粉沙质海岸泥沙运动及航道淤积机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着粉沙质海岸港口建设的发展,粉沙质海岸泥沙问题,特别是航道淤积问题越来越突出。为此,本文针对粉沙质海岸泥沙特点,对泥沙悬浮机理进行研究,建立了波流共同作用下考虑底部高浓度现象的悬沙分布模型,利用该模型改进了三维泥沙数学模型,并对粉沙质海岸航道淤积现象进行了模拟研究。此外,本文还对概化粉沙质海岸悬沙横向分布和航道淤积规律进行了分析。论文的具体研究内容和结论如下:
     1、基于有限掺混长度理论对水流作用下的悬沙浓度分布进行了研究。模型建立过程中,分析了紊动漩涡与掺混长度之间的关系,推导出同时满足紊流相似假说和掺混长度理论的泥沙掺混长度分布公式。
     2、对波浪作用下泥沙悬浮机理进行分析,建立了全水深悬沙垂线分布模型。依据Lamb等高浓度含沙水体实验结果,着重对波浪作用下高浓度水体的紊动强度分布、掺混长度进行了分析。在以上工作基础上,采用紊动制约函数直接修正扩散系数的方法,建立了波流共同作用下考虑高浓度现象的悬沙浓度垂线分布模型,与多家实验结果的比较表明了该模型的合理性。
     3、利用本文建立的波流共同作用下考虑高浓度现象的悬沙浓度垂线分布模型,对Wai和Jiang开发的三维泥沙输运数学模型进行了改进,并通过实验数据验证了该模型能够应用于航道淤积模拟研究。
     4、以概化粉沙质海岸大风过程航道淤积为例,针对悬移质特别是高浓度含沙水体在航道淤积中的作用进行了模拟和分析。结果表明,强浪是形成底部高浓度含沙水体的根本原因,8级向岸大风作用下,浅滩上含沙量大于20kg/m3的水体厚度可达0.8m-1.25m。泥沙运动轨迹模拟结果表明,航道淤积主要是底部高浓度水体在航道内不平衡输沙所造成,上部泥沙几乎不起作用。另外,推移质输沙也不是主要因素。
     5、根据破波带内外波能演化规律,对波浪挟沙能力公式进行了改进,考虑了波浪破碎产生的紊动对挟沙能力增大的影响,所建立的公式反映了长周期波挟沙能力大的特性,并通过收集的资料确定了公式中的系数。
     6、利用文中建立的挟沙能力模型对概化粉沙质海岸上波浪因素对泥沙运动的影响进行了分析。结果表明,对于岸滩平缓的粉沙质海岸,除了紧靠岸边的区域外,波浪底部剪切力是泥沙悬浮的主要因素,而波浪破碎的作用较为有限。
     7、在高浓度水体悬沙分布模型的基础上建立了粉沙质海岸航道淤积简化计算公式,航道淤积的计算结果表明该公式可以合理反映粉沙质海岸淤积强度。
In recent years, with the increase of the port constructions on the silty coast, the problems of the sediment transport, especially the channel siltation become more and more prominent. Therefore, the sediment transport on the silty coast was studied in the present dissertation. On the one hand, the mechanism of sediment suspension under different conditions was analyzed with the fininte mixing length theory and a theoretical model was developed to describle the suspended sediment concentration profile with the high-concentrated near-bottom suspension under combined waves and current. Based on the new theoretical model a three-dimensional sediment mathematical model was improved to simulate the phenomenon of channel siltation on the silty coast. On the other hand, the cross-shore sediment concentration distribution and channel siltation on a generalized silty coast were also investigated.
     The main results are summarized as follows:
     1. According to the finite mixing length theory, the characteristics of the suspended sediment in current were investigated. The relation between the turbulent vortex and mixing length was analyzed and a new sediment mixing length equation was derived based on the mixing length theory and Karman’s turbulence hypothesis.
     2. The mechanism of sediment suspension under waves was discussed. A theoretical model for the sediment concentration distribution under wave was developed. Using the experimental results by Lamb et al, the characteristics of turbulence intensity and mixing length in the water with the high concentrated sediment suspension were analyzed. Based on the conclusions in pure current and pure wave conditions, the vertical distribution model of the suspended sediment for the combined waves and current was devepoled. In this model, the damping of turbulence due to the presence of high sediment concentrations is taken into account. The comparison of the calculated results and measurements shows that the present model is reasonable.
     3. The three-dimensional mathematical model for the sediment transport by Wai and Jiang was improved through using the present suspended sediment model with hight concentration influence for combined waves and current. The improved mathematical model is verified through comparison between simulated and experimental results of channel siltation.
