渤海海域泥沙输运对季节性因素及地形变化响应的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渤海作为中国典型的内陆半封闭浅海,每年接收大量的陆源物质,同时由于气候受季风影响显著,大部分的海域海洋动力具有“冬强夏弱”的特点,冬季水动力环境较强,海底表层泥沙在冬季强海浪的作用下容易发生再悬浮,使冬季成为渤海泥沙的输送的重要时段。本文以2006年冬季和2007年夏季实测黄河三角洲3船同步连续站及毗邻渤海海域24个大面站的水文泥沙资料和对冬季黄河三角洲近岸泥沙再悬浮过程分析的基础上,以2004年黄河三角洲滨海水深数据和2000年渤海湾水深数据及岸线等较新的资料为依据,建立了渤海高分辨率(水平1')三维斜压水动力泥沙数学模型,并将浅海波浪模式SWAN计算结果耦合入模型中,将近岸再悬浮泥沙作为冬季主要物源进行考虑,讨论分析了渤海泥沙输运的季节性变化特征和输运机制。在大体恢复古地形的基础上,应用数值模拟的手段,对最大海侵以来(距今约7ka)古渤海及古黄河三角洲发育的沉积作用进行了探讨。
     本文主要结论如下:
     1.实测资料表明,冬季泥沙再悬浮是非常重要的泥沙动力过程。冬季高悬浮泥沙浓度带(>100mg/l)分布在离岸约35km的近岸区域,悬浮泥沙浓度更高、范围更大的区域出现在底层,充分表明了泥沙再悬浮的机制。三个高浓度中心分别位于废弃钓口河口、现行河口和废弃清水口河口,是冬季泥沙的主要物源区,和波流共同作用导致的底部剪切应力的三个高值中心具有很好的对应关系,河口附近地形因素及强向浪NNE-NE-ENE是产生三个高浓度中心的基本因素。在整个研究区域,除了现行河口外冬季悬浮泥沙浓度都要高于夏季的,悬浮泥沙单宽通量除河口外的各连续站冬季约为夏季的2-122.5倍,表明冬季泥沙输运强度远高于夏季,冬季是近岸泥沙向外海输送的主要季节;
     2.对模型中波流共同作用下的底部切应力的计算进行了改进,改进后恢复了潮流导致的底部切应力。对渤海泥沙输运的季节性变化研究结果显示,受冬季较强风浪作用的影响,冬季平均状况下底部切应力和悬浮泥沙浓度明显高于夏季,尤其是近岸大约15m等深线以内的区域,高值区位于等深线4-10m之间。在渤海其值较大的区域主要分布在现代黄河三角洲沿岸和辽东湾沿岸。近岸区域底部切应力和悬浮泥沙浓度冬季约是夏季的10倍,符合近岸再悬浮的高浓度泥沙区域是冬季泥沙主要物源的结论。冬季大风条件下,其值进一步增加,可以达到冬季平均状况的2倍以上。前人的工作没有考虑冬季泥沙再悬浮产生的物源中心作用,也没有冬季实测资料的验证,而本论文数值模拟结果(流速和流向、悬浮泥沙浓度)与冬季渤海近岸大范围实测水文泥沙资料对应较好,基本反映了冬季渤海的泥沙输运特征。
     3.本文采用的网格分辨率较高,地形较新,通过模拟发现了莱州湾废弃清水沟河口外侧存在潮流切变锋,与实测结果相符,说明本文的模拟较好地反映了近岸区域的动力状况。模拟结果显示此切变锋除了与近岸与离岸由于底摩擦作用而导致转流时刻存在相位差外,还与莱州湾的清水沟河嘴向外凸出的地形相关。此切变锋对黄海入海泥沙向莱州湾扩散具有阻隔作用。
     4.7kaBP的古渤海较现在渤海水深大,区域较宽广。模拟结果表明,传入古渤海的潮波没有现在强,古渤海的潮流较现在的弱很多,尤其是渤海西部黄河入海区域。在这种较弱的潮流动力环境下,黄河入海泥沙更容易沉降,更容易快速堆积并向外海推进,更有利于黄河物质在近岸堆积和形成黄河三角洲。由于渤海古水动力较弱,输出渤海的泥沙较现在的比例要少。辽东湾内整体潮流动力较强,细颗粒泥沙不易沉降,是导致辽东湾内底质颗粒较粗的主要原因之一;
The Bohai Sea is a shallow semi-enclosed inner shelf sea in China, which receives many terrestrial materials every year. Due to seasonal changes in wind strength, hydrodynamics are weak in the summer season and strong in the winter season, as characteristic for most of the Bohai Sea. The seabed surface sediment can be resuspended easily and transported by storm waves. So the winter season is a major period for sediment transport in the Bohai Sea. Hydrographic and suspended sediment data were collected in winter 2006 and summer 2007 along three survey transects at three time-series, ship-based stations off the Huanghe (Yellow River) delta, and at twenty-four grid survey stations in the adjacent Bohai Sea. Based on the verification of these data, using newer bathymetric and coastline data of 36 survey transects along the Huanghe delta in 2004 and the Bohai Bay in 2000, a 3-D high resolution (horizontal resolution of 1'×1') hydrodynamic and sediment transport numerical model, coupled with shallow sea wave model (SWAN), was used to study the seasonal variation characteristic of sediment transport in the whole Bohai Sea. Especially, the coastal areas were considered to be very important sediment sources in the winter season. The paleotopography of the Bohai Sea during the period of the maximum transgression (7 ka B.P.) was grossly recovered, and then the numerical simulation method was first applied to study the sedimentation of the ancient Bohai Sea and the ancient Huanghe delta.
     The major contents in this dissertation are shown as following:
