舰船等离子体线天线构成模式与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体天线是解决军舰在隐身作战中航行安全问题的有效途径,但天线研究与工程实现差距很大,尤其是带宽特性和电磁兼容性问题至今尚未得到实质性的解决。为展宽等离子体天线带宽和实现天线的电磁兼容性,本文建立了电磁波与等离子体相互作用、等离子体天线频带特性研究实验系统和等离子体及其激励.源电磁干扰实验系统,研究了等离子体天线的构成模式、等离子体对电磁波的传播特性、等离子体天线带宽特性和天线电磁兼容性。结合相关理论进行分析,得出如下结果:
     1.等离子体电子密度决定了电磁波在等离子体中的传播特性。电子密度越大,等离子体辐射电磁波的能力增强;在甚高频(VHF)频段,当入射信号频率增大时,会相应地存在一个最低电子密度使得等离子体可以有效地辐射电磁波信号,且最低电子密度随信号频率的增大而增大;等离子体在宽频带范围内对电磁波有较强吸收作用,尤其是当等离子体频率与电磁波频率相近时,会产生共振吸收。
     2.高频交流激励模式的激励通道和信号通道之间的强烈耦合使天线通信频带受限。在5-20kHz低频交流激励下,柱形等离子体天线具有较宽的阻抗和增益带宽,在100-250MHz范围内的方向图也相近。电容耦合模式是等离子体天线有效馈电模式,耦合电容适当增大可增加天线带宽。随等离子体电子密度增加天线带宽特性变好,但如果密度过大会加强等离子体对电磁波的反射,使带宽受限。适当增加线天线直径,会增加天线带宽,但直径过大,放电空间变大导致电子密度下降。
     3.直流与50Hz交流等离子体噪声源多,产生等离子体电子密度较小,稳定性较差,噪声电平较高。5-20kHz交流与40.68MHz交流等离子体噪声源相对较少,电子密度较高,噪声电平相对较低。当电磁波频率接近等离子体频率时,等离子体产生的场与电磁波信号耦合产生调制信号。适当增大电子密度可增加天线信噪比,但电子温度的增长会导致天线热噪声过大,需要折中考虑。针对高频交流等离子体激励源过强的辐射问题,可通过接地、滤波及屏蔽等方法大幅度降低电磁干扰,减小天线噪声。
     4.通过优化,研制了两台等离子体天线原理性样机—5-20kHz及40.68MHz交流等离子体线天线。5-20kHz交流等离子体天线在50-250MHz的增益与相同形状配置的金属天线相近,噪声电平也相差不大。40.68MHz交流等离子体天线由于滤波器的介入,工作频带稍窄。当入射信号频率较低时,等离子体天线的噪声很小。利用光-电时差法可较为准确地测量等离子体天线开启时间,经多次测试,两台等离子体天线的开启时间非常短,均为几十微秒量级。
     本文得出了在不大幅度损失增益的前提下拓宽等离子体天线工作带宽的方法及降低天线激励源电磁干扰及天线本身噪声的有效途径,在构建宽频带天线、实现电磁兼容性及天线应用于军舰安全等方面有一定的参考价值。
Plasma antenna is an effective way to solve the warship-navigation-safety problem in the stealth combat, however, there is a big gap from antenna research to application in engineering, especially that the characteristics like bandwidth and electromagnetic compatibility (EMC) have not been solved actually. To broaden the bandwidth and fulfish the EMC, experimental systems for interaction between EM waves and plasma, bandwidth of plasma antenna, electromagnetic interference (EMI) of plasma and its power supply were established to investigate the construction models, propagation characteristics of EM waves in plasma, band-width properties and EMC. Combining theories, the results show that:
     1. Plasma electron density determines the propagation characteristics of EM waves in plasma, the larger the electron density, the stronger the radiation of plasma to EM waves. In the very high frequency (VHF) band, plasma can effecticely transmit the EM waves only when the plasma density is above the lowest electron density. The higher the radio frequency, the higher the lowest electron density for plasma to transmit EM waves. Besides, plasma can absorb the incident EM waves, especially when the frequency of EM waves equals to that of plasma, the resonance absorption occurs.
