquad corner reflector arrays for2.4GHz applications[J]. Microwaves, Antennas&Propagation, IET,2009,3(3):522–528.
    [29] Edalati A, Denidni T A. High-Gain Reconfigurable Sectoral Antenna Using anActive Cylindrical FSS Structure[J]. Antennas and Propagation, IEEE Transactionson,2011,59(7):2464–2472.
    [30] Edalati A, Denidni T A. Reconfigurable antenna with high-directive beam usingactive cylindrical PRS[C]//Antennas and Propagation Society International Sym-posium,2009. APSURSI’09. IEEE..[S.l.]:[s.n.]:1–4.
    [31] Edalati A, Denidni T A. Experimental investigation of a new reconfigurablesectoral antenna[C]//Antennas and Propagation Society International Symposium(APSURSI),2010IEEE..[S.l.]:[s.n.]:1–4.
    [32] Lei L, Junwei L, Shiyou Y. Numerical synthesis of dielectric embedded electron-ically steerable multiple beam antenna array[C]//Electromagnetic Field Computa-tion (CEFC),201014th Biennial IEEE Conference on..[S.l.]:[s.n.]:1–1.
    [33]柴焱杰,孙继银,李琳琳,等.卫星通信抗干扰技术综述[J].现代防御技术,2011(03):113–117.
    [34]王丽娜,王兵.一种新的卫星智能天线自适应波束形成算法[J].电讯技术,2009(04):1–5.
    [35]王辉.智能天线在卫星定位抗干扰中的应用[J].科学技术与工程,2009(22):6713–6719.
    [36]蒋江湖.浅谈智能天线及其在卫星通信抗干扰中的应用[J].科技创新导报,2010(35):232.
    [37]许培培龚文斌,刘会杰.一种改进的卫星空时DOA矩阵算法[J].计算机工程,2010(20):268–271+274.
    [38]吴群英,李世鹤.时延角度扩散信道中TD-SCDMA系统下行波束技术[J].信号处理,2002(05):427–430.
    [39]李世鹤.智能天线的原理和实现[J].电信建设,2001(04):12–19.
    [40]李方伟. TD-SCDMA系统容量分析[J].通信学报,2000(08):74–78.
    [41]谢显中. TDD模式与第三代移动通信系统[J].现代电信科技,2000(02):28–31.
    [42]鲁艳玲,田锐. WCDMA和TD-SCDMA网络优化的分析与比较[J].中国数据通信,2004(07):85–88.
    [43] Shung-Wu L, Zarrillo G, Chak-Lam L. Simple formulas for transmission throughperiodic metal grids or plates[J]. Antennas and Propagation, IEEE Transactionson,1982,30(5):904–909.
    [44] Mittra R, Chan C H, Cwik T. Techniques for analyzing frequency selectivesurfaces-a review[J]. Proceedings of the IEEE,1988,76(12):1593–1615.
    [45] Chao-Chun C. Transmission of Microwave Through Perforated Flat Plates of FiniteThickness[J]. Microwave Theory and Techniques, IEEE Transactions on,1973,21(1):1–6.
    [46] Rashid A K, Zhongxiang S. Scattering by a Two-Dimensional Periodic Array ofVertically Placed Microstrip Lines[J]. Antennas and Propagation, IEEE Transac-tions on,2011,59(7):2599–2606.
    [47] Pelton E, Munk B. Scattering from periodic arrays of crossed dipoles[J]. Antennasand Propagation, IEEE Transactions on,1979,27(3):323–330.
    [48] Hamdy S M A, Parker E A. Influence of lattice geometry on transmission of elec-tromagnetic waves through arrays of crossed dipoles[J]. Microwaves, Optics andAntennas, IEE Proceedings H,1982,129(1):7.
    [49] Chich-Hsing T, Mittra R. Spectral-domain analysis of frequency selective surfacescomprised of periodic arrays of cross dipoles and Jerusalem crosses[J]. Antennasand Propagation, IEEE Transactions on,1984,32(5):478–486.