     4. The process of channel siltation was simulated by the improved three-dimensional sediment mathematical model to illuminate the effect of suspended sediment on channel siltation. The simulated results show that the strong wave is the source of the high concentrated near-bottom suspensions. The thickness of high concentration suspensions (where concentration >20kg/m3) can be in the range of 0.8m-1.25m due to the shorewards wind of force 8. From the particle trajections of the suspended sediment particle, it is the deposition of high concentration near-bottom suspensions that results in the channel siltation. The bed-load sediment transport also plays a subtle role for channel siltation.
     5. The sediment carrying capacity formula for waves was improved according to the variation of the wave energy dissipation inside and outside the surf zone. The new formula predicts that the sediment suspension increases with the wave period. Measured data were collected to determine the coefficients.
     6. The carrying capacity model was used to investigate the effects of wave on the cross-shore sediment suspension on a generalized silty coast. The results show that the main factor for the sediment suspension on silty coast is the bed shear stress of wave instead of the wave breaking except in the surf zone very near the coastline.
     7. Finally, a simplified formula for channel siltation was developed based on the vertical distribution model of the high concentrated sediment suspension, which was used to calculate the thickness of the channel siltation.
引文
[1]赵今声,赵子丹,秦崇仁等.海岸河口动力学[M].北京:海洋出版社, 1993.
    [2] Goda Y. A new approach to beach morphology with the focus on suspended sediment transport[C]. Proceeding of APACE, 2001:1-25.
    [3]曹祖德.我国海岸泥沙运动数值模拟[A].严恺主编:海岸工程[M].北京:海洋出版社, 2001: 665-666.
    [4]曹祖德,焦桂英,赵冲久.粉沙质海岸泥沙运动和淤积分析计算[J].海洋工程, 2004, 22(1): 59-65.
    [5]赵冲久.近海动力环境中粉沙质泥沙运动规律的研究[D].天津:天津大学, 2003.
    [6]张庆河,张金凤,杨华等.粉沙质海岸港口布置模式探讨[J].中国港湾建设, 2005, (1): 6-20.
    [7]张庆河,吴相忠,杨华等.黄骅港外航道整治工程有关问题的探讨[J].水运工程, 2007, (2): 74-78.
    [8]倪晋仁,惠遇甲.悬移质浓度垂线分布的各种理论及其间关系[J].水利水运科学研究, 1988, (1): 83-95.
    [9]倪晋仁,梁林.水沙流中的泥沙悬浮(I)[J].泥沙研究, 2000, (1): 7-12.
    [10]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社, 1983.
    [11]张瑞瑾,谢鉴衡等.河流泥沙动力学[M].北京:水利电力出版社, 1988.
    [12]刘大有.从二相流方程出发研究平衡输沙―扩散理论和泥沙扩散系数的讨论[J].水利学报, 1995, (4): 62-67.
    [13]刘大有.现有泥沙理论的不足和改进―扩散模型和菲克定律适用性的讨论[J].泥沙研究, 1996, (3): 40-45.
    [14]傅旭东,王光谦.传统泥沙扩散方程的误差分析[J].泥沙研究, 2004, (4): 33-38.
    [15] Nielsen P, Teakle IAL. Turbulent diffusion of momentum and suspended particles: A finite-mixing-length theory[J]. Physics of Fluids, 2004, 16(7): 2342-2348.
    [16] McTigue DF. Mixing theory for suspended sediment transport[J]. J. Hydr. Div., ASCE, 1981, 107(6): 659-673.
    [17]蔡树棠.相似理论和泥沙的垂线分布[J].应用数学和力学, 1982, 3(5).
    [18]周培源.涡量脉动的相似性结构与湍流理论[J].力学学报, 1959, (3): 284-197.
    [19] Matalas NC. Introduction to random walk and its application to open channel flow[M]. Stochastic Hydraulics, Ed. Chiu, C.L., 1970: 56-65.
    [20] Bayazit M. Stochastic methods for motion of suspended grains[A]. The 15th IAHR, 1973, 5: 31-34.
    [21]倪晋仁,周东火.低浓度固液两相流中泥沙浓度垂直分布的摄动理论解释[J].水利学报, 1999, (5): 1-5.
    [22]李勇,余锡平.基于两相紊流模型的悬移质泥沙运动数值模拟[J].清华大学学报(自然科学版), 2007, 47(6): 805-808.
    [23]王兴奎,邵学军,王光谦等.河流动力学[M].北京:科学出版社, 2004.
    [24] van Rijn LC. Sediment transport, partⅡ: Suspended load transport[J]. Journal of Hydraulic Engineering, 1984, 110(11): 1613-1641.
