长江河口泥沙混合和交换过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过全面分析进入二十一世纪初期(2003-2007年)长江口及其临近海域大面积同步观测的悬沙粒度、表层沉积物粒度、流速、含沙量和盐度系列资料,探讨了在河口混合环境下泥沙的交换过程和规律,从河口-陆架系统的角度研究悬浮泥沙在河口和陆架的输移和归宿问题。得到的认识不仅是河口泥沙研究从定性研究向定量研究的进展,而且粒度谱计算方法还为泥沙交换研究提出了适用于其他潮汐环境的沉积动力分析的新思路。从悬沙粒度的角度分析泥沙在河口-陆架的混合和交换过程,丰富了河口泥沙运动和沉积动力学的理论和方法,对其他河口的相关研究具有借鉴意义。对长江河口悬沙粒度的组成、时空分布特征,特别是对流域来水来沙改变包括流域大型水利工程的响应做了分析。系统探讨了高浊度河口混合环境下泥沙的交换过程和规律。研究表明长江口悬浮泥沙与表层沉积物高交换区(交换率>0.6)主要分布在南槽口外的泥质区和杭州湾附近海域,悬浮泥沙大量参与造床,其中长江口外泥质区的交换率高达0.9以上;低交换区(交换率<0.1)分布在长兴岛以上的河口上段和陆架残留砂区,悬浮泥沙基本不参与造床。而浑浊带区域的交换率在0.4-0.6之间,说明河流输入的悬沙在浑浊带区域直接沉积的比例并不是最高,其高沉积区的泥沙部分来自泥质区内随涨潮流再次输入河口的泥沙。粒度谱计算的结果表明,大约有47%的悬浮泥沙沉积在拦门沙海域及水下三角洲前缘,超过50%的悬浮泥沙摆脱河口的“束缚”进入杭州湾以及向南输运,这与其他方法得到的结果相近。本文提供了一种研究泥沙输运和沉积量的新的计算方法。
     率先对长江河口悬沙粒度的组成、时空分布特征,特别是对流域来水来沙改变包括流域大型水利工程的响应做了分析。认识包括:河口-陆架的悬沙整体呈现“细-粗-细”的变化规律。拦门沙海域最粗,江阴-南支上段其次,陆架区最细,认为河口拦门沙区悬沙中值粒径的增加主要受到滩槽泥沙交换和床面泥沙再悬浮的影响。长江口悬浮泥沙类型主要为粘土质粉砂,粉砂、粘土和砂组分的平均含量分别约为65%、30%和5%。长江河口区小潮悬沙中值粒径平均比大潮减小24%,主要由于小潮期间粗颗粒物质(粗粉砂和砂)部分产生沉降并不易被起动的缘故。2007年长江河口悬沙中值粒径比2003年减小11%,含沙量比2003年减小22%。其中,河口上段的含沙量2007年比2003年减小66.5%,悬沙中值粒径的减少不明显;而在拦门沙区域,悬沙中值粒径减小比例达到20%左右,含沙量减少仅10%左右。在长江流域来沙量减小的背景下,长江河口的响应具体表现为,河口上段含沙量急剧减少,但在河口拦门沙区域仍能维持着较高的含沙量,主要缘于河口系统内部,特别是浑浊带水域的供沙能力尚未受到影响,近底再悬浮和滩槽泥沙交换的贡献仍占主导,但悬沙中值粒径呈明显减少的趋势。总之,河口上段含沙量对流域减沙的响应最为敏感,而拦门沙区的中值粒径对减沙的响应最敏感。
     长江河口悬沙和表层沉积物的混合和沉积特性。长江河口悬浮泥沙和表层沉积物的平均粒径(Md)与1n{m_v/m_c}值表现出良好的线性关系,悬沙在河口区表现出线性混合的特征,粘性组分(m_v)和非粘性组分(m_c)在河口均匀混合,并主要以絮团的形式在河口输运和沉降。表层沉积物却呈现不同的特征,细颗粒泥沙的粘性组分m_v和非粘性组分m_c显示出简单的线性混合特征,而粗颗粒泥沙的粘性组分m_v和非粘性组分m_c之间存在分选沉降。河口上段、北港的拦门沙海域和残留沙区,表层沉积物主要以单颗粒形式运动或存在。长江口南北槽和杭州湾区域的表层沉积物主要以絮团的形式沉降。絮团沉积的高值区在杭州湾和南槽口外泥质区,杭州湾和舟山群岛外的长条形泥质带显示了长江口悬沙向南输运的核心路线。
     长江口悬沙向外输运的路线和沉积中心。由于受柯氏力和沿岸流系的影响,从长江口输出的大部分悬浮泥沙先沉积在长江口南槽口外的泥质区,其泥沙交换速率可高达2-3cm/yr以上。随后在潮流的作用下向长江口内、杭州湾和沿海岸向南输运,泥质区充当了长江入海泥沙向南输送的“中转站”。上述结论得到遥感图像、口外流场和泥沙场的分析的支持。根据本文泥沙交换速率研究的结果,在10年~100年尺度上,长江口南槽口外的泥质区存在着一个显著的沉积中心,它大致位于121.5°E-123°E和31°N之间的区域,对细颗粒泥沙沉积动力特征的分析得到了长江口悬沙向外输运的路线和沉积中心。
     本文结合同步采集的水沙盐资料从悬沙粒度的角度探讨了悬浮泥沙在河口环境下的混合特征。分析表明,悬沙粒径梯度呈现“小-大-小”的变化趋势,与流速梯度、含沙量梯度和盐度梯度的变化趋势一致,高剪切流速和含沙量的垂向分层是引起拦门沙区粒度分层的主要原因。在河口盐淡水混合的拦门沙区,流速梯度、含沙量梯度和盐度梯度最大。水流的剪切作用引起泥沙再悬浮,使得拦门沙区粉砂组分增加,对近底含沙量和粒径的贡献最大。
     泥沙的存在具有强烈的制紊作用。剪切强度较大时,促进再悬浮的发生,有利于维持河口较高的悬沙浓度;剪切流速较小时,悬沙沉降量大于再悬浮的量,引起的水沙分层将抑制紊流的发生。流速梯度增加促进含沙量梯度增加,使紊动作用与悬浮作用之间达到平衡,Richardson数接近临界值0.25,水流趋于层化。
     本文不仅对长江口及其临近海域近期悬沙粒度分布特征和混合过程进行了深入分析,而且还探讨了长江入海泥沙在东海陆架的输运路线和最终归宿。
Based on the data of grain size distributions (GSDs) of suspended and surface sediments, current velocities, suspended sediment concentrations (SSC) and salinities collected synchronously during 2003 to 2007 in the Yangtze Estuary and adjacent area, the temporal and spatial characteristics of GSDs were carried out to study the sediment exchange processes under the estuarine mixing conditions, as well as to explore the fate of suspended sediments in the Yangtze estuary-shelf systems. This study was to analyze the GSDs of the suspended and surface sediment in the earlier 21~(th) century, and to study the characteristics of sediment dynamics and the sediment exchange. The grain size spectral analysis provided by this study can be used for the study of sediment dynamics in other tidal environments. The analyses of mixing and exchange processes based on the GSDs can enrich the methods and theories of the sediment dynamics and sediment exchange, as the reference for the relative research in other estuaries.
     The spatial distribution of the sediment exchange ratios demonstrated that small amounts of suspended sediment were deposited onto the seabed of the upper estuary (exchange ratio < 0.1), because the fine-grained suspended sediments in this region were transported to the mouth bar area and subaqueous delta by the ebb-dominated tide flow. The sediment exchange ratio in the outer estuary also showed very low values (< 0.1) due to the oceanic currents offshore that prevented the diffusion of riverine sediments further seaward. However, the intensive sediment exchange occurred in the inner estuary due to the sediment mixing which controlled by bidirectional tidal flows. In addition, a high sediment exchange ratio occurred in the muddy area (>0.9) at the river mouth, which implies that this is the depocenter of the Yangtze mud. Relative higher sediment exchange ratio occurred in the mouth bar area (0.4~0.6), which indicates that the proportion of the suspended sediment deposit in the mouth bar area is not the maximum in the estuarine system. The sediment in the mouth bar areas with high sedimentation rate is come from the sediment transport from the muddy area with flood tidal flow.