    [50] Langley R J, Drinkwater A J. Improved empirical model for the Jerusalem cross[J].Microwaves, Optics and Antennas, IEE Proceedings H,1982,129(1):1–6.
    [51] Parker E A, Hamdy S M A, Langley R J. Arrays of concentric rings as frequencyselective surfaces[J]. Electronics Letters,1981,17(23):880–881.
    [52] Iskander M F, Zhijun Z, Zhengqing Y, et al. Coaxial continuous transverse s-tub (CTS) array[J]. Microwave and Wireless Components Letters, IEEE,2001,11(12):489–491.
    [53] Isom R, Iskander M F, Zhengqing Y, et al. Design and development of multibandcoaxial continuous transverse stub (CTS) antenna arrays[J]. Antennas and Propa-gation, IEEE Transactions on,2004,52(8):2180–2184.
    [54] Miyashita H, Ohmine H, Nishizawa K, et al. Electromagnetically coupled coaxialdipole array antenna[J]. Antennas and Propagation, IEEE Transactions on,1999,47(11):1716–1726.
    [55] Balsley B B, Ecklund W L, Carter D A, et al. A note on reducing the horizontalsidelobes of near-vertically directed COCO arrays[J]. Antennas and Propagation,IEEE Transactions on,1988,36(1):139–141.
    [56] Judasz T J, Balsley B B. Improved theoretical and experimental models for thecoaxial colinear antenna[J]. Antennas and Propagation, IEEE Transactions on,1989,37(3):289–296.
    [57] Litva J, Yuan Z, Liang A. Modelling study of coaxial collinear antenna ar-ray[C]//Electrical and Computer Engineering,1993. Canadian Conference on..[S.l.]:[s.n.]:920–924vol.2.
    [58] Gerini G, Zappelli L. Cylindrical Conformal Arrays Loaded With FrequencySelective Screens[C]//Microwave Conference,2001.31st European..[S.l.]:[s.n.]:1–4.
    [59] Gerini G, Zappelli L. Multilayer array antennas with integrated frequency selectivesurfaces conformal to a circular cylindrical surface[J]. Antennas and Propagation,IEEE Transactions on,2005,53(6):2020–2030.
    [60] Sipus Z, Bosiljevac M, Skokic S. Analysis of Curved Frequency Selective Sur-faces[C]//Antennas and Propagation,2007. EuCAP2007. The Second EuropeanConference on..[S.l.]:[s.n.]:1–5.
    [61] Mendoza-Rosales D T, Martynyuk A E, Martinez-Lopez J I, et al. Frequency se-lective surfaces based on ring slots loaded with monolithically integrated capaci-tors[J]. Microwaves, Antennas&Propagation, IET,2012,6(3):245–250.
    [62] Werner D H, Lee D. Design of dual-polarised multiband frequency selective sur-faces using fractal elements[J]. Electronics Letters,2000,36(6):487–488.
    [63] Romeu J, Rahmat-Samii Y. Fractal FSS: a novel dual-band frequency selectivesurface[J]. Antennas and Propagation, IEEE Transactions on,2000,48(7):1097–1105.
    [64] Bossard J A, Werner D H, Mayer T S, et al. The design and fabrication of planarmultiband metallodielectric frequency selective surfaces for infrared application-s[J]. Antennas and Propagation, IEEE Transactions on,2006,54(4):1265–1276.
    [65] Gianvittorio J P, Romeu J, Blanch S, et al. Self-similar prefractal frequency se-lective surfaces for multiband and dual-polarized applications[J]. Antennas andPropagation, IEEE Transactions on,2003,51(11):3088–3096.
    [66] Zhong-Hao L, Pei-Guo L, Xian-Jun H. A Novel Three-Dimensional FrequencySelective Structure[J]. Antennas and Wireless Propagation Letters, IEEE,2012,11:588–591.
    [67] Azemi S N, Rowe W S T. Development and analysis of3D Frequency Selec-tive Surfaces[C]//Microwave Conference Proceedings (APMC),2011Asia-Pacific..[S.l.]:[s.n.]:693–696.