     1. Based on the analysis of in-situ data, the results show that the sediment resuspension and its effects are the most important dynamic sediment processes in winter. Without considering the effect of sediment resuspension in winter, it would be hard to discern the sediment transport process. A zone of high SSC (>100 mg /l) with a width of about 35 km was formed along the delta coast. A much larger area of high SSC and higher SSC occurred in the bottom layer, indicating resuspension origins. The coincident locations of the three highest SSC centers around the abandoned Diaokou river mouth, present river mouth and the abandoned Qingshuigou river mouth, coupled with the distribution of three centers of high bottom shear stress zone caused by wave effects, offer convincing evidence that wave-induced resuspension caused the high SSC that we observed in the study area. The protuberant topography of all three areas and the strong NNE-NE-ENE wave direction in winter led to high bottom shear stress around the three river mouths, resulting in the creation of the three highest SSC centers, and they were the major sediment source areas in winter. The SSC in winter was much higher in the entire study area than that in summer except for the area around the present river mouth. The SSF at all the time-series stations were 2-122.5 times higher in winter than in summer except one station near to the present river mouth. This indicates that the intensity of sediment transport in winter is much stronger than in summer.
     2. The calculation of bottom shear stress under co-existing wave currents was modified in our model, and the bottom shear stress caused by currents was recovered after modification. According to the results of the seasonal variation characteristic of sediment transport, there were some obvious differences of the distribution of bottom shear stress and SSC in the Bohai Sea between winter and summer, especially in the coast area. As a result of strong waves in winter, a zone of high values was mainly alone the coast with water depth less than 15 meters and the highest centers lied in depths of approximately 4 to 10 meters in the winter season. The regions with highest values were mainly along the coast of the Huanghe delta and the Liaodong Bay. The values of bottom shear stress and SSC in those regions were about 10 times higher in winter than in summer. During the winter storm events, the values were further increased to more than 2 times higher than average conditions in winter. Most previous studies have no considering the main sources of sediment resuspension and no verification of measured data in winter, but in this paper the model can give a reasonable agreement between simulated results (velocity and suspended sediment concentration) and measured data.
     3. High resolution grids and newer topography were used in this study. According to the result of simulation, the shear front outside the abandoned Qingshuigou river mouth in the Laizhou Bay was found which is consistent with the measured data. The forming mechanism of this shear front was caused not only by a tidal phase gradient along the delta slope, but also by the topography of the protrusion of the abandoned Qingshuigou river mouth. This shear front played an important role in obstructing the sediment dispersion from Huanghe into the Laizhou Bay.