    [25]武汉水利水电学院.河流泥沙工程学[M].北京:水利出版社, 1981.
    [26] Wang XK, Qian N. Turbulence characteristics of sediment-laden flow[J]. Journal of Hydraulic Engineering, ASCE, 1989, 115(6): 781-800.
    [27]张小峰,陈志轩.关于悬移质含沙量垂线分布的几个问题[J].水利学报, 1990, (10): 41-48.
    [28] Ni JR, Wang GQ. Vertical sediment distribution[J]. Journal of hydraulic Engineering, 1991, 117(9): 1184-1194.
    [29] Wikramayake PN. Velocity profiles and suspended sediment transport in wave-current flows[D]. Ph. D. Dissertation, Massachusetts Institute of Technology, 1993.
    [30] Sistermans PGJ. Graded sediment transport by non-breaking waves and a current[R]. Report, Delft University of Technology, 2002.
    [31] White TE. Status of measurement techniques for coastal sediment transport[J]. Coastal Engineering, 1998, 35:17-45.
    [32] Jonsson IG. Measurements in the turbulent wave boundary layer[A]. The 10th Congress, Int. Assoc. of Hydraul. Res., London, 1963.
    [33] Kamphuis M. Friction factor under oscillatory waves[J]. Journal of Waterway, Harbors and Coastal Engineering Division, 1975, 101(2):135-144.
    [34] Jonsson IG, Carlsen NA. Experimental and theoretical investigations in an oscillatory turbulent boundry layer[J]. Journal of Hydraulics Research, 1976, 14: 45-60.
    [35] Hino M. Experiments on the turbulent ststictics and the structure of a reciprocating oscillatiry flow[J]. Journal of Fluid Mechanics, 1983, 131: 363-400.
    [36] Sleath JFA. Turbulent oscillatory flow over rough beds[J]. Journal of Fluid Mechanics, 1987, 182: 369-409.
    [37] Jensen BL. Tubulent oscillatory boundary layer at high Reynolds numbers[J]. Journal of Fluid Mechanics, 1989, 206: 265-297.
    [38] Thorne PD, Williams JJ, Davies AG. Suspended sediments under waves measured in a large-scale flume facility[J]. Journal of Geophysical research, 2002, 107(C8): 3178.
    [39] Dang HC. Diffusion approach for suspended sand transport under waves[J]. Journal of Coastal Research. 2003, 19(1): 1-11.
    [40] Smith JD. Modeling of sediment transport in continental shelves[R].Technical Report, Washington University, 1977.
    [41] Grant WD, Madsen OS. Combined wave and current interaction with a rough bottom[J]. Journal of Hydraulic Research, 1979, 84: 1797-1808.
    [42] Mayhaug D. On a theoretical model of rought turbulent wave boundary layers[J]. Ocean Engineering, 1982, 9: 547-565.
    [43] Kennedy J F, Locher FA. Sediment suspension by water waves [A]. Waves on Beaches and Resulting Sediment Transport [C]. New York: Academic Press, 1972.
    [44] Kos’yan RD. Vertical distribution of suspended sediment concentrations of seawards of the breaking zone[J]. Coastal Engineering, 1985, 9: 171-187.
    [45] Nielsen P. Coastal bottom boundary layers and sediment transport[M]. Singapore: World Scientific Publishing Co. Pte. Ltd., 1992.
    [46] Absi R. On the effect of sand grain size on turbulent mixing[C]. 30th International Conference on Coastal Engineering, ASCE, 2006: 3019-3029.
    [47] Kobayashi N, Zhao HY, Tega Y. Suspended sand transport in surf zones[J]. Journal of geophysical research, 2005, 110, C12009, doi: 10.1029/2004JC002853.
    [48]严冰,张庆河.波浪作用下悬沙浓度垂线分布的研究[J].泥沙研究, 2006, (5): 63-68.
    [49] Kemp PH, Simons RR. The interaction between waves and a turbulent currents: waves propagating with the current[J]. Journal of Fluid Mechanics, 1982, 116: 227-250.
    [50] Asano T, Nagakawa M, Iwagaki Y. Changes in current profiles due to wave superimposition[C]. Proc. 20th Int. Conf. Coastal Engineering, Taipei, 1986: 925-940.
    [51]练继建,赵子丹.波流共存场中全水深水流流速分布[J].海洋通报, 1994, 13(3): 1-10.
    [52] van Rijn LC.Sediment transport and budget of the central coastal zone of Holland[J]. Coastal Engineering, 1993, 32: 61-90.