     2. In the system of high frequency (HF) ac plasma antenna the coupling between signal and excition channels is very strong, which restricts the communition bandwidth, and the radiation patterns between100to250MHz are similar.5-20kHz ac excition model shows good impedance and gain bandwidth. The bandwidth can be enhanced using capacitive coupling model. With the increase of electron density, the bandwidth is broadened. But too high electron density leads to higher reflection. Wire plasma antenna diameter increases to a certain extent cause the wider bandwidth of the antenna, however, too big the diameter is, too large discharge space causing lower electron density.
     3. There are too many noise sources in dc and50Hz ac plasma antenna, the plasma electron density excited by dc or ac power supply is very small and not stable, which cause large antenna noise. While there are relatively less noise sources in5-20kHz ac and40.68MHz ac plasma antennas, the electron density and temperature change small with time and the noise level is relatively low. When the EM wave's frequency closes to the one of plasma, the plasma field will couple with the signals to produce the modulating signals. Suitable increasing the electron density can reduce the antenna noise, but the increase of electron temperature causes excessive thermal noise, which should be considered in a half way. With regard to the too strong radiation generated by RF power supply, the EMI can be largely reduced by means of grounding, shielding and filtering.
     4. Two antenna models-5-20kHz ac and40.68MHz ac plasma antennas are established through optimization, the gains of5-20kHz ac plasma antenna from50-250MHz are close to metal antenna with the same construction and size. The bandwidth of40.68MHz plasma antenna is relatively narrow for the imposed filter. And with the signal frequency higher, the noise is a little lower than that of5-20kHz ac plasma antenna. The switch-on time of plasma antenna can be rapidly and accurately measured by means of light-electricity time difference method. The switch-on times of the two plasma antennas are very short, about dozens of microsecond.
     The methods of broaden bandwidth of plasma antenna without a significant loss of gain and of reducing antenna noise are obtained in this article. It is of valuable reference in constructing broad-band antenna, fulfilling EMC and application in ship safety.
引文
[1]殷雄,张厚,麻来宣,等.等离子体前馈抛物面隐身天线一体化设计.微波学报2011,28(2):22-27.
    [2]刘平,刘黎刚,邓记才,等.等离子体天线的发射特性.郑州大学学报(工学版),2006,27(3):126-128.
    [3]赵国伟.柱形等离子体天线的基本原理,天线中的谐波与非线性效应的研究:(博士学位论文).北京:中国科学院空间科学与应用研究中心,2007.
    [4]菅井秀朗(张海波、张丹译).等离子体电子工程学.北京:科学出版社,2002.
    [5]F.F.Chen(林光海译).等离子体物理学导论.北京:人民教育出版社,1982.
    [6]孙杏凡.等离子体及其应用.北京:高等教育出版社,1982.
    [7]J. R.Roth.工业等离子体工程(第Ⅰ卷)-基本原理.北京:科学出版社,1998.
    [8]彭国贤.气体放电-等离子体物理的应用.北京:知识出版社,1988.
    [9]过增元,赵文华.电弧和热等离子体.北京:科学出版社,1986.
    [10]周健,傅文斌,袁润章.微波等离子体化学气相沉积金刚石膜.北京:中国建材工业出版社,2002.
    [11]梁志伟.柱形等离子体天线性能和噪声机制的研究:(博士学位论文).北京:中国科学院空间科学与应用研究中心,2008.
    [12]国家自然科学基金委员会.等离子体物理学.北京:科学出版杜,1994.
    [13]Rayner J P, Whichello A P, Cheetham A D. Physical Characteristics of Plasma Antennas. IEEE Transactions on Plasma Science,2004,32(1):269-281.
    [14]Dwyer T., Greig J., Murphy D., et al. On the feasibility of using an atmospheric discharge plasma as an RF antenna. IEEE Transactions on Antennas and Propagation,1984, 32 (2):141-146.