     4. Because of the greater water depth, the wider coastline and the weaker tidal waves from the Huanghai Sea, the tidal currents of the ancient Bohai Sea during the period of the maximum transgression (7 ka B.P.) were much weaker than the present Bohai Sea, especially around the west area of the ancient Bohai Sea. Therefore, under this weak tidal hydrodynamic environment, the sediment of the ancient Huanghe discharge into the sea deposited more easily and accumulated more rapidly around the river mouth, and it was beneficial to form the Huanghe delta. In addition, there was less sediment being transported from the Bohai Sea to other seas in China. The hydrodynamic in the Liaodong Bay is stronger than other places, which is the important reason for the surface sediment of the seabed with coarser particles than other places.
引文
[1]. Milliman, J.D. and Meade R.H., World-wide delivery of river sediment to the oceans. The Journal of Geology,1983,91(1):1-21.
    [2]. 丁文兰,渤海和黄海潮汐潮流分布的基本特征.海洋科学集刊,1985,25:27-40.
    [3]. 方国洪,王凯,郭丰义,等,近30年渤海水文和气象状况的长期变化和相互关系.海洋与湖沼,2002,33(5):515-525.
    [4]. 黄大吉,陈宗镛,苏纪兰,三维陆架海模式在渤海中的应用,Ⅰ.潮流、风生环流及其相互作用.海洋学报,1996,18(5):1-13.
    [5]. 王凯,方国洪,冯士筰,渤海、黄海、东海M2潮汐潮流的三维数值模拟.海洋学报,1999,21(4):1-13.
    [6]. 张淑珍,奚盘根,冯士榨,渤海环流数值模拟.山东海洋学院学报,1984,14(2):12-19.
    [7]. 赵保仁,曹德明,李徽翡,王其茂,渤海的潮混合特征及潮汐锋现象.海洋学报,2001,23(4):113-118.
    [8]. 赵保仁,方国洪,曹德明,渤、黄、东海潮汐潮流的数值模拟.海洋学报,1994,16(5):1-10.
    [9]. 吕咸青,方国洪,渤海M2分潮的伴随模式数值实验.海洋学报,2002,24(1):17-24.
    [10]. 山广林,刘赞沛,王钟裙,徐洪达,渤海潮混合数值模拟Ⅰ.渤海主要半日分潮的数值模拟.海洋与湖沼,1983(5):419-431.
    [11]. 方国洪,杨景飞,渤海潮运动的一个二维数值模型.海洋与湖沼,1985,16(5):337-346.
    [12]. 孙兰英,陈时俊,赵可胜,沿岸海域三维斜压场的数值模拟Ⅰ.渤海潮流数值计算.青岛海洋大学学报,1990,20(3):11-24.
    [13]. 窦振兴,杨连武,渤海三维潮流数值模拟.海洋学报,1993,15(5):1-15.
    [14]. Zhao J.P., and Mao C.S., Numerical modelling of three-dimension characteristics of wind-driven current in the Bohai Sea. Chinese Journal of Oceanology and Limnology, 1993,11(1):70-79.
    [15]. 黄祖坷,渤海的潮汐余流.海洋湖沼通报,1992,3:1-8.
    [16]. 黄大吉,苏纪兰,陈宗镛,三维陆架海模式在渤海中的应用,Ⅱ.温度的季节性变化.海洋学报,1996,18(6):8-17.
    [17]. 黄磊,娄安刚,等,渤海及黄海北部的风海流数值计算及余流计算.青岛海洋大学学报,2002,32(5):695-700.
    [18]. Wei, H., Hainbucher D., et al., Tidal-induced Lagrangian and Eulerian mean circulation in the Bohai Sea. Journal of Marine Systems,2004,44(3-4):141-151.
    [19]. 万修全,鲍献文,吴德星,等,渤海夏季潮致—风生—热盐余流的数值诊断计算.海洋与湖沼,2004,35(1):51-57.
    [20]. 吴德星,万修全,鲍献文,等,渤海1958年和2000年夏季温盐场及环流结构的比较.科学通报,2004,49(3):287-292.
    [21]. Wang, Q., Guo X.Y., and Takeoka H., Seasonal variations of the Yellow River plume in the Bohai Sea:A model study. J. Geophys. Res,2008,113(C08046):1-14.
    [22]. 李国胜,王海龙,李柏良,渤海风驱一潮致拉格朗日余流的数值模拟与季相时空变异.地理研究,2005,24(3):359-370.
    [23]. Liang, S.X., Sun Z.C., et al. Typical Seasonal Circulation in the Bohai Sea. in of the Thirteenth international Offshore and Polar Engineering Conference,2003:282-289.