    [53] Li MZ, Amos CL, Heffler DE. Boundary layer dynamics and sediment transport under storm and non-storm conditions on the Scotian Shelf[J]. Marine Geology, 1997, 141: 157-181.
    [54] You ZJ. Eddy viscosities and velocities in combined wave current flows[J]. Ocean Engineering, 1994, 21: 81-97.
    [55] Glenn SM, Grant WD. A suspended sediment correction for combined wave and current flows[J]. Journal of Geophysical research, 1987, 92(C8): 8244-8246.
    [56] Styles R, Glenn SM. Modelling stratified wave and current bottom boundary layers on the continental shelf[J]. Journal of Geophysical research, 2000, 105(C10): 24119-24140.
    [57] van Rijn LC. Sedimentation of dredged channels by currents and waves[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1986, 112(5): 541-559.
    [58] van Rijn LC. Unified view of sediment transport by currents and waves. : suspended transport[J]. Journal of Hydraulic Engineering, 2007, 133(6): 668-689.
    [59] Williams JJ, Rose CP, van Rijn LC. Suspended sediment concentration profiles in wave-current flows[J]. Journal of Hydaulic Engineering, 1999, 125(9): 906-911.
    [60] Chen ZW. Sediment concentration and sediment transport due to action of waves and a current[D]. Ph.D dissertation, Delft University of Technology, 1992.
    [61] van Rijn LC, Nieuwjaar MWC, et al. Transport of fine sands by currents and waves[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1993, 119(2): 123-143.
    [62] van Rijn LC, Havinga FJ. Transport of fine sands by currents and waves II[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1995, 121(2): 123-133.
    [63] Nielsen P. Field measurements on time-averaged suspended sediment concentrations under waves[J]. Coastal Engineering, 1984, 8: 51-72.
    [64] Green MO, Vincent CE, Trembanis AC. Suspended of coarse and fine sand on a wave-dominated shoreface, with implications for the development of rippled scour depressions[J]. Continental Shelf Research, 2004, 24: 317-335.
    [65] Wright LD, Sherwood CR, Sternberg RW. Field measurements of fair-weather bottom boundary layer processes and sediment suspension on the Louisiana inner continental shelf[J]. Marine Geology, 1997, 140: 329-345.
    [66] Kagan BA, Alvarez O, Izquierdo A, et al. Weak wave/tide interaction in suspended sediment-stratified flow: a case study[J]. Estuarine, Coastal and Shelf Science, 2003, 56: 989-1000.
    [67]时钟,凌鸿烈.长江口细颗粒悬沙浓度垂线分布[J].泥沙研究, 1999, (2): 59-64.
    [68]神华集团黄骅港建设指挥部,交通部天津水运工程科学研究所.黄骅港泥沙淤积研究资料汇编[R]. 2003.
    [69] Kirby R, Parker WR. Distribution and behavior of fine sediment in the Severn Estuary and Inner Bristol Channel[J].U.K.Canadian Journal of Fishery and Aquatic Sciences, 1983, 40(Suppl.1): 83-95.
    [70]曹祖德,侯志强,张书庄.复式航道的淤积计算[J].水运工程, 2006, (4): 54-72.
    [71] Lamb MP, D’Asaro E, Parsons JD. Turbulent structure of high-density suspensions formed under waves[J]. Journal of geophysical research, 2004, 109(C12), C12026, doi: 10.1029/2004JC002355.
    [72] Lamb MP, Parsons JD. High-density suspension formed under waves[J]. Journal of sedimentary research, 2005, 75(3): 386-397.
    [73] Turner JS. Buoyancy effects in fluid[M]. Cambridge University Press, New York, 1973.
    [74] Balmforth NJ, Llewellyn, Smith SG, Young WR. Dynamics of interfaces and layers in a stratified turbulent fluid[J]. Journal of Fluid Mechanics, 1998, 355: 329-358.
    [75] Winterwerp, JC. Stratification effects by fine suspended sediment at low, medium, and very high concentration[J]. Journal of Geophysical Research, 2006, 111, C05012, doi:10.1029/2005JC003019.
    [76] Winterwerp JC. Stratification effects by cohesive and noncohesive sediment [J]. Journal of Geophysical Research, 2001, 106(C10): 22559-22574.
    [77] Gilbert GK. The transportation of debris by running water[R]. U.S. Geological Survey, Professional Paper, No.86, 1914.
    [78]刘家驹.在风浪和潮流作用下淤泥质浅滩含沙量的确定[J].水利水运科学研究, 1988, 2: 69-77.
    [79]中华人民共和国交通部.港口水文规范JTJ-213-98[S].北京:人民交通出版社, 1998.