    [15]Alexeff I., Anderson T., Parameswaran S., et al. Advances in plasma antenna design. In: 2005 IEEE International Conference on Plasma Science. Monterey, CA, USA:IEEE,2005: 259-260.
    [16]Alexeff I., Anderson T., Parameswaran S., et al. Experimental and theoretical results with plasma antennas. IEEE Transactions on Plasma Science,2006,34 (2):166-172.
    [17]Anderson T., Alexeff I., Farshi E., et al. An operating intelligent plasma antenna. In:2007 IEEE Pulsed Power Conference. Albuquerque, NM, USA:IEEE,2007:353-356.
    [18]Alexeff I., Anderson T. R. Plasma device with low thermal noise. US,2009134803-A1. 2009.
    [19]Anderson, Theodore R. Plasma antenna with electro-optical modulator. United States Patent,6087993.2000.
    [20]Alexeff, Igor. Expandable antenna. United States Patent,6512496.2003.
    [21]Anderson, Theodore R. Horizontal plasma antenna using plasma drift currents. United States Patent,6118407.2000.
    [22]Kang W. L. Rader M; Alexeff I. Conceptual study of stealth plasma antenna. Boston, MA, USA:IEEE International Conference on Plasma Science,1996:261.
    [23]Alexeff, I; Kang W. L; Rader M, et al. Plasma stealth antenna for the U. S. Navy. IEEE International Conference on Plasma Science,1998:277.
    [24]Alexeff. A Plasma Stealth Antenna for the US Navy. Antennas and PropagationSociety International Symposium,1998:451.
    [25]Tret'yakov D. V. Spark plasma antenna. Journal of Communications Technology and Electronics,2008,53(7):823-828.
    [26]Novikov V. E., Puzanov A.0., Sin'kov V. V., et al. Plasma antenna for magneto cumulative generator.In:2003 4th International Conference on Antenna Theory and Techniques. Sevastopol, Ukraine:IEEE,2003:692-695.
    [27]Puzanov A.0., Soshenko V. Explosive plasma antennas. In:2005 15th International Crimean Conference Microwave and Telecommunication Technology. Sevastopol, Crimea, Ukraine: IEEE,2005:695-696.
    [28]Adzhiev A. H., Soshenko V.A., Sytnik 0. V., et al. Experimental investigation of explosive plasma antennas. Tech Phys,2007,52(6):765-769.
    [29]Moisan M. Description and properties of an RF plasma used for the study of parametric interaction of a strong e-m field with plasma. Plasma Physics,1974,16 (1):1-17.
    [30]Moisan M., Zakrzewski Z., Pantel R. Theory and characteristics of an efficient surface wave launcher (surfatron) producing long plasma columns. Journal of Physics D:Applied Physics,1979,12 (2):219-237.
    [31]Moisan M., Shivarova A., Trivelpiece A. W. Experimental investigations of the propagation of surface waves along a plasma column. Plasma Physics,1982,24 (11): 1331-1400.
    [32]Moisan M., Chaker M., Zakrzewski Z., et al. Waveguide surfatron:a high power surface-wave launcher to sustain large-diameter dense plasma columns. Journal of Physics E:Scientific Instruments,1987,20 (11):1356-1361.
    [33]Levesque S., Moisan M., Hubert J. Experimental properties of surface wave sustained plasma columns close to and above the atmospheric pressure. In:IEEE International Conference on Plasma Science 1989. Buffalo, NY, USA:IEEE,1989:76-77.
    [34]Moisan M., Zakrzewski Z. Plasma sources based on the propagation of electromagnetic surface waves. Journal of Physics D:Applied Physics,1991,24 (7):1025-1048.
    [35]Nowakowska H., Zakrzewski Z., Moisan M., et al. Propagation characteristics of surface waves sustaining atmospheric pressure discharges:the influence of the discharge processes. Journal of Physics D:Applied Physics,1998,31 (12):1422-1432.