     The analyses of grain-size spectra were conducted in an attempt to quantify the sediment mixing and exchange processes in the Yangtze Estuary and the adjacent region based on the principle of mass balance. This study makes great progress in the sediment dynamics and analysis methods. Based on the average GSDs of the suspended sediments, approximately 47% of the sediments from the Yangtze River accumulate in the mouth bar area and subaqueous delta, while the rest are transferred to the Hangzhou Bay and transported southward along the coasts. This study provides another analysis method to examine the suspended sediment transport and its fate through the analysis of GSDs.
     The temporal-spatial characteristics of suspended sediment grain-size distribution and its response on the conditions of sediment transport decrease from the Yangtze River are also carried out in this study. A clear fine-coarse-fine pattern of suspended sediment median diameter (D_(50)) is shown from the upper estuary to continental shelf. The coarsest suspended sediments are present in the mouth bar area, and the coarser are present in the upper estuary, while the finest are present in the continental shelf. The increase of D_(50) in the mouth bar area is resulted in the sediment resuspension and sediment exchange between channel and shoal. Clayey silt is the dominant sediment type in the study area. The contents of clay, silt and sand are 30%, 65% and 5%, respectively.
     The D_(50) of suspended sediment in neap tide is decreased by 24% compared with that in spring tide, due to the coarse silt and sand components are difficult to suspend into the water during the neap tide. The SSC at the upper estuary in the year of 2007 is 66.5% lower than that in 2003, and the D_(50) shows no significant variation trends. However, The D_(50) at the mouth bar area in 2007 is 20% lower than that of 2003, and the SSC is only 10% lower than that in 2003. The D_(50) of the Yangtze Estuary in the year of 2007 was decreased by 11% in the comparison with that in 2003, while the SSC was decreased by 22% in the same period. Under the situations of reduction of sediment loads from the river basin, the high SSC was maintained in the mouth bar area due to the inner sediment supply from the estuarine systems: sediment resuspension and sediment exchange between channel and shoal. The responses of SSC in the upper estuary and D_(50) in the mouth bar area on the reduction of sediment loads from the river basin are more sensitive than the other region of the Yangtze Estuary.
     Symmetric sediment mixing characteristics are present in the suspended sediment of Yangtze Estuary, and the fine-grained and coarse-grained sediments display a simple and perfect linear mixing, which are primarily deposited as flocs. However, asymmetric sediment mixing characteristics are present in the surface sediment. Specifically, the fine-grained sediments display a simple linear mixing of the cohesive and cohesionless fractions, which are primarily deposited as flocs. The coarse-grained sediments display a selective deposition of the cohesionless sediment fraction, which is primarily deposited as single grains. Furthermore, high rates of flocs deposition were recorded in the outer estuary between 122°E and 123°E along the coast. The fine-grained sediment belt along the south coasts beside the Hangzhou Bay and Zhoushan Islands indicates the deposition and southward pathway of suspended sediments from the Yangtze Estuary in the form of flocs.