    [80]窦国仁,董风舞, Dou Xibing.潮流和波浪的挟沙能力[J].科学通报, 1995, 40(5): 443-446.
    [81]曹文洪,张启舜.潮流和波浪作用下悬移质挟沙能力的研究[J].泥沙研究, 2000, (5): 16-21.
    [82]曹文洪,刘青泉.波浪掀沙的动力学机理分析[J].水利学报, 2000, (1): 49-59.
    [83]罗肇森.风、浪、流共同作用下的泥沙输移[J].水利水运工程学报, 2004, (3): 1-6.
    [84]乐培九,杨细根.波浪和潮流共同作用下的输沙问题[J].水道港口, 1998, (3): 80-84.
    [85]曹祖德,李蓓,孔令双.波、流共存时的水体挟沙力[J].水道港口, 2001, 22(4): 151-155.
    [86]郗殿纲.粉沙质与淤泥质浅滩在风浪和水流作用下的挟沙能力[J].港工技术, 1995, (1): 8-14.
    [87]周济福,曹文洪,洋淑慧等.河口泥沙研究进展[J].泥沙研究, 2003, (6): 75-81.
    [88]严世强,熊德琪.潮流数值模拟研究进展[J].浙江海洋学院学报(自然科学版), 2002, 21(3): 263-269.
    [89]秦崇仁,赵冲久.海岸泥沙运动研究综述和展望[J].水道港口, 2003, 24(2): 65-67.
    [90]远航,于定勇.潮流与泥沙模拟回顾及进展[J].海洋科学进展, 2004, (1): 100-109.
    [91]李孟国.海岸河口泥沙数学模型研究进展[J].海洋工程, 2006, 24(1): 139-154.
    [92]窦希萍,罗肇森.波浪潮流共同作用下的二维泥沙数学模型[J].水利水运科学研究, 1992, (4): 331-338.
    [93]陆永军,左利钦,王红川等.波浪与潮流共同作用下二维泥沙数学模型[J].泥沙研究, 2005, (6): 1-12
    [94]陆永军,左利钦,季荣耀等.渤海湾曹妃甸港区开发对水动力泥沙环境的影响[J].水科学进展, 2007, 18(6): 793-800.
    [95]朱志夏,韩其为,丁平兴.海岸悬沙运移数学模型[J].海洋学报, 2002, 24(1): 101-107.
    [96]张庆河,侯凤林,夏波等.黄骅港外航道淤积的二维数值模拟[J].中国港湾建设, 2006, (5): 6-9.
    [97]李孟国,时钟.江苏如东西太阳沙及烂沙样海域潮流泥沙数学模拟[J].海洋通报, 2005, 24(6): 9-16.
    [98]徐峰俊,刘俊勇.伶仃洋海区二维不平衡非均匀输沙数学模型[J].水利学报, 2003, (7): 16-23.
    [99]邹舒觅,林缅.波浪和风生浪作用下的近岸海底泥沙运移模型的推广和应用[J].地球物理学进展, 2007, 22(1): 273-278.
    [100] HydroQual. A primer for ECOMSED. 2002, HydroQual, Inc. NJ., USA.
    [101] Schepetkin AF, McWilliams JC. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model[J]. Ocean Modelling, 2003, 9(4): 347-404.
    [102]王红.三维多组分泥沙数学模型及其应用[D].天津:天津大学, 2007.
    [103]曹祖德,王运洪.水动力泥沙数值模拟[M].天津:天津大学出版社, 1994.
    [104]李孟国,时钟,秦崇仁.伶仃洋三维潮流输沙的数值模拟[J].水利学报,2003, (4): 51-57.
    [105]白玉川,顾元棪,蒋昌波.潮流波浪联合输沙及海床冲淤演变的理论体系与数学模拟[J].海洋与湖沼, 2000, 31(2): 187-195.
    [106]赵群.基于SWAN和ECOMSED模式的大风作用下黄骅港波浪、潮流、泥沙的三维数值模拟[J].泥沙研究, 2007, (4): 17-26.
    [107]张娜.风浪作用下粘性泥沙运动的三维数值模型[D].天津:天津大学, 2005.
    [108]陈国祥,陈界仁,沙捞?巴里.三维泥沙数学模型的研究进展[J].水利水电科技进展, 1998, 18(1): 13-20.
    [109]孔令双,曹祖德,李炎保.粉沙质海岸建港的若干泥沙问题[J].中国港湾建设, 2004, (3): 24-27.
    [110]高学平,秦崇仁,赵子丹.板结粉沙运动规律的研究[J].水利学报, 1994, (12): 1-6.
    [111]徐宏明,张庆河.粉沙质海岸泥沙特性实验研究[J].泥沙研究, 2000, (3): 42-49.