    [68] Rashid A K, Zhongxiang S. A Novel Band-Reject Frequency Selective SurfaceWith Pseudo-Elliptic Response[J]. Antennas and Propagation, IEEE Transactionson,2010,58(4):1220–1226.
    [69] Giere A, Zheng Y, Maune H, et al. Tunable dielectrics for microwave application-s[C]//Applications of Ferroelectrics,2008. ISAF2008.17th IEEE InternationalSymposium on the..[S.l.]:[s.n.],2:1–2.
    [70] Schoenlinner B, Abbaspour-Tamijani A, Kempel L C, et al. Switchable low-lossRF MEMS Ka-band frequency-selective surface[J]. Microwave Theory and Tech-niques, IEEE Transactions on,2004,52(11):2474–2481.
    [71] Coutts G M, Mansour R R, Chaudhuri S K. Microelectromechanical SystemsTunable Frequency-Selective Surfaces and Electromagnetic-Bandgap Structures onRigid-Flex Substrates[J]. Microwave Theory and Techniques, IEEE Transactionson,2008,56(7):1737–1746.
    [72] Kiani G I, Ford K L, Olsson L G, et al. Switchable Frequency Selective Surfacefor Reconfigurable Electromagnetic Architecture of Buildings[J]. Antennas andPropagation, IEEE Transactions on,2010,58(2):581–584.
    [73] Kiani G I, Esselle K P, Weily A R, et al. Active frequency selective surface usingPIN diodes[C]//Antennas and Propagation Society International Symposium,2007IEEE..[S.l.]:[s.n.]:4525–4528.
    [74] Niroo-Jazi M, Denidni T A. Reconfigurable dual-band frequency selective surfacesusing a new hybrid element[C]//Antennas and Propagation (APSURSI),2011IEEEInternational Symposium on..[S.l.]:[s.n.]:2673–2676.
    [75] Mias C. Varactor tunable frequency selective absorber[J]. Electronics Letters,2003,39(14):1060–1062.
    [76] Mias C. Varactor-tunable frequency selective surface with resistive-lumped-element biasing grids[J]. Microwave and Wireless Components Letters, IEEE,2005,15(9):570–572.
    [77] Mias C, Jyh Haur Y. A Varactor-Tunable High Impedance Surface With a Resistive-Lumped-Element Biasing Grid[J]. Antennas and Propagation, IEEE Transactionson,2007,55(7):1955–1962.
    [78] Dorsey W M, McDermitt C S, Bucholtz F, et al. Design and Performance of Fre-quency Selective Surface With Integrated Photodiodes for Photonic Calibrationof Phased Array Antennas[J]. Antennas and Propagation, IEEE Transactions on,2010,58(8):2588–2593.
    [79] Jianfeng W, Yuguang F, Dapeng W. Enhancing the performance of medium accesscontrol for WLANs with multi-beam access point[J]. Wireless Communications,IEEE Transactions on,2007,6(2):556–565.
    [80] Schneider S W, Bozada C, Dettmer R, et al. Enabling technologies for futurestructurally integrated conformal apertures[C]//Antennas and Propagation SocietyInternational Symposium,2001. IEEE..[S.l.]:[s.n.],2:330–333vol.2.
    [81] Kanno M, Hashimura T, Katada T, et al. Digital beam forming for conformalactive array antenna[C]//Phased Array Systems and Technology,1996., IEEE In-ternational Symposium on..[S.l.]:[s.n.]:37–40.
    [82] Vourch E, Caille G, Martin M J, et al. Conformal array antenna for LEO obser-vation platforms[C]//Antennas and Propagation Society International Symposium,1998. IEEE..[S.l.]:[s.n.],1:20–23vol.1.
    [83] Chireix.H. Antennes a`Rayonnement Ze′nithal Re′duit[J]. L’ Onde Electrique,1936,15:16.
    [84] Knudsen H L. The Field Radiated by a Ring Quasi-Array of an Infinite Number ofTangential or Radial Dipoles[J]. Proceedings of the IRE,1953,41(6):781–789.
    [85] Gething P J D. High-frequency direction finding[J]. Electrical Engineers, Proceed-ings of the Institution of,1966,113(1):49–61.