     Conversion of the dimensionless exchange ratio, p, to the exchange rates of the fine-grained sediments was achieved by considering the bulk sediment accumulation rates. The sediment from the Yangtze Estuary is deposited in the muddy area firstly, then, which is transported southward into the Hangzhou Bay and south coasts with the tidal flow. In fact, the muddy area is the "transfer station" of Yangtze sediment southward transport.
     These results are confirmed by the analyses of the remote-sensing image, current velocities and SSC in the outer of the Yangtze Estuary. Estuarine sediment from the North Channel, North and South Passages are transported to the southeast and converged at the outer of Nanhui Headland. The ebb flow and residual current are converged at the outer of Nanhui Headland too. Moreover, the SSC in this region is higher than other regions of the outer mouth bar area. On the decadal to centennial time scale associated with our results, a clearly defined depocenter of Yangtze mud with the exchange rates of greater than 2-3 cm/yr is present in the south of the estuary. This depocenter, which extends to the south of the estuary, is located between 122°E and 123°E longitude, and around 31°N latitude. Our study of sediment exchange rates provides a clear picture of suspended sediment transport pathways in the Yangtze Estuary and adjacent region, and allows us to trace the fate of suspended sediment supplied by the Yangtze River.
     The sediment mixing processes are conducted by the analyses of the synchronous current velocities, SSC and salinity. The gradient of D_(50) showed a small-great-small pattern in the Yangtze Estuary, which were consistent with those of velocity, SSC and salinity gradients. The great gradients are present in the mouth bar areas. The increase of silt component conducted by the resuspension, which was controlled by the shear flow, contributed to the increase of SSC and D_(50).
     Turbulence is largely suppressed by the sediment. The proper intensity of shear flow redounds to maintain the high SSC in the estuary. Stratification of SSC reduces the turbulence intensity when the shear flow is low. The SSC gradient increases with the increase of turbulence, as a result, the stratification of SSC suppresses turbulence production until the Richardson number (Ri) is near to the constant 0.25. If the critical level of Ri is exceeded to 0.25, however, turbulence will be damped and sediment settling will exceed further resuspension until Ri returns to the critical value of 0.25.
     The recent GSDs of suspended sediment and the sediment mixing processes in the Yangtze Estuary and adjacent area are conducted in this study, moreover, the transport pathway and the fate of the Yangtze sediment in the continental shelf of East China Sea are carried out as well as.
引文
Aitchison,J.,1986.The Statistical Analysis of Compositional Data[M].Chapman and Hall,London.416 pp.
    Almroth,E.,Tengberg,A.,Andersson,J.H.,Pakhomova,S.,Hall,P.O.J.,2009.Effects of resuspension on benthic fluxes of oxygen,nutrients,dissolved inorganic carbon,iron and manganese in the Gulf of Finland,Baltic Sea[J].Continental Shelf Research,29:807-818.
    Bever,A.J,Harris,C.K.,Sherwood,C.R.,Signell,R.P.,2009.Deposition and flux of sediment from the Po River,Italy:An idealized and wintertime numerical modeling study[J].Marine Geology,260:69-80.
    Breslin,V.T.,Sanudo-Wilhelmy,S.A.,1999.High spatial resolution sampling of metals in the sediment and water column in Port Jefferson Harbor,New York[J].Estuaries,22:669-680.
    Calliari,L.J.,Winterwerp,J.C.,ernandes,E.F.,Cuchiara,D.,Vinzon,S.B.,Sperle,M.,Holland,K.T.,2009.Fine grain sediment transport and deposition in the Patos Lagoon-Cassino beach sedimentary system[J].Continental Shelf Research,29:515-529.
    Chant,R.J.,Stoner,A.W.,2001.Particle trapping in a stratified flood-dominated estuary[J].Journal of Marine Research,59:29-51.
    Che,Y.,He,Q.,Lin,W.Q.,2003.The distributions of particulate heavy metals and its indication to the transfer of sediments in the Changjiang Estuary and Hangzhou Bay,China[J].Marine Pollution Bulletin,46:123-131.
    Chen,J.Y.,Zhu,H.F.,Dong,Y.F.,Sun,J.M.,1985.Development of the Changjiang Estuary and its submerged delta[J].Continental Shelf Research,4(1/2):47-56.
    Chen,X.Q.,Zhang,E.F.,Mu,H.Q.,Zong,Y.,2005.A preliminary analysis of human impacts on sediment discharges from the Yangtze,China,into the Sea[J].Journal of Coastal Research,21(3):515-521.
    Chen,Z.,Song,B.,Wang,Z.,Cai,Y.,2000.Late Quaternary evolution of the sub-aqueous Yangtze Delta,China:sedimentation,stratigraphy,palynology,and deformation[J].Marine Geology,162:423-441.
    Chen,Z.Y.,Li,J.F.,Shen,H.T.,Wang,Z.H.,2001.Yangtze River of China:historical analysis of discharge variability and sediment flux[J].Geomorphology,41:77-91.
    Chen,Z.,Watanabe,M.,Wolanski,E.,2007.Sedimentological and ecohydrological processes of Asian deltas:The Yangtze and the Mekong[J].Estuarine,Coastal and Shelf Science,71:1-2.
    DeMaster,D.J.,McKee,B.A.,Nittrouer,C.A.,Qian,J.C.,Cheng,G.D.,1985.Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea[J].Continental Shelf Research,4(1/2):143-158.