    [24]. 赵保仁,庄国文,曹德明等,渤海环流、潮余流及对沉积物分布的影响.海洋与湖沼,1995,26(5):466-473.
    [25]. 江文胜,汪景庸,赵建中,等,渤海湾环流的一次观测和分析.青岛海洋大学学报,1997,27(1):23-32.
    [26]. 江文胜,吴德星,高会旺,渤海夏季底层环流的观测与模拟.青岛海洋大学学报,2002,32(4):511-518.
    [27]. 徐如彦,赵保仁,黄景洲,等,渤海的平均余环流.海洋科学,2006,30(11):47-52.
    [28]. 乔璐璐,鲍献文,吴德星,渤海夏季实测潮流特征.海洋工程,2006,24(2):45-52.
    [29]. Emery, K.O. and Milliman J.D., Suspended matter in surface water:influence of river discharge and of upwelling. Sedimentology,1978,25:125-140.
    [30]. 秦蕴珊,李凡,渤海海水中悬浮体的研究.海洋学报,1982,4(2):191-200.
    [31]. Martin, J.M., Zhang J., et al., Actual flux of the Huanghe (Yellow River) sediment to the western Pacific Ocean. Netherlands Journal of Sea Research,1993,31:243-254.
    [32]. 张经,黄薇文,刘敏光,黄河口及邻近海域中悬浮体的分布特征和季节性变化.山东海洋学院学报,1985,15(2):97-104.
    [33]. 江文胜,苏键,杨华等,渤海悬浮物浓度分布和水动力特征的关系.海洋学报,2002, 24(增刊1):212-217.
    [34]. 董礼先,苏纪兰,王康墡,黄渤海潮流场及其与沉积物搬运的关系.海洋学报,1989,11(1):102-114.
    [35]. 曹祖德,波浪掀沙,潮流输沙的数值模拟.青岛海洋大学学报,1993,(51):120-131.
    [36]. Jiang, W.S., Mayer B, A Study on the Transport of Suspended Particulate Matter from the Yellow River by Using A 3D Particle Model (English). Journal of Ocean University of Qingdao,1997,27(4):439-446.
    [37]. Jiang, W.S., Pohlmann T., et al., A modelling study of SPM transport in the Bohai Sea. Journal of Marine Systems,2000,24(3-4):175-200.
    [38]. Jiang, W.S., Pohlmann T., et al., SPM transport in the Bohai Sea:field experiments and numerical modelling. Journal of Marine Systems,2004,44(3-4):175-188.
    [39]. 江文胜,孙文心,渤海悬浮颗粒物三维输运模式的研究Ⅰ.模式.海洋与湖沼,2000,31(6):682-688.
    [40]. 江文胜,孙文心,渤海悬浮颗粒物三维输运模式的研究Ⅱ.模拟结果.海洋与湖沼,2001,32(1):94-100.
    [41]. T.Yanagi and Kon-ichi, A Numerical Experiment on the Sedimentation Processes in the Yellow Sea and the East China Sea. Journal of Oceanography,1995(51).
    [42]. 朱玉荣,潮流场对渤、黄、东海陆架底质分布的控制作用.海洋地质与第四纪地质,2001,21(2):7-13.
    [43]. 朱玉荣,全新世渤、黄、东海陆架泥沙输运演变过程模拟研究.黄渤海海洋,2001,19(2):25-38.
    [44]. Li, G.S., Dong C., and Wang H.L., Numerical Simulation of Transportation of SPM from the Yellow River to the Bohai Sea. China Ocean Engineering,2006,20(1):133-146.
    [45]. 王勇智,江文胜,渤、黄、东海悬浮物质量浓度冬、夏季变化的数值模拟.海洋科学进展,2007,25(1):28-33.
    [46]. Liang, B.C., Li H.J., and Lee D.Y., Numerical study of three-dimensional suspended sediment transport in waves and currents. Ocean Engineering,2007,34(11-12): 1569-1583.
    [47]. 王海龙,李国胜,黄河入海泥沙在渤海中悬移输送季节变化的数值研究.海洋与湖沼,2009,40(2):129-137.
    [48]. Li, C.Z., Geomorphological characteristics of the Bohai sea and its south coast. Marine Sciences,1990,2(2):83-95.
