近岸波浪对结构物作用耦合数值模型及其工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Boussinesq方程作为三维势流模型的平面二维近似,能够解决非线性波
    浪在较大浅水区域(如港口和一定的海岸区域)上的传播变形问题;另一方
    面,作为深度平均模型,Boussinesq方程难以给出结构物附近流动随深度变
    化的特征,无法解决波浪对潜堤、浮体等结构物作用问题。而数值求解三维
    势流模型或粘流模型的计算量和占用计算机的存储空间都很大,一般只在较
    小的计算区域上(如结构物附近)求解,难以直接用于大区域上(考虑波浪
    变形)的波浪-结构相互作用问题。另外,势流模型本身决定了结构物附近粘
    性流动的特点(如涡度、边界层等)都被忽略了,而要得到流动的这些信息,只
    有依靠粘流模型。为能同步和高效率地获得近岸大区域非线性波浪变形特
    征、结构物附近三维水动力特征和波浪荷载,结合Boussinesq方程数值模型
    和求解N-S方程的VOF方法各自的特点,开展了建立Boussinesq方程和N-
    S方程耦合数值模型的研究。
     整个研究工作包括以下几部分:
     1)建立了有限差分全隐格式Boussinesq方程波浪数值模型。
     全隐格式数值模型允许较小的网格尺度,计算过程稳定和结果收敛,并
     能保证计算精度以及为与三维模型耦合求解时便于取得相匹配的网格尺
     度。在开边界处理上,采取Sommerfeld辐射条件与海绵层吸收结合的
     办法,较好地将到达开边界的波浪能量吸收掉。用所建立的Boussinesq
     方程波浪数值模型进行了规则波在圆形浅滩上传播变形的数值计算,其
     数值结果较好地接近于有关的实验结果,表明所开发的全隐格式
     Boussinesq方程波浪数值模型是可靠的,以及具有较高的计算效率,可
     以用于近岸大区域波浪变形的数值计算。
     2)建立了基于N-S方程和VOF方法的三维数值波浪水池模型。
     提出了用于VOF方法的分段式造波机边界条件,并对其它边界相应地给
     出了合适的边界条件,建立了基于VOF方法的三维数值波浪水池。数值
     试验表明,所提出的分段式造波机边界条件能够产生长时间稳定的波动
     过程和斜入射波浪;对开边界的处理上采取了Sommerfeld辐射条件与
     海绵层内衰减垂向速度相结合的处理方法,较好地使到达开边界的波浪
     透过。数值试验表明所建立的数值波浪水池具有较好的波浪特性,并能
     获得较为可靠的结构物波浪荷载结果。
    
     论 丈 摘 要
    一
     3)建立了 ID Bousj NS-VOF#合数值模型。
     提出了重叠带上压力、速度和波面的匹配边界条件,建立了用二维川S方
     程控制内域(包含结构物的近场)流体流动和一维Boussinesq方程控制
     外域(内域的外围边界和整个计算域边界所围的区域)流体流动的耦合
     数值模型(简称 ID/ZD耦合模型),在时间步进格式下,实现了内域模
     型和外域模型同步耦合求解。数模试验显示本文提出的匹配边界条件能
     够保证流动在这两个子区域之间光滑而连续地过渡,并且耦合模型模拟
     结果(压力、速度、波面和波浪荷载)较好地接近于与原二维NS.VOF
     模型的结果。
     4)建立了二D BoussinesqoDNS-VOF耦合数值模型。
     建立了用三维NS方程控制内域流体流动和二维Boussinesq方程控制
     外域流体流动的部分三维化耦合数值模型(简称ZD/3D耦合模型)。数
     模试验显示本文提出的压力、速度和波面匹配边界条件在斜人射波浪条
     件下是有效性,能够保证流动在两个于区域之间光滑而连续地过渡;还
     对耦合模型模拟波面和波浪荷载结果进行了验证,和对耦合模型的计算
     效率进行了评估。
     5)开展了耦合数值模型在工程数值计算上的觑。
     ·应用所建立的 ID/ZD耦合模型,进行了消减直立堤前反射波的幕墙
     式消浪室性能的数模研究,得到了有意义的研究成果;
     ·应用所建立的 ZD/3D串联耦合模型对防彼堤堤头附近三维水动力特
     征进行了初步研究,得到了有意义的研究成果;
     ·应用所建立的ZD/3D嵌套耦合模型对港内直立式码头前船舶波浪力
     和船体附近三维水动力特征进行了初步研究,得到了有意义的研究
     成果。
Abstract
    