    [36]Nowakowska H., Zakrzewski Z., Moisan M. Propagation characteristics of electromagnetic waves along a dense plasma filament. Journal of Physics D:Applied Physics,2001,34 (10): 1474-1478.
    [37]Moisan M., Zakrzewski Z., and Rostaing J. C. Waveguide-based single and multiple nozzle plasma torches:the TIAGO concept. Plasma Sources Sci.Technol.2001,10:387-394.
    [38]Trivelpiece A. W., Gould R. W. Space charge waves in cylindrical plasma columns. Journal of Applied Physics,1959,30 (11):1784-1793
    [39]Borg G. G, Harris J. H, Miljak D. G et al. The application of plasma columns to radio frequency antennas. Applied Physics Letters,1999,74(5):3272-3274.
    [40]Borg G. G, Harris J. H, Martin N. M. Plasmas as antennas:Theory, experiment and applications. Plasma Physics,2000,7(5):2198-2202.
    [41]Whichello A. P., Rayner J. P., Cheetham A. D. Plasma antenna radiation patterns. In:11th International Congress on Plasma Physics. Sydney, Australia:American Institute of Physics, 2003:396-399.
    [42]Rayner J. P., Whichello A. P., Cheetham A. D. Physical characteristics of a plasma antenna. In:11th International Congress on Plasma Physics. Sydney, Australia:American Institute of Physics,2003:392-395.
    [43]Hargreave M., Rayner J.P., Cheetham A. D., et al. Coupling power and information to aplasma antenna. In:International Congress on Plasma Physics. Sydney, Australia: Australian Institute of Physics,2003:388-391.
    [44]Nikitin P.,Swenson C. Impedance of a short dipole antenna in a cold plasma. IEEE Transactions on Antennas and Propagation,2001,49(10):1377-1381.
    [45]Nikitin P., Swenson C. Impedance of a dipole antenna in a cold collisional plasma:theory and ionospheric measurements. In:1998 IEEE International Conference on Plasma Science. Raleigh, NC:IEEE,1998:122-123.
    [46]Dartora C.A., Heilmann A., Nobrega K.Z., et al. Radiation pattern from a cold magnetoplasma antenna. Physics of Plasmas,2009,16(7):1-6.
    [47]Lee Y, Ganguly S. Analysis of a plasma-column antenna using FDTD method. Microwave and optical technology letters,2005,46(3):252-259.
    [48]Lee Y., Ganguly S. FDTD analysis of a plasma column antenna. In:2005 IEEE Antennas and Propagation Society International Symposium. Washington, DC, USA:IEEE,2005:430-433.
    [49]Nghiem P, Chaker M, Bloyet E, et al. Propagation of surface waves in inhomogeneous plasmas, J. Appl. Phys,1982,53(4),2920-2922.
    [50]E. Mateev and I. Zhelyazkov, Propagation of a large-amplitude surface wave in a plasma column sustained by the wave, J. Appl. Phys.1983,54(6),3049-3052.
    [51]Kumar R., Bora D. A reconfigurable plasma antenna. Journal of Applied Physics,2010, 107:053303-1-053303-9.
    [52]Kumar R., Bora D. A reconfigurable plasma antenna. Journal of Applied Physics,2011, 109:063303-1-063303-9.
    [53]Kumar R., Bora D. Experimental study of parameter of a plasma antenna. Plasma Sci. Technol.,2010,12(5):592-600.
    [54]Russo P, Primiani V. M., Cerri G. et al. Experimental characterization of a surfaguide fed plasma antenna. IEEE, Transactions on antennas and propagation,2011,59(2):425-433.
    [55]Cerri G, Leo R. D, Primiani V. M, et al. Measurement of the properties of a plasma column used as a radiating element. IEEE Transactions on Instrumentation and Measurement, 2008,57(2):342-347.
    [56]Russo P, Cerri G, Vecchioni E. Self-consistent analysis of cylindrical plasma antennas. IEEE Transactions on Antennas and Propagation,2011,59(2):31-34.
    [57]Etesami, Fatemeh, Mohajeri, et al. On Radiation Characteristics of aPlasma Triangular Monopole Antenna. Tehran:The 19th Iranian Conference on Electrical Engineering,2011:1-4.