    [49]. Milliman, J.D., Qin, Y.S., Ren, M.E., Saito, Y., Man's influence on the erosion and transport of sediment by Asian rivers:the Yellow River (Huanghe) example. Journal of Geology,1987,95(6):751-762.
    [50]. 谭其骧,西汉以前的黄河下游河道.历史地理,1980,(创刊号):48-64.
    [51]. 薛春汀,周永青,朱雄华,晚更新世末至公元前7世纪的黄河流向和黄河三角洲.海洋学报,2004,26(1):48-60.
    [52]. Xue, C., Historical changes in the Yellow River delta, China. Marine Geology,1993,113: 321-329.
    [53]. Saito, Y., Wei, H., Zhou, Y., Nishimura, A., Sato, Y, Yokota, S., Delta progradation and chenier formation in the HuangheZYellow River,Delta, China. Journal of Asian Earth Sciences,2000,18:489-497.
    [54]. 朱玉荣,古长江河口湾充填潮流作用机制的初步探讨.海洋学报,1999,21(3):73-82.
    [55]. 闾国年,林珲,宋志尧,贾建军,末次冰期最盛时期以来中国东部边缘海潮波系统演变过程的模拟研究.海洋地质与第四纪地质,2000,20(4):1-7.
    [56]. 秦蕴珊等,渤海底质.北京:科学出版社,1985.
    [57]. 中国河流泥沙公报(2000-2007),http:/www.irtces.org/database.asp.
    [58]. Xu, J.X., Sediment flux to the sea as influenced by changing human activities and precipitation:example of the Yellow River, China. Environmental Management,2003, 31(3):328-341.
    [59]. Xu, J.X., The water fluxes of the Yellow River to the sea in the past 50 years, in response to climate change and human activities. Environmental Management,2005,35(5): 620-631.
    [60]. Xu, J.X., Response of land accretion of the Yellow River delta to global climate change and human activity. Quaternary International,2008,186(1):4-11.
    [61]. Wang, H.J., Yang Z.S., et al., Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005):Impacts of climate change and human activities. Global and Planetary Change,2007,57(3-4):331-354.
    [62]. 中国大百科全书大气·海洋·水文卷,中国大百科全书出版社,1987.
    [63]. 吴德星,牟林,李强,等,渤海盐度长期变化特征及可能的主导因素.自然科学进展,2004,14(2):191-195.
    [64]. 杨作升,郭志刚,王兆祥,等,黄东海陆架悬浮体向东部深海区输送的宏观格局.海洋学报,1992,14(2):81-90.
    [65]. Schoellhamer, D., Factors affecting suspended-solids concentrations in south San Francisco Bay, California. Journal of Geophysical Research,1996,101(C5):12 087-12 095.
    [66]. Fettweis, M., Sas M., and Monbaliu J., Seasonal, Neap-spring and Tidal Variation of Cohesive Sediment Concentration in the Scheldt Estuary, Belgium. Estuarine, Coastal and Shelf Science,1998,47(1):21-36.
    [67]. Castaing, P., Froidefond J.M., et al., Relationship between hydrology and seasonal distribution of suspended sediments on the continental shelf of the Bay of Biscay. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,1999,46(10):1979-2001.
    [68]. Muslim, I. and Jones G., The seasonal variation of dissolved nutrients, chlorophyll a and suspended sediments at Nelly Bay, Magnetic Island Estuarine, Coastal and Shelf Science, 2003,57(3):445-455.
    [69]. 刘锡清,中国海洋环境地质.北京:海洋出版社,2006:28-30.
    [70]. 毕乃双,杨作升,等,黄河调水调沙期间黄河入海水沙的扩散特征和影响机制.海洋地质与第四纪地质,2010(待刊).
    [71]. Uncles, R., Elliott R., and Weston S., Observed fluxes of water, salt and suspended sediment in a partly mixed estuary. Estuarine, coastal and shelf science,1985,20(2): 147-167.
    [72]. Wang, H.J., Yang Z.S., et al., Wave climate modeling on the abandoned Huanghe (Yellow River) delta lobe and related deltaic erosion. Journal of Coastal Research,2006,22(4): 906-918.
    [73]. Bi, N.S., Yang Z.S., et al., Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period. Estuarine, Coastal and Shelf Science,2009.