    Dill,H.G.,1998.A review of heavy minerals in clastic sediments with case studies from the alluvial-fan through the nearshore-marine environments[J].Earth-Science Reviews,45:103-132.
    Dyer,K.R.,1973.Estuaries:A Physical Introduction[M].John Wiley and Sons Inc.Publishers,London,140 pp.
    Evans,G.,Lane-Serff,G.F.,Collins,M.B.,Ediger,V.,Pattiaratchi,C.B.,1995.Frontal instabilities and suspended sediment dispersal over the shelf of the Cilician Basin,southern Turkey[J].Marine Geology,128:127-136.
    Flemming,B.W.,2000.A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams[J].Continental Shelf Research,20:1125-1137.
    Folk,R.L.,and Ward,W.C.,1957.Brazos River Bar:A study in the significance of grain size parameters[J].Journal of Sedimentary Petrology,27:3-26.
    Friedman,G.M.,1979.Differences in size distribution of populations of particles among sands of various origins[J].Sedimentology,26:3-32.
    Gao,S.,Collins,M.B.,Lanckneus,J.,De Moor,G.,Van Lancker,V.,1994.Grain size trends associated with net sediment transport,patterns:an example from the Belgian continental shelf [J].Marine Geology,121:171-185.
    Geyer,W.R.,Woodruff,J.D.Traykovski,P.,2001.Sediment transport and trapping in the Hudson River Estuary[J].Estuaries,24:670-679.
    Hallsworth,C.R.,Morton,A.C.,Claoue-Long,J.,Fanning,C.M.,2000.Carboniferous sand provenance in the Pennine Basin,UK:constraints from heavy mineral and detrital zircon age data[J].Sedimentary Geology,137:147-185.
    Hartmann,D.,Flemming,B.W.,2007.From particle size to sediment dynamics:An introduction [J].Sedimentary Geology,202:333-336.
    Horowitz,A.J.,1991.A Primer on Sediment-Trace Element Chemistry[M].Lewis Publishers,Chelsea,MI,136pp.
    Houwing,E.J.,2000.Sediment dynamics in the pioneer zone in the land reclamation area of the Wadden Sea,Groningen,the Netherlands[D],PhD thesis,University of Utrecht,Utrecht,the Netherlands.pp.21-56.
    IGBP.2006.Science Plan and Implementation Strategy[M].IGBP Report No.55.IGBP Secretariat,Stockholm.33pp.
    Islam,M.R.,Begum,S.F.,Yamaguchi,Y.,Ogawa,K.,2002.Distribution of suspended sediment in the coastal sea off the Ganges-Brahmaputra River mouth:observation from TM data[J].Journal of Marine Systems,32:307-321.
    Jouanneau,J.M.,Garcia,C.,Oliveira,A.,Rodrigues,A.,Dias,J.A.,Weber,O.,1998.Dispersal and deposition of suspended sediment on the shelf off the Tagus and Sado estuaries,S.W.Portugal [J].Progress in Oceanography,42:233-257.
    Le Hir,P.,Fight,A.,Jacinto,R.S.,Lesueur,P.,Dupont,J.P.,Lafite,R.,Brenon,I.,Thouvenin,B.,Cugier,P.2001.Fine sediment transport and accumulations at the mouth of the Seine Estuary,France[J].Estuaries,24:950-963.
    Le Roux,J.P.,Rojas,E.M.,2007.Sediment transport patterns determined from grain size parameters:Overview and state of the art[J].Sedimentary Geology,202:473-488.
    Leopold,L.B.,Wolman,M.G.,Miller,J.P.,1964.Fluvial Processes in Geomorphology[M].W.H.Freeman,San Francisco,CA.pp.32-65.
    Leys,J.,McTainsh,G.,Koen,T.,Mooney,B.,Strong,C.,2005.Testing a statistical curve-fitting procedure for quantifying sediment populations within multi-modal particle-size distributions[J].Earth Surface Processes and Landforms,30(5):579-590.
    Li,G.X.,Wei,H.L.,Yue,S.H.,Cheng,Y.J.,Han,Y.S.,1998.Sedimentation in the Yellow River delta,part Ⅱ:suspended sediment dispersal and deposition on the subaqueous delta[J].Marine Geology 149:113-131.
    Liu,H.,He,Q.,wang,Z.B.,Weltje,G.J.,Zhang,J.,2009.Dynamics and spatial variability of near-bottom sediment exchange in the Yangtze Estuary,China[J].Estuarine,Coastal and Shelf Science,doi:10.1016/j.ecss.2009.04.020.
    Liu,J.P.,Xu,K.H.,Li,A.C.,Milliman,J.D.,Velozzi,D.M.,Xiao,S.B.,Yang,Z.S.,2007.Flux and fate of Yangtze River sediment delivered to the East China Sea[J].Geomorphology,85:208-224.
    McLaren,P.,1981.An interpretation of trends in grain-size measurements.Journal of Sedimentary Petrology,51:611-624.
    Milliman,J.D.,Shen,H.T.,Yang,Z.S.,Robert,H.M.,1985.Transport and deposition of river sediment in the Changjiang Estuary and adjacent continental shelf[J].Continental Shelf Research,4(1/2):37-45.
    Migniot,C.,1968.A Study of the Physical Propertues og different very fine Sediments and their Behavior under Hydrodynamic Action[M].La Houille Blanche,No 7,pp591-620.
    Mitchener,H.and Torfs,H.,1996.Erosion of mud/sand mixtures[J].Coastal Engineering,29:1-25.