    
     As the depth-averaged simplification of the three-dimensional potential flow
     model, the horizontal two-dimensional Boussinesq equations are suitable for
     solving efficiently nonlinear wave propagation and transformation in large
     shallow water regions (for example, harbor or coastal region with similar size).
     On the other hand, because of depth-averaged simplification, the Boussinesq
     equations can not be applied in solving such problems as wave actions on
     submerged breakwaters, floating bodies etc., in which flow variations with depth
     must be considered. For these problems, one must solve potential flow models or
     viscous flow models, which are usually applied to a relatively small
     computational region around the structure and not suitable for large fluid
     domains, this is because both the 3D potential model and the 3D viscous model
     are far more CPU time-consuming. Besides, all the flow features attached to
     viscosity (vorticity, boundary layer) are disregarded in the modelling by potential
     flow theory. One must solve viscous flow models to access these details of flow.
     In order to obtain simultaneously and efficiently nonlinear wave
     transformations in a harbor or coastal region, details of three dimensional flow
     around structures and hydrodynamic loads of wave on marine structures,
     combining advantages of Boussinesq model and NS-VOF model, we unfolded the
     study of establishing Boussinesq / NS coupled numerical models.
    
     The entire research work includes the following parts:
    
     1) The Boussinesq equations numerical model with implicit differential
     method is setup.
     Numerical experiments reveal that the implicit method is accurate and
     unconditional stable. The Sommerfeld radiation condition (SRC)
     combined with sponge layer technique is applied at open boundaries, and
     numerical tests verify the performance of SRC assisted by the sponge
     layer technique. Computational results of regular waves propagating on a
     circular shoal are in good agreement with the experimental data, showing
     that the Boussinesq equation numerical model with implicit differential
     method can give a satisfactory description of wave transformation over
     the topography and can be applied in practical engineering.
    
     2) The three dimensional numerical wave basin (NWB)based on 3D Navier-
     Stokes equations and the VOF method is setup.
     The wave maker boundary condition for the VOF method is proposed.
    
    
    
    
    
    
    
    
    
    
     On other boundaries, in addition to reflection boundary conditions, the
     open boundaries are treated by the technique of velocity reduction
     zone(VRZ) at first, in which vertical velocity is reduced exponentially
     inside the VRZ. Then Sommerfeld radiation condition is applied at the
     open boundary. The performance of the present open boundary treatment
     is verified by numerical experiments.
    
     3) The 1D Boussinesq/2D NS-VOF coupled model is set up.
     Matching boundary conditions for pressure, velocity and wave surface
     elevation on the common matching boundary are proposed, and the
     I D/2D coupled numerical model is setup, which is combination of the
     2D NS-VOF model applied in the inner region (that is, the near-field
     surrounding a marine structure), and the ID Boussinesq model applied in
     the outer region. Numerical experiment shows that the present matching
     boundary cond
引文
Abbott M B, Petersen H M, Skovgoard O (1978) . On the numerical modelling of short waves in shallow water. J. Hydraulic Research, 16 (3) : 173-203
    Abbott M B, McCowan A D, Warren I R (1984) . Accuracy of short-wave numerical models. J. Hydraulic Engineering, 110(10) : 1287-1301
    Arai M., Paul U K, Cheng L Y, and Inoue Y(1993a). A technique for open boundary treatment in numerical wave tanks. Journal of the Society of Naval Architects of Japan, Vol.173: 45-50
    Arai M., Paul U K, and Inoue Y(1993b). Wave generation in 3D numerical wave tanks. Journal of the Society of Naval Architects of Japan, Vol. 174:253-259
    Beck, R.F.(1994) . Time domain computations for floating bodies. J. of Applied Ocean Research, 16:267-282
    Beji S, Battjes J A (1993) . Experimental investigations of wave propagation over a bar. Coastal Engineering, 19(1-2) : 151-162.
    Beji S, Battjes J A(1994) . Numerical Simulation of nonlinear waves over a bar, Coastal Engineering, 23: 1-16
    Beji S, Nadaoka-K (1996) . A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth. Ocean Engineering, 23 (8) : 691-704
    Chen, H C, and Lee, S K(1996) . Interactive RANS/Laplace method for non-linear free surface flows. Journal of Engineering Mechanics, 122 (2) : 153-162
    Chen Q, Madsen P A, Schaffer H A, et al (1998) . Wave-current interaction based on an enhanced Boussinesq approach. Coastal Engineering,33:11-39
    Clement, A.(1996) . Coupling of two absorbing boundary conditions for 2D time domain simulations of free surface gravity waves. J. Of Comp. Physics, 126: 139-151
    Cruz, E C and Aono T (1997) . Nonlinear wave field induced by offshore shoals and vertical structures. Proceedings of the Seventh International Offshore and Polar Engineering Conference, Honolulu, USA, May 25-30, 1997
    De Haas, P C A, and Zandbergen, P J(1996) . The application of domain decomposition to time-domain computations of nonlinear water waves with a panel method. Journal of Computational Physics 129: 332-344
    DiCastro F, Drimer N.,Glozman M.,Harari P.,Keren Y.,Radomir M.Sheremet A, Stiassnie M.,and Zwamborn J.A.(1997) A numerical model for studying the motion of berthed ship in harbours. Computer Modelling of Seas and Coastal Regions III(COASTAL 97) , published by Computational Mechanics Publications, Southampton Boston 1997, pp. 335-341
    Dommermuth, D.G. and Yue, D.K.P.(1987) . Numerical simulations of nonlinear axisymmetric flow with a free surface. J. of Fluid Mechanics, 178: 195-219
    Gobbi M F, Kirby J T (1999) . Wave evolution over submerged sills: tests of a high-order Boussinesq model. Coastal Engineering, 37: 57-96
    Guignard S.Grilli S,Marcer R and Rey V( 1999) .Computation of shoaling and breaking waves in nearshore areas by the coupling of BEM and VOF methods. Proceedings of the Ninth
    