    [74]. 藏启运等,黄河三角洲近岸泥沙.北京:海洋出版社,1996.
    [75]. Blumberg, A.F., GL.Mellor, "A Description of a Three-Dimensional Coastal Ocean Circulation Model,"In:Three-Dimensional Coastal Ocean Models,N.Heaps,Ed. American Geophys.Union,1987:1-16.
    [76]. Lick, W., Lick,J.and Ziegler,C.K., The Resuspension and Transport of Fine-Grained Sediments in Lake Erie. J.Great Lakes Res.,1994,20(4):599-612.
    [77]. Mellor, G.L., T.Yamada, Development of a Turbulence Closure Model for Geophysical Fluid Problems. Rev.Geophys.Space Phys.,1982,20:851-875.
    [78]. Galperin, B., L.H.Kantha,S.Hassid and A.Rosati, A Quasi-equilibrium Turbulent Energy Model for Geophysical Flows. J.Atmosph.Sci.,1988,45(55-62).
    [79]. Parchure, T.M., Mehta,A.J., Erosion of Soft Cohesive Sediment Deposits. ASCE J.Hydr.Engr.,1985,111(10):1308-1326.
    [80]. Tsai, C.H.a.L., W., Resuspension of sediments from Long Island Sound. Wat.Sci. Tech., 1987,21(6/7):155-184.
    [81]. Graham, D.I., James,P.W.,Jones,T.E.R.,Davies,J.M., Delo,E.A., Measurement and Prediction of Surface Shear Stress in Annular Flume. ASCE J.Hydr.Engr.,1992,118(9): 1270-1286.
    [82]. Hawley, N., Preliminary Observations of Sediment Erosion from a BottomResting Flume. J.Great Lakes Res.,1991,17(3):361-367.
    [83]. Amos, C.L., Grant,J.,Daborn,G.R.and Black,K., Sea Carousel-A Benthic,Annular Flume. Estuar.Coast.and Shelf Sci.,1992,34:557-577.
    [84]. Gailani, J., Lick, W., Ziegler, C.K. and Endicott, D., Development and Calibration of a Fine-Grained Sediment Transport Model for the Buffalo River. J. Great Lakes Res.,1996, 22:765-778.
    [85]. Maclntyre, S., Lick, W. and Tsai, C.H., Variability of Entrainment of Cohesive Sediments in Freshwater. Biogeochemistry,1990,9:187-209.
    [86]. Krone, R.B., Flume Studies of the Transport of Sediment in Estuarial Processes. Final Report, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, Berkeley,1962.
    [87]. Burban, P.Y., Xu,Y.,McNeil,J.,and Lick,W, Settling Speeds of Flocs in Fresh and Sea Waters. J.Geophys.Res.,1990,95(C10):18213-18220.
    [88]. Partheniades, E., Estuarine Sediment Dynamics and Shoaling Processes,. in Handbook of Coastal and Ocean Engineering,1996,3:985-1071.
    [89]. Partheniades, E., Estuarine Sediment Dynamics and Shoaling Processes,. in Handbook of Coastal and Ocean Engineering,1992,3:985-1071.
    [90]. Grant, W.D.a.M., O.S., Combined Wave and Current Interaction with a Rough Bottom. J.Geophys.Res.,1979,84(c4):1797-1808.
    [91]. Smagorinsky, J., General Circulation Experiments with the Primitive Equations, Ⅰ. The Basic Experiment. Mon. Weather Rev.,1963,91:99-164.
    [92]. Simons, T.J., Verification of Numerical Models of Lake Ontario, Part Ⅰ. Circulation in Spring and Early Summer. J. Phys. Oceanogr.,1974,4:507-523.
    [93]. Madala, R.V., and S.A. Piacsek, A Semi-Implicit Numerical Model for Baroclinic Oceans. J. Comput. Phys.,1977,23:167-178.
    [94]. Phillips, N.A., A Coordinate System Having Some Special Advantages for Numerical Forecasting. J. Meteorol.,1957,14:184-185.
    [95]. 李广雪,杨子庚,刘勇,中国东部海域海底沉积物成因环境图.北京:科学出版社,2005.
    [96]. Yang Z S, L.J.P., A unique Yellow River-derived distal subaqueous delta in the Yellow Sea. Marine Geology,2007,240(1-4):169-176.