    [58]Halili N. A., Ali M. T., Zali H. M. et al. A Study on Plasma Antenna Characteristics with Different Gases. Malaysia:1st IEEE International Symposium on Telecommunication Technologies,2012:56-59.
    [59]Davis V. A., Mandess M. J., Cooke D. L. et al. Nascap-2k Self-Consistent Simulations of a VLF Plasma Antenna. IEEE, Trans. On Plasma Science,2012,40(4):1239-1247.
    [60]Ovsyanikov V. V.,01'shevs'kiy A. L., Popel'V. M. Bandwidth Properties of A Loop Antenna of Cold Plasma of A Gas Discharge. Ukraine:Conference on Ultrawideband and Ultrashort Impulse Signals,2006:257-259.
    [61]Ovsyanikov V. V., Reznichenko I. A.,01' shevs'kiy A. L. et al. Wideband Properties of A New Antenna Made of Cold Plasma. Ukraine:Conference on Ultrawideband and Ultrashort Impulse Signals,2008:77-79.
    [62]Dement'eva 0. B. Plasma Antenna on Subrezonant UHF Didcharge. Conference on Ultrawideband and Ultrashort Impulse Signals,2012:258-260.
    [63]杨兰兰,屠彦,王保平,等离子体天线中波的色散关系的研究,真空科学与技术学报,2004,24(6):424-426.
    [64]刘良涛,祝大军,刘盛刚.等离子体天线的原理与设计.雷达与对抗,2004,4,26-30.
    [65]黄雪峰,陈斌,汪家友.等离子体天线的基本原理及其构成.电子科技,2008,25(5):33-36.
    [66]钱志华,陈如山,杨宏伟.等离子体覆盖单极子天线的FDTD分析.南京理工大学学报,2005,29(05):510-513.
    [67]钱志华.等离子体天线辐射与散射特性分析:(博士学位论文).南京:南京理工大学,2006.
    [68]Qian Z. H, Chen R.5, Yang H. W, et al. FDTD analysis of a Plasma whip antenna. Microwave and Optical Technology Letters,2005,47(2):147-150.
    [69]Qian Z. H., Leung K. W., Chen R. S., et al. FDTD analysis of a plasma whip antenna. In: 2005 IEEE Antennas and Propagation Society International Symposium. Washington, DC, USA: IEEE,2005:166-169.
    [70]Qian Z. H., Chen R. S., Leung K. W., et al. FDTD analysis of microstrip patch antenna covered by plasma. In:2004 4th International Conference on Microwave and Millimeter Wave Technology. Beijing, China:Institute of Electrical and Electronics Engineers Computer Society,2004:983-986.
    [71]Qian Z. H., Chen R. S., Leung K. W., et al. FDTD analysis of microstrip patch antenna covered by plasma sheath. Progress In Electromagnetics Research,2005,52(1):173-183.
    [72]吴养曹.等离子体天线及隐身技术.通信与测控,2005(2):1-4.
    [73]李圣.表面波等离子体天线物理特性的理论分析.南华大学学报(自然科学版),2007,21(2):37-40.
    [74]陈文波,李圣,龚学余.基于JEC-FDTD算法的等离子体天线雷达散射截面计算.空间科学学报,2011,31(5):682-686.
    [75]赵国伟,王之江,徐跃民,梁志伟,徐杰.射频激励等离子体非线性效应的FDTD数值模拟.物理学报,2007,56(9):5304-5308.
    [76]赵国伟,陈诚,徐跃民.柱形等离子体辐射场的数值计算和分析.空间科学学报,2005,25(2):91-97.
    [77]赵国伟,徐跃民,陈诚.柱形等离子体辐射场和阻抗的数值计算.物理学报,2005,55(7):3458-3463.
    [78]赵国伟,陈诚,徐跃民.柱形等离子体辐射场的数值计算和分析.空间科学学报,2005,25(2):93-97.