    [112]张庆河,张娜,胡嵋等.黄骅港泥沙静水沉降特性研究[J].港工技术, 2005, (3): 1-4.
    [113]赵冲久,刘富强.粉沙质海岸泥沙运动特点的实验研究[J].水道港口, 2002, 23(4): 259-261.
    [114]韩鸿胜,李世森,赵群等.破碎波作用下粉沙悬移质浓度垂向分布的实验研究[J].泥沙研究, 2006, (6): 30-36.
    [115]王成环.京唐港附近海域粉砂质海岸泥沙运动规律与整治措施[J].港工技术, 2000, (1): 5-8.
    [116]张庆河,王崇贤,杨华等.黄骅港海域表层泥沙特性及其影响[J].中国港湾建设, 2004, (4): 14-17.
    [117]杨华,侯志强.黄骅港外航道泥沙淤积问题研究[J].水道港口, 2004, 24(3): 59-63.
    [118] Sun LY, L JJ, Sun B, et al. Study on siltation in the access channel and engineering solutions of the JingTang Port[A]. Proceedings of 3th Conference on Asian and Pacific Coasts, Korea[C], 2005: 1154-1163.
    [119]刘家驹.粉沙淤泥质海岸的航道淤积[J].水利水运工程学报, 2004, (1): 6-11.
    [120]罗肇森.波、流共同作用下的近底泥沙输运及航道骤淤预报[J].泥沙研究, 2004, (6): 1-9.
    [121]韩西军.粉砂质海岸泥沙淤积的研究[J].水道港口, 1996, (3): 22-28.
    [122] Zhang JX, Liu H. A vertical 2-D numerical simulation of suspended sediment transport[J]. Journal of Hydrodynamics, Ser. B, 2007, 19(2): 217-224.
    [123] Taylor GI. Diffusion by continuous movements[A]. Proc. London Math. Soc. Ser. A[C], 1921, 20: 196-212.
    [124]倪晋仁,梁林.水沙流中的泥沙悬浮(Ⅱ)[J].泥沙研究, 2000, (1): 13-19.
    [125]陈士荫,顾家龙,吴宋仁.海岸动力学[M].北京:人们交通出版社, 1995.
    [126] Hino M. Turbulent flow with suspended particles[J]. J. Hyd. Div. Proc. ASCE, 1963, 89(4): 165-185.
    [127] Yalin MS. Mechanics of sediment transport[M]. New York: Pergamon Press, 1972.
    [128] Nezu I, Nakagawa H. Turbulence in open channel flows[M]. IAHR Monograph, Balkema, Rotterdam, 1993.
    [129] Lyn DA. A similarity approach to turbulent sediment-laden flows in open-channels[J]. Journal of Fluid Mechanics, 1988, 193: 1-26.
    [130] Muste M, Patel VC. Velocity profiles for particles and liquid in open-channel flow with suspended sediment[J]. Journal of Hydraulic Engineering, 1997, 123(9): 742-751.
    [131] Yang SQ, Tan SK, Lin SY. Velocity distribution and dip-phenomenon in smooth uniform open channel flows[J]. Journal of Hydraulic Engineering, 2004, 130(12): 1179-1186.
    [132] Aziz NM, Bhattacharya SK, Prasad SN. Suspended sediment concentration profiles using conservation laws[J]. Journal of Hydraulic Research, 1992, 30(4): 539-554.
    [133] Elata C, Ippen AT. The dynamics of open channel flow with suspensions of neutrally buoyant particles[R]. Technical Report No. 45, Hydrodynamics Lab., MIT, 1961.
    [134] Teakle IAL. Coastal boundary layer and sediment transport modeling[D]. Ph. D. Dissertation, Queensland University, 2006.
    [135] Cheng NS. Effect on concentration on settling velocity of sediment particles[J]. Journal of Hydraulic Engineering, 1997, 123(8): 728-731.
    [136] Coleman NL. Effects of suspended sediment on the open-channel velocity distribution[J]. Water Resources Research, 1986, 22(10): 1377-1384.
    [137] Wang XK, Qian N. Turbulence characteristics of sediment-laden flow[J]. Journal of Hydraulic Engineering, 1989, 115(6): 781-800.
    [138]周家俞.挟沙水流泥沙颗粒悬浮规律的试验研究[D].武汉:武汉大学, 2005.
    [139] You ZJ, Wilkinson DL, Nielsen P. Velocity distribution of waves and currents in the combined flow[J]. Coastal Engineering, 1991, 15: 525-543.
    [140] Graaff JV. Sediment concentration due to wave action[D]. Ph. D. Dissertation, Delft University of Technology, 1988.