     International Offshore and Polar Engineering Conference, Brest, France, May 30-June 4
    Hirt, C. W., Nichols, B. D., and Romero, N.C.(1975) . SOLA-A numerical solution algorithm for transient fluid flows. Los Alamos Scientific Laboratory Report LA-5852, April
    Ito T, Tanimoto K (1972) . A method of numerical analysis of wave propagation-application to wave diffraction and refraction. Proc. 13th Int. Coastal Eng. Conf, Vancouver, ASCE, 503-522
    Iwata, K, Kawasaki, K and Kim D S(1996) . Breaking limit, breaking and post-breaking wave deformation duo to submerged structures. Coastal Engineering, Chapter 181, 2338-2351
    Kawasaki, K(1999) . Numerical simulation of breaking and post-breaking wave deformation process around a submerged breakwater, Coastal Engineering Journal, Vol.41, Nos. 3&4: 201-223
    Kaihatu J M, Kirby J T.(1998) . Two-dimensional parabolic modelling of extended Boussinesq quations. J. Waterway, Port, Coastal, and Ocean Engineering, ASCE, 124(2) : 57-67
    Kim C H.Clement A H,and Tanizawa K(1999) . Recent Research and Development of Numerical WaveTanks-A Review. International Journal of Offshore and Polar Engineering, 9(4) : 241-256
    Lasen J, Dancy H (1983) . Open boundaries in short wave simulations: a new approach. Coastal Engineering, 7(3) : 285-297
    Longuet-Higgins, M.S. and Cokelet, C.D.(1976) . The deformation of steep surface waves on water. A Numerical Method of Computer, Proc. R. Soc. London, A3 50,1-26
    Madsen P A,Murray R,and Sorensen O R(1991) . A new form of Boussinesq equations with improved linear dispersion characteristics. Coast Eng,15: 371-388
    Madsen P A,Sorensen O R(1992) . A new form of Boussinesq equations with improved linear dispersion characteristic. Part 2: a slowly-varying bathymetry. Coast Eng, 18: 183-204
    Madsen P A, Sorensen O R, Schaffer H A (1997a). Surf zone dynamics simulated by a Boussinesq type model: Part 1. Model description and cross-shore motion of regular waves.Coaastal Engineering, 32: 255-287
    Madsen P A, S0rensen O R, Schaffer H A (1997b). Surf zone dynamics simulated by a Boussinesq type model: Part 2. Surf beat and swash oscillations for wave groups and irregular waves.Coaastal Engineering, 32: 289-319
    Nakamura T., MJinno, Y. Nishikawa and T. Onozuka (2000) . 27~(th) International Conference on Coastal Engineering, July 16-21,2000, Sydney, Australia, Book of Abstracts, Volume 2, Paper No 219
    Nichols, B. D. and Hirt, C. W.(1981) . Volume of Fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, Vol. 39, pp.201~225
    Nwogu O (1993) . Alternative form of Boussinesq equations for nearshore wave propagation. Journal of Waterways, Port, coastal and Ocean Engineering, ASCE, 119(6) : 618-638
    Ohyama T, Kiota W (1994) ., Tada A. Applicability of numerical models to nonlinear dispersive waves. Coastal Engineering, 24: 313-347.
    Ohyama T. and Tsuchida(1994) . Development of a partially three-dimensional model for ship motion in a habor with arbitrary bathymetry. Coastal Engineering 1994, Chapter 64, 870-885
    Park J C, Zhu M, and Miyata H(1993) . On the Accuracy of numerical wave making techniques. Journal of the Society of Naval Architects of Japan, Vol.173: 35-44
    