    Munksgaard,N.C.,Lim,K.,Parry,D.L.,2003.Rare earth elements as provenance indicators in North Australian estuarine and coastal marine sediments[J].Estuarine,Coastal and Shelf Science,57:399-409.
    Orton,P.M.,Kineke,G.C.,2001.Comparing calculated and observed vertical suspended-sediment distributions from a Hudson River estuary turbidity maximum[J].Estuarine,Coastal and Shelf Science,52:401-410.
    Paola,C.,Seal,R.,1995.Grain size patchiness as a cause of selective deposition and downstream fining[J].Water Resources Research,31:1395-1407.
    Paphitis,D.,Collins,M.B.,2005.Sediment resuspension events within the(microtidal)coastal waters of Thermaikos Gulf,northern Greece[J].Continental Shelf Research,25:2350-2365.
    Pejrup,M.,1988.The triangular diagram used for classification of estuarine sediments:a new approach[A].In:Tide-Influenced Sedimentary Environments and Facies(de Boer,P.L.,van Gelder,A.,Nio,S.D.,editors)[C].Reidel,Dordrecht,pp.289-300.
    Peters,H.,1997.Observations of stratified turbulent mixing in an estuary:neap-to-spring variations during high river flow[J].Estuarine,Coastal and Shelf Science,45:69-88.
    Prins,M.A.,Vriend,M.,Nugteren,G.,Vandenberghe,J.,Lu,H.,Zheng,H.,Weltje,G.J.,2007.Late Quaternary aeolian dust flux variability on the Chinese Loess Plateau:Inferences from unmixing of loess grain-size records[J].Quaternary Science Reviews,26:242-254.
    Pritchard,D.W.,1955.Estuarine circulation patterns[A].Proceeding American Society Civil Engineering[C].81:717.
    Pyokari,M.,1997.The provenance of beach sediments on Rhodes,southeastern Greece,indkated by sediment texture,composition and roundness[J].Geomorphology,18:315-332.
    Ramaswamy,V.,Raoa,P.S.,Raob,K.H.,Thwin,S.,Rao,N.S.,Raiker,V.,2004.Tidal influence on suspended sediment distribution and dispersal in the northern Andaman Sea and Gulf of Martaban [J].Marine Geology, 208: 33-42.
    Raudkivi, A., 1998.Loose Boundary Hydraulics [M].Pergamon Press, New York.pp.56-94.
    Ren, J., and Packman, A.I., 2007.Changes in fine sediment size distributions due to interactions with streambed sediments.Sedimentary Geology, 202: 529-537.
    Rimington, N., Cramp, A., Morton, A., 2000.Amazon Fan sands: implications for provenance [J].Marine and Petroleum Geology, 17: 267-284.
    Shepard, F.P., 1954.Nomenclature based on sand-silt-clay ratios [J].Journal of Sedimentary Petrology, 24: 151-158.
    Stacey, M.T., Burau, J.R.& Monismith, S.G.2001 Creation of residual flows in a partially stratified estuary.Journal of Geophysical Research 106 (C8): 17013-17037.
    Syvitski, J.P.M., Vorosmarty, C.J., Kettner A.J., Green, P., 2005.Impact of human on the flux of terrestrial sediment to the global ocean [J].Science, 308: 376-380.
    Torfs, H., Mitchener, H., Huysentruyt, H.,Toorman,E., 1996.Settling and consolidation of mud/sand mixtures [J].Coastal Engineering, 29: 27-45.
    Turrell, W.R., Brown, J., Simpson, J.H., 1996.Salt intrusion and secondary flow in a shallow, well-mixed estuary [J].Estuarine, Coastal and Shelf Science, 42:153-169.
    Uncles, R.J., 2002.Estuarine physical processes research: some recent studies and progress [J].Estuarine, Coastal and Shelf Science, 55: 829-856.
    Van Ledden, M., van kesteren, W.G.M., Winterwerp, J.C., 2004.A conceptual framework for the erosion behavior of sand-mud mixtures [J].Continental Shelf Research, 24:1-11.
    Van Ledden, M., 2003.Sand-mud segregation in estuaries and tidal basins.Ph.D.Thesis, Delft University of Technology, Delft, Netherlands, pp.17-3 5.
    van Maren, D.S., Hoekstra, P., 2005.Dispersal of suspended sediments in the turbid and highly stratified Red River plume [J].Continental Shelf Research 25: 503-519.
    Visher, GS., 1969.Grain size distributions and depositional processes [J].Journal of Sedimentary Petrology, 39:1074-1106.
    von Eynatten, H., 2004.Statistical modelling of compositional trends in sediments [J].Sedimentary Geology, 171: 79-89.
    Walsh, J.P., Nittrouer, C.A., 2009.Understanding fine-grained river-sediment dispersal on continental margins [J].Marine Geology, doi: 10.1016/j.margeo.2009.03.016.
    Wang, H.J., Yang, Z.S., Li, Y.H., Guo, Z.G, Sun, X.X., Wang, Y., 2007.Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe(Yellow River)mouth[J].Continental Shelf Research,27:854-871.
    Weltje,G.J.,1997.End-member modeling of compositional data:numerical-statistical algorithms for solving the explicit mixing problem[J].Journal of Mathematical Geology,29:503-549.
    Weltje,G.J.,Prins,M.A.,2003.Muddled or mixed?Inferring palaeoclimate from size distributions of deep-sea clastics[J].Sedimentary Geology,162:39-62.