    [79]赵国伟,徐跃民.等离子体天线隐身中天线参数的数值计算.微波学报,2008,24(3):17-20.
    [80]徐杰,赵国伟,梁志伟,等.柱形等离子体电离阻抗测量及分析.空间科学学报,2007,27(4):315-320.
    [81]徐杰,赵国伟,梁志伟,等.柱形等离子体辐射体输入阻抗测量.无线电工程,2007,37(8):32-34.
    [82]梁志伟,王之江,赵国伟,等.等离子体天线的噪声测量及分析.电波科学学报,2007,22(6):971-975.
    [83]梁志伟,孙海龙,徐杰,等.等离子体天线输入阻抗的测量及分析.物理学报,2008,57(7):4292-4297.
    [84]梁志伟,赵国伟,徐杰,等.柱形等离子体天线辐射特性的矩量法分析.电波科学学报,2008,23(4):749-753.
    [85]梁志伟,徐跃民.柱形等离子体天线仿真.微计算机信息,2009,(1):237-238.
    [86]王之江,赵国伟,梁志伟,等.等离子体天线中波传播的计算与测量.天线学报,2007,1(1)79-82.
    [87]Wang Zhijiang, Zhao Guowei, Xu Yuemin, et al. Propagation of surface wave along a thin plasma column and its radiation pattern. Plasma science and technology,2007, 9(5)::526-529.
    [88]夏新仁,尹成友.有限磁场中激光等离子体通道天线的电磁散射分析.核聚变与等离子体物理,2009,29(2):3-9.
    [89]夏新仁,尹成友.激光等离子体通道天线的色散特性研究.真空科学与技术学报,2009,29(1):15-20
    [90]夏新仁,尹成友.等离子体通道天线的传播特性分析.微波学报,2009,25(2):22-27.
    [91]夏新仁,尹成友,王光明.光致大气等离子体通道天线的传播特性分析.空军工程大学学报(自然科学版),2009,10(2):70-74.
    [92]夏新仁,王守杰,金贤龙,等.新概念激光等离子体通道天线的研究.中国电子科学研究院学报,2011,6(2):147-153.
    [93]曹立辉,郑龙根,张志刚,等.等离子体天线辐射特性研究.海军工程大学学报,2009,21(2):47-51.
    [94]袁斌,蒋磊,赵磊.自重构等离子体天线.中国,发明专利,200510112219.2005.
    [95]袁斌,祝平,高玉坤,等.一种高增益的可重构广角天线.中国,发明专利,专利号:201210369999.
    [96]Chung M., Chen W. S., Huang B. R., et al. Capacitive coupling return loss of a new pre-ionized monopole plasma antenna. In:IEEE Region 10 Conference. Taipei, Taiwan:IEEE, 2007:1-4.
    [97]Chung M., Chen W. S., Yu Y. H., et al. Properties of dc-biased plasma antenna. In:2008 International Conference on Microwave and Millimeter Wave Technology. Nanjing, China:IEEE, 2008:1118-1120.
    [98]李学识,胡斌杰,李瀚宇,等.等离子体天线研究与应用进展.现代电子技术,2010,316(5):66-69.
    [99]Li X. S., Luo F., Hu B. J. FDTD analysis of radiation performance of a cylinder plasma antenna. IEEE Antennas and Wireless Propagation Letters,2009,8(1):756-758.
    [100]Li X. S., Hu B. J. FDTD analysis of a magneto-plasma antenna with uniform or non-uniform distribution. IEEE Antennas and Wireless Propagation Letters,2010,9(1):175-178.
    [101]胡斌杰,阮成礼.等离子体圆柱波导的传播特性.中国科学E辑,1998,28(1):76-82.
    [102]胡斌杰,阮成礼,林为干.有限磁场中等离子体圆柱波导的传播特性.物理学报,1998, 47(2):245-251.
    [103]胡斌杰,张国基,赖声礼.有限外磁场中的空心圆柱等离子体波导.空间科学学报,2000,20(2):159-164.