    
    Park J C, and Kim M H(1998). Fully nonlinear wave-current-body interactions by a 3D viscous numerical wave tank. Proceedings of the Eighth International Offshore and Polar Engineering Conference, Montreal, Canada, May 24-29
    Peregrine D H(1967). Long waves on a beach. J. Fluid Mech., 27(4): 815~827
    Qi P, Wang YX, Zou ZL(2000). 2-D composite model for numerical simulations of nonlinear waves. CHINA OCEAN ENGINEERING, Vol. 14, No. 1: 113-120
    Qi P, Zou ZL, Wang YX, Qiu DH(2000). A 3-D composite model for numerical simulation of nonlinear waves. PROCEEDINGS OF THE 10TH(2000) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE (ISOPE-2000, SEATTLE, USA), Vol.Ⅲ
    Romate, J E(1992). Absorbing boundary conditions for free surface waves. J. Computational Physics, 99:135~145
    Sch(?)ffer H A, Madsen P A(1995). Further enhancements of Boussinesq-type equations. Coastal Engineering, 26:1~14
    Shashikala, A.P., Sundaravadivelu R. And Ganapathy C.(1997). Dynamics of a moored barge under regular and random waves. Ocean Engng. Vol.24, No.5, pp. 401~430
    Stiassnie M, Dagan G(1979). Partial reflection of water waves by non-uniform advert currents. J. Fluid Mech., 92(1): 119~129
    Wang Yongxue(1994). A study on periodic wave breaking by absorbed numerical wave channel. Preceeding of the Fourth International Offshore and Polar Engineering Conference, Osaka, Japan, pp.32~36
    Wei G,Kirby J T, Sinha A(1995). A fully nonlinear Boussinesq model for surface waves: Part1 Highly nonlinear unsteady waves. J. Fluid Mech., 294:71~92
    Wei G,Kirby J T(1995). Time-dependent numerical code for extended Boussinesq equations. J. Waterway, Port, Coastal, and Ocean Engineering, ASCE, 121(5): 251~261
    Weng W. K., Yim John Z and Chou C.R.(1991). Ship motions near harbor caused by wave actions. Computer Modelling in Ocean Engineering 91, A.A.Balkema, Rotterdam, Brookfield, pp.443~453
    Yoon S B, Liu P L F(1989). Interaction of currents and weakly nonlinear water waves in shallow water. J. Fluid Mech., 205:397~419
    合田良实[日](1983).港工建筑物的防浪设计.海洋出版社,302~303
    柳树学(1998),多向不规则波传播的模拟及反射分析.大连理工大学博士学位论文
    刘海青,赵子丹,张庆河(1998).台阶地形上波浪运动的数值研究.水力学报,No.10:7~12
    刘海青,赵子丹(1999).数值波浪水槽的建立与验证.水动力学研究与进展,Ser.A,14(1):8~15
    梅强中(1984).水波动力学.北京:科学出版社,279~284
    齐鹏,王永学,邹志利,邱大洪(2000).非线性波浪时域计算的三维耦合模型.海洋学报,2000,Vol.22,No.6:102~109
    孙大鹏(1998).波浪变形计算的三维数值模式.大连理工大学博士学位论文
    谭维炎(1998).计算浅水动力学——有限体积法的应用.清华大学出版社,228~238
    王永学(1989).任意容器液体晃动问题的数学模型.大连理工大学博士学位论文
    
    
    王永学,Su Tsung Chow(1991).圆柱容器液体晃动问题的数值计算.空气动力学学报,9(1):112~119
    王永学(1993).VOF方法数模直墙式建筑物前的波浪破碎过程.自然科学进展——国家重点实验室通讯,3(6):553~559
    王永学(1994).无反射造波数值波浪水槽.水动力学研究与进展9(2):205~214
    王永学,任冰(1999).波浪冲击过程的湍流数值模拟.水动力学研究与进展,A辑第14卷第4期:409~417
    万德成,缪国平(1998).数值模拟波浪翻越直立方柱.水动力学研究与进展,A辑第13卷第3期
    徐本和(1996).海岸和港口非线性波浪的数值模拟.大连理工大学硕士学位论文
    邹志利(1997).高阶Boussinesq水波方程.中国科学(E辑),27(3):460~473
    邹志利(1999).高阶Boussinesq水波方程的改进,中国科学(E辑),29(1):87~96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700