    Weltje,G.J.,Prins,M.A.,2007.Genetically meaningful decomposition of grain-size distributions [J].Sedimentary Geology,202:409-424.
    Wright,L.D.,Kim,S.C.,Friedrichs,C.T.,1999.Across-shelf variations in bed roughness,bed stress and sediment suspension on the nortbern California shelf[J].Marine Geology,154:99-115.
    Yang,S.L.,Zhao,Q.Y.,Belkin,I.M.,2002.Temporal variation in the sediment load of the Yangtze River and the influences of the human activities[J].Journal of Hydrology,263:56-71.
    Yang,S.L.,Belkin,I.M.,Belkina,A.I.,Zhao,Q.Y.,Zhu,J.,Ding,X.D.,2003.Delta response to decline in sediment supply from the yangtze river:evidence of the recent four decades and expectations for the next half-century[J].Estuarine,Coastal and Shelf Science,57:589-599.
    Yang,S.L.,Shi,Z.,Zhao,H.Y.,Li P.,Dai,S.B.,Gao,A.,2004.Effects of human activities on the Yangtze River suspended sediment flux into the estuary in the last century[J].Hydrology and Earth System Sciences,8(6):1210-1216.
    Yang,S.L.,Zhang,J.,Zhu,J.Smith,J.P.,Dai,S.B.,Gao,A.,Li,P.,2005.Impact of dams on Yangtze River sediment supply to the sea and delta intertidal wetland response[J].Journal of Geophysical Research,110,F03006,doi:10.1029/2004JF000271.
    Yang,S.L.,Zhang,J.,Dai,S.B.,Li,M.,Xu,X.J.,2007a.Effect of deposition and erosion within the main river channel and large lakes on sediment delivery to the estuary of the Yangtze River [J].Journal of Geophysical Research,112,F02005.doi:10.1029/2006JF000484.
    Yang,S.L.,Zhang,J.,Xu,X.J.,2007b.Influence of the Three Gorges Dam on downstream delivery of sediment and its environmental implications,Yangtze River[J].Geophysical Research Letter,34,L10401,doi:10.1029/2007GL029472.
    Zhang,X.B.,Wen A.B.,2004.Current changes of sediment yields in the upper Yangtze River and its two biggest tributaries,China[J].Global and Planetary Change,41:221-227.
    Zhang,J.,1999.Heavy metal compositions of suspended sediments in the Changjiang(Yangtze River)estuary:significance of riverine transport to the ocean[J].Continental Shelf Research,19:1521-1543.
    卞振举,李玉良.1989.污染物在河口中的混合与离散[J].交通环保,6:21-29.
    蔡爱智.1982.长江入海泥沙的扩散[J].海洋学报,4(1):78-88.
    曹沛奎,严肃庄.1996.长江口悬沙锋及其对物质输移的影响[J].华东师范大学学报(自然科学版),1:85-94.
    曹祖德,杨华,侯志强.2008.粉沙质海岸的泥沙运动和外航道淤积[J].水道港口,29(4):247-252.
    陈报章,李从先,业治铮.1995.冰后期长江三角洲北翼沉积及其环境演变[J].海洋学报,17(1):64-75.
    陈沈良,谷国传,刘勇胜.2003.长江口北支涌潮的形成条件及其初生地探讨[J].水利学报,30-36.
    陈沈良,严肃庄,李玉中.2009.长江口及其邻近海域表层沉积物分布特征[J].长江流域资源与环境,18(2):152-156.
    陈吉余.1957.长江三角洲江口段的地形发育[J].地理学报,23(3):241-253.
    陈吉余,虞志英,恽才兴.1959.长江三角洲的地貌发育[J].地理学报,25(3):201-220.
    陈吉余,恽才兴,徐海根,等.1979.两千年来长江河口发育模式[J].海洋学报,1(1):103-111.
    陈吉余,沈焕庭,恽才兴,等.1988.绪论.长江河口动力过程和地貌演变[M].上海:上海科学技术出版社,1-4.
    陈吉余.1995.长江口拦门沙及水下三角洲的动力沉积和演变[J].长江流域资源与环境,4(4):348-355.
    陈吉余,陈沈良.2002.南水北调工程对长江河口生态环境的影响[J].水资源保护,3:10-14.
    陈吉余,程和琴,戴志军.2008.河口过程中第三驱动力的作用和相应-以长江河口为例[J].自然科学进展,18(9):994-1000.
    陈西庆,陈吉余.1997.南水北调对长江口粗颗粒悬沙来量的影响[J].水科学进展,8(3):259-263.
    陈西庆,严以新,童朝锋,等.2007.长江输入河口段床沙粒径的变化及机制研究[J].自然科学进展,17(2):233-239.
    陈中原,杨文达.1991a.长江河口地区第四纪古地理古环境变迁[J].地理学报,46(4):436-448.
    陈中原,许世远,严钦尚.1991b.全新世长江水下三角洲沉积相的研究[J].海洋与湖沼,22 (1):29-37.
    程天文,赵楚年.1984.我国沿岸入海河川径流量与输沙量的估算[J].地理学报,39(4):418-427.
    程天文,赵楚年.1985.我国主要河流入海径流量、输沙量及对沿岸的影响[J].海洋学报,7(4):460-471
    戴仕宝.2006.中国流域自然作用和人类活动对(河流)入海泥沙的影响—以长江为重点[D].华东师范大学博士论文.1-16.
    董礼先.1998.椒江河口高混浊水混合过程分析[J].海洋与湖沼,29(5):535-541.