    [104]Hu B. J., Wei G. Numerical analysis of a plasma waveguide with finite thickness of cladding in external magnetic field. IEEE Proceedings:Microwaves, Antennas and Propagation, 2001,148(2):115-118.
    [105]Hu B. J., Wei G. Numerical simulation of the fundamental mode of a magneto plasma rod surrounded by a lossless dielectric layer. IEEE Transactions on Plasma Science,2001,29(1): 1-7.
    [106]李学时.基于表面波驱动的等离子体天线及其阵列技术研究:(博士学位论文).广州:华南理工大学,2010.
    [107]吕军慰,陈自力,李迎松.柱形单极表面波等离子体天线控制模型研究.真空科学与技术学报,2012,32(4):285-290.
    [108]耿纪超,项铁铭,王建成,等.等离子智能天线阵列的特性研究.信息技术,2013,(2):15-17.
    [109]吴振宇,杨银堂,汪家友.等离子体天线表面电流分布与辐射特性研究.物理学报,2010,59(3):1890-1894.
    [110]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996.
    [111]马腾才,胡希伟,陈银华.等离子体物理原理.合肥:中国科学技术大学出版社,1988.
    [112]Roth J. R. Industrial Plasma Engineering (VolumnⅡ)-Applications to Non-Thermal Plasma Processing. Institute of Physics Publishing,2001.
    [113]张芝涛.大气压窄间隙DBD等离子体源与应用基础研究:(博士学位论文).大连:大连海事大学,2003.
    [114]葛袁静,张广秋,陈强.等离子体科学技术及其在工业中的应用.北京:中国轻工业出版社,2011.
    [115]赵青,刘述章,童洪辉.等离子体技术及应用.北京:国防工业出版社,2009.
    [116]Zhang Z. T, Zhao J. S, Xu X. W, et al. Experimental study on the interaction of electromagnetic waves and glow plasma. Plasma Sci. Technol.,2011,13(3):279-285.
    [117]鉴福升,曾浩,邹勇华.等离子体平面反射电磁波的模拟仿真.船舰电子工程,2011,31(4):102-104.
    [118]庄钊文,袁乃昌,刘少斌,等.等离子体隐身技术.北京:科学出版杜,2005.
    [119]金兹堡.电磁波在等离子体中的传播.北京:科学出版社,2004.
    [120]黄方意,林志丹,王超.等离子体天线技术原理分析.船舰电子对抗,2013,36(1):76-79.
    [121]袁忠才,时家明,余桂芳.表面波激励等离子体天线的原理与实现.电子信息对抗技术,2006,21(4):38-41.
    [122]石磊,丁君,丁芊等.等离子体单极天线辐射特性和隐身性能研究.航空计算技术,2009,39(1):31-34.
    [123]Kraus J. D., Marhefka R. J.(章文勋译).天线(第三版).北京:电子工业出版社,2006.
    [124]邰佑诚,栾秀珍,房少军,等.天线与电波传播.大连:大连海事大学出版社,2002.
    [125]郑灵,赵青,罗先刚.等离子体中电磁波传输特性理论与实验研究.物理学报,2012,61(15):155203-1-7.
    [126]何湘,陈建平,倪晓武.非均匀等离子体对平面电磁波的衰减.强激光与粒子束,2010,22(9):2115-2118.
    [127]吴成国,武文远,龚艳春.电磁波在冷等离子体中碰撞吸收特性研究.河北科技大学学报,2011,32:201-203.
    [128]Yuan C. X., Zhou Z. X., W. Zhang J. W. et al. Properties of Propagation of Electromagnetic Wave in a Multilayer Radar-Absorbing Structure with Plasma-and Radar-Absorbing Material. IEEE Trans on Plasma Sci,2011,39(9):1768-1775.
    [129]He X., Chen J. P., Ni X. W. et al. Numerical Investigation on Interference and Absorption of Electromagnetic Waves in the Plasma-Covered Cavity Using FDTD Method. IEEE Trans on Plasma Sci,2012,40(4):1010-1018.