    [141] Bagnold RA. Some flume experiments on large grains but little denser than the transporting fluid and their implications[C]. Institute Civil Engineers Proceedings, 1955, 174-205.
    [142] Wijetunge JJ, Sleath JFA. Effects of sediment transport on bed friction and turbulence[J]. Journal of Water, Port, Coastal, and Ocean Engineering, 1998, 124(4): 172-178.
    [143] Kovacs AE. Prandtl’s mixing length concept modified for equilibrium sediment-laden flows[J]. Journal of Hydraulic Engineering, 1998, 124(8): 803-812.
    [144] Absi R. Modeling turbulent mixing and sand distribution in the bottom boundary layer[C]. Coastal Dynamics 2005 Proceedings, ASCE, 2005, doi: 10.1061/40855(214)99.
    [145] Trowbridge JH, Kineke GC. Structure and dynamics of fluid muds on the Amazon continental shelf[J]. Journal of Geophysical Research, 1994, 99(C1): 865-874.
    [146] Kineke GC, Sternberg RW, Trowbridge JH, et al. Fluid-mud processes on the Amazon continental shelf[J]. Continental Shelf Research, 1996, 16: 667-696.
    [147] Traykovski P, Geyer WR, Irish JD, et al. The role of wave-induced density-driven fluid mud flows for cross-shelf transport on the Eel River continental shelf[J]. Continental Shelf Research, 2000, 20: 2113-2140.
    [148]蒋德才,刘百桥,韩树宗.工程环境海洋学[M].北京:海洋出版社, 2005.
    [149] Wai WHO, Jiang YW, Lu QM. Large-scale finite element modeling and parallel computation of sediment transport in coastal areas[M]. In Advances in Coastal Modelling, C. Lakhan C. ed., Elsevier Science B.V., 2003, Chapter 9.
    [150] Jiang YW. Three-dimensional numerical modeling of sediment and heavy metal transport in surface waters[D]. Ph.D dissertation, HongKong Polytechnic University, 2003.
    [151]都志辉.高性能计算之并行编程技术——MPI并行程序设计[M].北京:清华大学出版社, 2001.
    [152] Song Y, Haidvogel D. A semi-implicit ocean circulation model using a generalized topography-following coordinate system[J]. Journal of computational physics, 1994, 115: 228-244.
    [153] Lee GH, Dade WB, Friedrichs CT, et al. Examination of reference concentration under waves and currents on the inner shelf[J]. Jouranl of Geophysical Research, 2004, 109, C02021, doi: 10.1029/2002JC001707.
    [154]曹祖德,王桂芬.波浪掀沙、潮流输沙的数值模拟[J].海洋学报, 1993, 15(1): 107-108.
    [155]曹祖德.浮泥特性研究进展[J].水道港口, 1992, (1): 34-40.
    [156]窦希萍.长江口深水航道回淤量预测数学模型的开发及应用[J].水运工程, 2006, (12): 159-164.
    [157]白玉川,张彬,张胤祺等.波浪挟沙能力及航道骤淤机理的研究[J].水利学报, 2007, 38(6): 646-653.
    [158]中华人民共和国交通部.港口工程技术规范(上卷)[S].北京:人民交通出版社, 1987.
    [159]张庆河,徐宏明,秦崇仁等.粉沙质海岸界定浅说河粉沙的基本特性研究[A].第九界全国海岸工程学术讨论会论文集[C].北京:海洋出版社, 1999: 252-258.
    [160]叶青,翁祖章.黄骅港建设中若干问题的探索[J].水运工程, 2003, (4): 25-37.
    [161]罗肇森.大风期黄骅港外航道的骤淤估算及防淤减淤措施探讨[J].水运工程, 2004, (10): 69-73.
    [162] van Rijn. Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed-load transport[J]. Journal of Hydrualic Engineering,2007, 133(6): 649-667.
    [163] Bijker E. Littoral drift as function of waves and current[C]. 11th Coastal Eng. Conf. Pro. ASCE, London UK, 1968.
    [164] Miller MC, MC Cave IN, Komar PD. Threshold of sediment motion under unidirectional current[J]. Sedimentology, 1977, 24: 507-527.
    [165] Davies AG, Villaret C. Prediction of sand transport rates by waves and currents in the coastal zone[J]. Continental Shelf Reasearch, 2002, 22: 2725-2737.
    [166]曹文洪,张启舜,胡春宏.黄河河口海岸近岸带水体含沙量的横向分布[J].水利学报, 2001, (2): 54-58.