    [97]. Liu J.P., Milliman, J.D., Gao S, et al, Holocene development of the Yellow River's subaqueous delta, North Yellow Sea. Marine Geology,2004,209(1-4):45-67.
    [98]. Alexander CR, D.D., Nittrouer CA, Sediment accumulation in a modern epicontinental-shelf setting:The Yellow Sea. Marine Geology,1991,98(1):51-72.
    [99]. 程鹏,高抒,北黄海西部海底沉积物的粒度特征和净输运趋势.海洋与湖沼,2000,31(6):604-615.
    [100].程鹏,高抒,刘敬圃,等,北黄海西部全新统分布的初步认识.第四纪研究,2001,21(4):379-379.
    [101]. Liu J.P., Milliman, J.D., Gao S, The Shandong mud wedge and post-glacial sediment accumulation in the Yellow Sea. Geo-Marine Letters,2002,21(4):212-218.
    [102]. Liu J.P., Yang Z.S., Wang H, et al, Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea. Marine Geology,2007,236(3-4): 165-187.
    [103]. Liu, J.P., Xu K.H., et al., Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology,2007,85(3-4):208-224.
    [104]. Uehara, K. and Saito Y., Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology. Sedimentary Geology,2003,162(1-2):25-38.
    [105]. Uehara, K., Saito Y., and Hori K., Paleotidal regime in the Changjiang (Yangtze) Estuary, the East China Sea, and the Yellow Sea at 6 ka and 10 ka estimated from a numerical model. Marine Geology,2002,183(1-4):179-192.
    [106].朱玉荣,末次冰消期以来渤、黄、东海陆架潮汐、潮流演变过程模拟研究.青岛海洋大学学报,2002,32(2):279-286.
    [107].沈育疆,黄岱岩,钱成春,试释黄海半日潮波系统形成机制.海洋学报,1993,15(6):16-24.
    [108]. 朱诚,程鹏,卢春成等,长江三角洲及苏北沿海地区7000年以来海岸线演变规律分析.地理科学,1996,16(3):207-213.
    [109].李保华,李从先,沈焕庭,冰后期长江三角洲沉积通量的初步研究.中国科学(D辑),2002,32(9):776-782.
    [110]. Li, C.X., Chen, Q., Zhang, J., Yang, S., Fan, D., Stratigraphy and paleoenvironmental changes in the Yangtze Delta during the Late Quaternary. Journal of Asian Earth Sciences, 2000,18(4):453-469.
    [111]. Park, S.C., Lee H.H., et al., Evolution of late Quaternary mud deposits and recent sediment budget in the southeastern Yellow Sea. Marine Geology,2000,170(3):271-288.
    [112]. 顾玉荷,修日晨,渤海海流概况及其输沙作用初析.黄渤海海洋,1996,14(1):1-6.
    [113]. 黄大吉,苏纪兰,黄河三角洲岸线变迁对莱州湾流场和对虾早期栖息地的影响.海洋学报,2002,24(6):104-111.
    [114]. Shen, J., Kuo, A.Y, Numerical investigation of an estuarine front and its associated eddy [J]. Journal of Waterway, Port, Coastal and Ocean Engineering,1999,125(3):127-135.
    [115].王厚杰,杨作升,毕乃双,黄河口泥沙输运三维数值模拟Ⅰ—黄河口切变锋.泥沙研究,2006(2):1-9.
    [116]. Li, G.X., Yang Z.S., et al., Sedimentation in the shear front off the Yellow River mouth. Continental Shelf Research,2001,21(6-7):607-625.
    [117]. Qiao, L.L., Bao X.W., et al., Numerical study of generation of the tidal shear front off the Yellow River mouth. Continental Shelf Research,2008,28(14):1782-1790.
    [118]. Nunes, R. A., Simpson, J. H, Axial convergence in a wel—mixed estuary. Estuarine, Coastal and Shef Scienc,1985(20):637-649.
    [119]. Wang, H.J., Yang Z.S., et al., Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth. Continental Shelf Research,2007,27(6): 854-871.
    [120]. Yoshiki Saito, Z.Y., Kazuaki Hori, The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas:a review on their characteristics, evolution and sediment discharge during the Holocene.2001,41:219-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700