    董永发,丁文鋆.1988.长江河口沉积物粒度特征与水动力的关系[A].长江河口动力过程和地貌演变[C].上海:上海科学技术出版社,314-322.
    段凌云,王张华,李茂田,等.2005.长江口沉积物~(210)Pb分布及沉积环境解释[J].沉积学报,23(3):514-522.
    府仁寿,虞志英,金镠,等.2003.长江水沙变化发展趋势[J].水利学报,11:21-29.
    关许为,陈英祖,杜心慧.1996.长江口絮凝机理的试验研究[J].水利学报,6:70-80.
    何超.2007.长江口及其邻近海域悬沙分布现状与二十年前变化研究[D],华东师范大学硕士学位论文,32-41.
    贺松林.1991.东海近岸带沉积物陆源矿物组分的比较研究[J].华东师范大学学报(自然科学版),1:78-86.
    贺松林,王盼成.2004.长江大通站水沙过程的基本特征Ⅱ.输沙过程分析[J].华东师范大学学报(自然科学版),2:81-87
    黄小平,黄良民.2002.河口最大浑浊带浮游植物生态动力过程研究进展[J].生态学报,22(9):1527-1533.
    江文胜,王厚杰.2005.莱州湾悬浮泥沙分布形态及其与底质分布的关系[J].海洋与湖沼,36(2):97-103.
    李伯根,谢钦春,夏小明,等.1999.椒江河口最大浑浊带悬沙粒径分布及其对潮动力的响应[J].泥沙研究,1:18-26.
    李从先,王靖泰,许世远,等.1980.全新世长江三角洲地区的海进海退层序[J].地质科学,4:322-330.
    李道季,李军,陈吉余,等.2000.长江口悬浮颗粒物研究[J].海洋与湖沼,31(3):295-301.
    李九发,时伟荣,沈焕庭.1994.长江河口最大浑浊带的泥沙特性和输移规律[J].地理研究,13(1):51-59.
    李九发,沈焕庭,徐海根.1995.长江河口底沙运动规律[J].海洋与湖沼,26(2):138-145.
    李九发,陈小华,万新宁,等.2003.长江河口枯季河床沉积物与河床沙波现场观测研究[J].地理研究,22(4):513-519.
    李军,高抒,曾志刚,等.2003.长江口悬浮体粒度特征及其季节性差异[J].海洋与湖沼,34(5):499-510.
    李香萍,杨吉山,陈中原.2001.长江流域水沙输移特性[J].华东师范大学学报(自然科学版),4:88-95.
    刘苍字,吴立成,华棣.1995.长江口水下三角洲的沉积结构、构造特征及沉积作用机制[A].见:长江河口最大浑浊带和河口锋研究论文选集[C].华东师范大学学报,159-164.
    刘红.2006.长江口表层沉积物分布特性研究[D].华东师范大学硕士学位论文,67-70.
    刘红,何青,孟翊,等.2007a.长江口表层沉积物分布特征及动力响应[J].地理学报,62(1):81-92.
    刘红,何青,王元叶,等.2007b.长江口表层沉积物粒度时空分布特征[J].沉积学报,25(3):445-455.
    刘红,何青,虞志英,等.2007c.河口海岸测流仪器的比测研究[J].海洋工程,25(4):60-65.
    刘红,何青,徐俊杰,等.2008a.特枯水情对长江中下游悬浮泥沙的影响[J].地理学报,63(1):50-64.
    刘红,何青,吉晓强,等.2008b.波流共同作用下潮滩剖面沉积物和地貌分异规律-以长江口崇明东滩为例[J].沉积学报,26(5):833-843.
    楼飞.2005.长江口深水外航道海域沉积和冲淤环境研究[D].华东师范大学硕士学位论文,8-21.
    贾海林,刘苍字,杨欧.2001.长江口北支沉积动力环境分析[J].华东师范大学学报(自然科学版),1:90-96.
    金翔龙,喻普之.1982.黄海、东海地质构造[A].黄东海地质[C].北京:科学出版社,1-22.
    毛汉礼,甘子钧,沈鸿书.1964.杭州湾潮混合的初步研究[J].海洋与湖沼,6(4):121-134.
    潘定安,胡方西,周月琴,等.1988.长江河口夏季的盐淡水混合[A].长江河口动力过程和地貌演变[C].上海:上海科学技术出版社,151-165.
    潘定安,孙介民.1996.长江口拦门沙地区的泥沙运动规律[J].海洋与湖沼,27(2):279-286.
    钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.129-139.
    秦蕴珊.1963.中国陆棚海的地形及沉积类型的初步研究[J].海洋与湖沼,5(1):71-85.
    秦蕴珊,赵一阳,陈丽蓉,等.1988.东海地质[M].北京:科学出版社,1-35.
    上海地质调查研究院(SIGS).2009.上海市近岸海域多目标区域地球化学调查野外工作总
    结[R].上海:上海地质调查研究院,53.
    
    邵秘华,李炎,王正方,等.1996.长江口海域悬浮物的分布时空变化特征[J].海洋环境科学,15(3):36-40.
    沈焕庭,李九发,朱慧芳,等.1986a.长江口悬浮泥沙输移特征[J].泥沙研究,1:1-14.
    沈焕庭,朱慧芳,茅志昌.1986b.长江河口环流及其对悬沙输移的影响[J].海洋与湖沼,17(1):26-35.
    沈焕庭,潘定安,李九发,等.1988.长江河口余流特性及其与河槽演变的关系.长江河口动力过程和地貌演变[M].上海:上海科学技术出版社,102-107.