    [167]李东风,张红武,钟德钰,吕志咏.黄河河口水沙运动的二维数学模型[J].水利学报, 2004, (6): 1-8
    [168]谢鉴衡,罗国芳,李正强.论挟沙水流的能量平衡问题[J].武汉水利电力学院学报, 1957, (2): 501-508.
    [169]张瑞瑾.论重力理论兼论悬移质运动过程[J].水利学报, 1963, (3): 11-23.
    [170]黄才安,陈小秦.关于泥沙悬浮功的讨论[A].第十三届中国海洋(岸)工程学术会议[C],南京, 2007, 510-514.
    [171] Lou J, Ridd PV. Wave-current bottom shear stresses and sediment resuspension in Cleveland Bay, Australia[J]. Coastal Engineering, 1996, 29: 169-286.
    [172]林全泓.强风浪过程中近岸泥沙运动的数值模拟[D].天津:天津大学, 2004.
    [173]李玉成,于洋,崔丽芳等.平缓岸坡上波浪破碎的实验研究[J].海洋通报, 2000, 19(1): 10-18.
    [174] Fredsoe J, Deigaard R. Mechanics of coastal sediment transport: advanced series on ocean engineering[M]. Singapore: World Scientific Publishing Co. Pte. Ltd., 1992.
    [175] Rattanapitikon W, Karunchintadit R. Comparison of dissipation models for irregular breaking waves[J]. Songklanakarin J. Sci. Technol., 2002, 24(1): 139-148.
    [176] Rattanapitikon W, Shibayama T. Energy dissipation model for irregular breaking waves[A]. Proc. 26th Coastal Engineering Conf.[C], ASCE, 1998, 112-125.
    [177] Perlin A,Kit E. Apparent roughness in wave-current flow: implication for coastal studies[J]. Journal of Hydraulic Engineering, 2002, 128(8): 729-741.
    [178] You ZJ, Yin BS. Discussion of“apparent roughness in wave-current flow: implication for coastal studies”by Alexander Perlin and Eliezer Kit[J]. Journal of Hydraulic Engineering, 2004, 130(3): 270-271.
    [179] Sleath JFA. Velocity and shear stresses in wave-current flows. Journal of Geophysical Research, 1991, 96(C8): 15237-14244.
    [180]窦国仁,董凤舞,窦希萍等.河口海岸泥沙数学模型研究[J].中国科学A辑, 1995, (9): 995-1001.
    [181] Vanoni VA, Brooks NH. Laboratory studies of the roughness and suspended load of alluvial streams[R]. Report E-68, Sedimentation Lab., Calif. Inst. Tech., 1957: 35-108.
    [182] Voogt L, Van Rijn, Van den berg JH. Sediment transport of fine sands at high velocity[J]. Journal of Hydraulic Engineering, 1991, 117(7), 869-890.
    [183]王士强,陈骥,惠遇甲.明渠水流的非均匀沙挟沙力研究[J].水利学报, 1998, (1): 1-17.
    [184]邓贤艺,曹如轩,钱善琪.水流挟沙力双值关系研究[J].水利水电技术, 2000, 31(9): 6-8.
    [185]季则舟.粉沙质海岸港口水域平面布局特点[J].海洋工程, 2006, 24(4): 81-85.
    [186]张庆河.神华集团黄骅港外航道整治工程潮流数值模拟研究报告[R].天津大学建筑工程学院, 2004.
    [187]曹永华,张庆河,闫澍旺等.黄骅港海域二维流场分析[J].中国港湾建设, 2005, (3): 1-4.
    [188] Luettich RA, Westerrink JJ. ADCIRC user manual: A (parallel) advanced circulation model for ocean, coastal and estuarine waters[R]. University of North Carolina at Chapel Hill Institute of Marine Sciences,2000.
    [189] Booij N, Holthuijsen LH, Ris RC. The“SWAN”wave model for shallow water[J]. Coastal Engineering, 1994, 1: 668-672.
    [190]夏波.风暴潮过程中的波流耦合数值模式研究[D].天津:天津大学, 2005.
    [191]夏波,张庆河,杨华.水动力时空变化对近岸风浪演化的影响――以渤海湾西南岸为例[J].海洋通报, 2006, 25(5): 1-8.
    [192]杨华,曹祖德,侯志强等.神华集团黄骅港外航道整治工程延堤效果分析研究报告[R].天津:交通部天津水运工程科学研究所, 2004.
    [193]孙连成.渤海湾西部海域波浪特征分析[J].黄渤海海洋, 1991, 9(3): 50-57.
    [194]苗士勇,侯志强.黄骅港海域风浪场推算及波浪破碎位置分析[J].水道港口, 2004, 25(4): 216-218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700