    [86] J M R. Phased Array Antenna Handbook[M].[S.l.]: Artech House,1994.
    [87] Orchard H J, Elliott R S, Stern G J. Optimising the synthesis of shaped beamantenna patterns[J]. Microwaves, Antennas and Propagation, IEE Proceedings H,1985,132(1):63–68.
    [88] Bo L, Zhongxiang S. Three-dimensional band-stop frequency selective struc-tures[C]//Microwave and Millimeter Wave Technology (ICMMT),2012Interna-tional Conference on..[S.l.]:[s.n.],2:1–4.
    [89] Chatterjee A, Biswas S, Chanda D, et al. A polarization independent compactmulti-band Frequency Selective Surface[C]//Engineering (NUiCONE),2011Nir-ma University International Conference on..[S.l.]:[s.n.]:1–4.
    [90] Larson L E. Microwave MEMS technology for next-generation wireless com-munications[C]//Microwave Symposium Digest,1999IEEE MTT-S International..[S.l.]:[s.n.],3:1073–1076vol.3.
    [91] Mias M. Tunable multiband frequency selective structure[C]//Microwave Confer-ence,2005European..[S.l.]:[s.n.],3:4pp.
    [92] Yongxing C, Xinyu H, Zhengping G. A tunable miniaturized-element frequen-cy selective surfaces without bias network[C]//Microwave Technology&Com-putational Electromagnetics (ICMTCE),2011IEEE International Conference on..[S.l.]:[s.n.]:70–73.
    [93] Bayatpur F, Sarabandi K. Design and Analysis of a Tunable Miniaturized-ElementFrequency-Selective Surface Without Bias Network[J]. Antennas and Propagation,IEEE Transactions on,2010,58(4):1214–1219.
    [94] Hamdy S M A, Parker E A. Comparison of modal analysis and equivalent circuitrepresentation of E-plane arm of the jerusalem cross[J]. Electronics Letters,1982,18(2):94–95.
    [95] Langley R J, Parker E A. Double-square frequency-selective surfaces and theirequivalent circuit[J]. Electronics Letters,1983,19(17):675–677.
    [96] Langley R J, Parker E A. Equivalent circuit model for arrays of square loops[J].Electronics Letters,1982,18(7):294–296.
    [97] Savia S B, Parker E A. Equivalent circuit model for superdense linear dipoleFSS[J]. Microwaves, Antennas and Propagation, IEE Proceedings-,2003,150(1):37–42.
    [98] Cwik T, Mittra R, Lang K, et al. Frequency selective screens[J]. Antennas andPropagation Society Newsletter, IEEE,1987,29(2):5–10.
    [99] Ghodgaonkar D K, Varadan V V, Varadan V K. A free-space method for measure-ment of dielectric constants and loss tangents at microwave frequencies[J]. Instru-mentation and Measurement, IEEE Transactions on,1989,38(3):789–793.
    [100] Arjavalingam G, Pastol Y, Epp L W, et al. Characterization of quasi-optical filterswith picosecond transient radiation[J]. Antennas and Propagation, IEEE Transac-tions on,1992,40(1):63–66.
    [101] Yuanxun W, Desen F. Accurate global solutions of EM boundary-value problemsfor coaxial radiators[J]. Antennas and Propagation, IEEE Transactions on,1994,42(5):767–770.
    [102] Balsley B, Ecklund W. A portable coaxial collinear antenna[J]. Antennas andPropagation, IEEE Transactions on,1972,20(4):513–516.
    [103] Judasz T, Ecklund W, Ben B. The coaxial collinear antenna: Current distributionfrom the cylindrical antenna equation[J]. Antennas and Propagation, IEEE Trans-actions on,1987,35(3):327–331.
    [104] Nuteson T W, Mitchell G S, Haque D S, et al. A smart antenna employing digitalbeamforming for WLAN surveillance[C]//Wireless Communication Technology,2003. IEEE Topical Conference on..[S.l.]:[s.n.]:398–399.
    [105] Wei H, Zhenghe F. Microwaves in China[J]. Microwave Magazine, IEEE,2012,13(3):78–86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700