    沈焕庭,张超,茅志昌.2000.长江入河口区水沙通量变化规律[J].海洋与湖沼,31(3):288-194
    沈焕庭.2001.长江河口物质通量[M].北京:海洋出版社,132-136.
    唐建华.2007.长江口及其邻近海域粘性细颗粒泥沙絮凝特性研究[D].华东师范大学硕士学位论文,27-35.
    万新宁,李九发,何青,等.2003.长江中下游水沙通量变化规律[J].泥沙研究,4:29-35.
    王爱军,汪亚平,高抒,等.2005.长江口枯季悬沙粒度与浓度之间的关系[J].海洋科学进展,23(2):159-167.
    王宏.2008.长江入海泥沙对邻近海域影响的遥感应用与动力机理分析[D].中国海洋大学博士学位论文,72-73.
    王靖泰,郭蓄民,许世远,等.1981.全新世长江三角洲的发育[J].地质学报,1:67-81.
    王盼成,贺松林.2004.长江大通站水沙过程的基本特征Ⅰ.径流过程分析[J].华东师范大学学报(自然科学版),2:72-80
    王允菊,张志忠,黄文盛,等.1995.长江口南槽水化学特性与悬沙粘土矿物[J].海洋通报,14(3):106-113.
    夏小明,谢钦春,李炎,等.1999.东海沿岸海底沉积物中的~(137)Cs、~(210)Pb分布及其沉积环境解释[J].东海海洋,17(1):20-27.
    夏小明,杨辉,李炎,等.2004.长江口-杭州湾毗连海区的现代沉积速率[J].沉积学报,22(1):130-135.
    许炯心.2005.近40年来长江上游干支流悬移质泥沙粒度的变化及其与人类活动的关系[J].泥沙研究,(3):8-16.
    许炯心.2006.含沙量和悬沙粒径变化对长江宜昌-汉口河段年冲淤量的影响[J].水科学进 展,17(1):67-73.
    严钦尚,许世远.1987.长江三角洲现代沉积研究[M].上海:华东师范大学出版社,92-102.
    严肃庄,曹沛奎.1994.长江口悬浮体的粒度特征[J].上海地质,51:50-58.
    严肃庄,曹沛奎.1995.长江口外海滨悬浮体的粒度特征及其与锋面的关系[J].华东师范大学学报(自然科学版),1:81-89.
    杨欧,刘苍字.2002.长江口北支沉积物粒径趋势及泥沙来源研究[J].水利学报,2:79-84.
    杨世伦,朱骏.2003.长江供沙量减少对水下三角洲发育影响的初步研究—近期证据分析和未来趋势估计[J].海洋学报,25(5):83-91.
    俞鸣同.1998.闽江河口盐水楔活动的研究[J].海洋通报,17(6):1-6.
    虞志英.1988.长江三角洲新构造运动.长江河口动力过程和地貌演变[M].上海:上海科学技术出版社,19-30.
    虞志英,恽才兴,李身铎,等.2004.长江口北槽口外水下地形、沉积环境变化和对三期外航道的影响[R].长江口深水航道治理三期工程可行性研究报告-附件6.上海:华东师范大学河口海岸学国家重点实验室,3-5,14-18.
    恽才兴,蔡孟裔,王宝全.1981.利用卫星像片分析长江入海悬浮泥沙扩散问题[J].海洋与湖沼,12(5):391-401.
    恽才兴.2004.长江河口近期演变基本规律[M].北京:海洋出版社,234-266.
    翟晓鸣,何青,刘红,等.2007.长江口枯季水沙特性分析—以2003年为例[J].海洋通报,26(4):23-33.
    张二凤,陈西庆.2003.长江大通.河口段枯季的径流量变化[J].地理学报,58(2):231-238.
    张二凤.2004.长江中下游人类活动对河流泥沙来源及海泥沙的影响研究[D].华东师范大学博士学位论文,16-30.
    张怀静,翟世奎,范德江,等.2007.三峡工程一期蓄水后长江口悬浮体形态及物质组成[J].海洋地质与第四纪地质,27(2):1-10.
    张瑞,汪亚平,高建华,等.2008.长江口泥质区垂向沉积结构及其环境指示意义[J].海洋学报,30(2):80-91.
    张信宝,文安邦.2002.长江上游干流和支流河流泥沙近期变化及其原因[J].水利学报,(4):56-59.
    张志忠,阮文杰,蒋国俊.1995.长江口动水絮凝沉降与拦门沙淤积的关系[J].海洋与湖沼,26(6):633-637.
    张志忠.1996.长江口细颗粒泥沙基本特性研究[J].泥沙研究,1:67-73.
    张重乐,沈焕庭.1988.长江口咸淡水混合及其对悬沙的影响.华东师范大学学报(自然科学版),4:83-88.
    赵华云.2006.三峡工程蓄水前后长江三角洲前缘悬沙浓度的监测分析一以芦潮港为例[D].华东师范大学硕士学位论文,17-21.
    赵庆英,杨世伦,朱骏.2003.河口河槽季节性冲淤变化及其对河流来水来沙响应的统计分析—以长江口南槽为例[J].地理科学,23(1):112-117.
    中华人民共和国水利部.2003.中国河流泥沙公报[M].北京:中国水利水电出版社,2-18.
    中华人民共和国水利部.2004.中国河流泥沙公报[M].北京:中国水利水电出版社,2-15.
    中华人民共和国水利部.2005.中国河流泥沙公报[M].北京:中国水利水电出版社,2-15.
    中华人民共和国水利部.2006.中国河流泥沙公报[M].北京:中国水利水电出版社,2-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700