    [130]Yuan C. X., Zhou Z. X., Sun H. G. Reflection Properties of Electromagnetic Wave in a Bounded Plasma Slab. IEEE Trans on Plasma Sci,2010,38(12):3348-3355.
    [131]张芝涛,赵建森,俞哲,等.一种光纤光谱协同放电电流测量等离子体电子密度的方法.中国发明专利,200910011583.2009.
    [132]殷燕,赵建森,俞哲.光谱法诊断等离子体的电子温度.北京理工大学学报,2009,29(增刊2):7-9.
    [133]孙奉娄,陆俊杰.一种简单的辉光放电等离子体诊断方法.核聚变与等离子体物理,2010,30(1):94-96.
    [134]Massines F, Segur P. Gherardi N. et al. Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure:diagnostics and modelling. Surf. Coat. Tech. 2003,174:8-14.
    [135]Li S. Z., Huang W. T., Zhang J. L. et al. Optical diagnosis of an argon/oxygon needle plasma generated at atmospheric pressure. Applied Physics Letters,2009,94(11): 111501-111501-3.
    [136]Singh S. B, Chand N, Patil D, S. Langmuir probe diagnostics of microwave electron cyclotron resonance (ECR) plasma. Vaccum,2008,83(2):372-377.
    [137]Prevosto L, Kelly H, Mancinelli B. R. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabillized nitrogen plasma jet. Journal of Applied Physics,2012,112(6): 063302-1-063302-7.
    [138]Mascali D, Gambino N, Miracoli R et al. Plasma parameters measurements by means of Langmuir probe. Radiation Effects and Defects in Solids,2008,163(4-6):471-478.
    [139]俞哲,张芝涛,赵建森.Langmuir双探针诊断Ne辉光放电管电子密度.物理实验,2010,30(1):1-5.
    [140]钟顺时.天线理论与技术.北京:电子工业出版社,2011.
    [141]李莉.天线与电波传播.北京:科学出版社,2009.
    [142]Naser-Moghadasi M., Sadeghzadeh R. A., Sedghi T. et al. UWB CPW-Fed Fractal Patch Antenna with Band-Notched Function Employing Folded T-Shaped Element. IEEE Antennas and Wireless Propagation Letters,2013,12:504-507.
    [143]Alsawaha H. W., Safaai-Jazi A. Ultrawideband Hemispherical Helical Antennas. IEEE Trans on Antenna and Propagation,2010,58(10):3175-3181.
    [144]梁振光.电磁兼容原理、技术及应用.北京:机械工业出版社,2007.
    [145]Etrnad A, Reynaud C. Design aims in HV Substations to Reduce electromagnetic interference (EMI) in Secondary Systems.1985,100:87-112.
    [146]林福昌,李化.电磁兼容原理及应用.北京:机械工业出版社,2009.
    [147]Clayton R. Paul(闻映红译).电磁兼容导论.北京:人民邮电出版社,2006.
    [148]王定华,赵佳升.电磁兼容原理与设计.成都:电子科技大学出版社,1995.
    [149]赖祖武.电磁干扰防护与电磁兼容.北京:原子能出版社,1985.
    [148]徐鹏根.电磁兼容性原理与应用.北京:高等教育出版社,1993.
    [149]Prasad K. V(陈淑凤等译).工程电磁兼容.北京:机械工业出版社,2006.
    [150]George J W(徐政).电力系统谐波——基本原理、分析方法和滤波器设计.北京:机械工业出版社,.2005.
    [151]Reinhold L, Gene B. RF Circuit Design Theory and Applications(Second Edition),北 京:电子工业出版社,2010.
    [152]Chaki S, Andoh Y, Sasaki N et al. Experimental study on spiral inductors. IEEE MTT-S Digest,1995,753-756.
    [153]Levy R, Cohn S. B. A Brief History of Microwave Filter Research, Design and Development. IEEE Trans. On Microwave Theory and Techniques, MTT-32,1982,1055-1067.
    [154]Korber M. New microstrip filter topologies. Microwave Journal,1997,40:138-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700