柴达木盆地构造特征及其对油气分布的控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴达木盆地位于青藏高原东北部,是世界上海拔最高的含油气盆地。独特的地理位置,复杂的构造背景和丰富的矿产资源,是中外地球科学家和油气勘探家们竟相研究的热点地区之一。对盆地区域地质和地球物理背景、形成演化、区域构造、断裂特征及其对油气分布的控制作用等开展了系统研究,认为:盆地具有统一的前震旦系克拉通基底,存在北部侏罗系、西部第三系和东部第四系三大含油气系统;盆地地面构造成排成带,在平面分布和成因上有明显的规律性,盆地晚近构造运动十分强烈,造就了十分醒目的晚近构造形迹、对地形地貌和油气藏有强烈的影响;中新生代褶皱运动有由早至晚,由弱而强的发育特点。多期构造运动形成不同成因和不同样式的构造相互叠置对于捕获油气、形成油气富集区带具有重要意义;油气藏在空间上分布于生油凹陷之内或边缘,平面上油气田具环状分布特征,油气藏沿断裂成排成带展布,纵向上位于受断裂控制的断展背斜构造高部位。本文丰富了含油气盆地构造和石油地质理论,具有重要科学价值。同时对柴达木盆地油气勘探部署和决策也有重要指导作用。
The Qaidam Basin, 12 km2 in area and bounded by Altyn Mt., Qilian Mt. and Kunlun Mt., is located in the NE of Tibetan Plateau. The basin is one of the big petroliferous basins in the western China and is the highest petroliferous basin above sea level in the world. For its special geographic location, complicated tectonic setting and the ample resources, the Qaidam Basin has been one of the hot research areas to the earth scientists and petroleum geologists.
     After more than half century exploration 25 oil fields have been found and 6 hundred millions reserve have been proved. The studies show that Qaidam Basin has its special tectonics and complex revolution history which are different from the basins in the middle and eastern China, and even quite different from the other basins in western China and the other similar type basins in the world. The studies of petroliferous basin tectonics is very important for oil exploration. The tectonic subsidence controls the distributions of sags and the oil-producing center. Deformations form different oil and gas traps. Therefore, the research of geological setting, evolution, basin tectonics, faults and their controls on the oil and gas distribution have important scientific values, enrich the theory of petroleum geology, and have guiding importance for oil and gas exploration in Qaidam Basin.
     Based on the studies on the basement and cover of Qaidam and Tarim basins, and the tectonic reconstructions on the both sides of Altyn fault, the Qaidam Basin has a uniformed Precambrian basement. The concept of“Western Craton”has been put forward, which describes that there existed a combined craton consisted of Qaidam, Tarim and Alex Blocks during Paleozoic. The Qaidam and Tarim basins had been connected each other before Cenozoic.
     There generally occurs a thrust fault between Qaidam Basin and surrounding mountains. To the front of Altyn Mt. the Cenozoic sediments overlapped on the southern slop of the Altyn Mt. on the surface, but the basement rocks from Altyn Mt. overthrusted on the basin sequences in the deep. However, the Kunlun Mt. and Qilian Mt. overthrusted on the basin sequences in the mountain fronts. There occurred main four major tectonic events during Meso-Cenozoic, they are Late Indosinian, Yanshanian, Himalayan and Neotectonic events of which the Yanshanian, Himaliyan and late Early Pleistocene events are more important to the formation of oil and gas in Qaidam Basin.
     Qaidam Basin is a typical inner continental lacustrine sedimentary basin. The basin has been filled by more than 17000m thick Meso-Cenozoic sediments from Jurassic to now with 213 Ma long history. There are three petroliferous systems in Qaidam Basin. In the northern area of the basin the petroliferous system consists of Middle-Lower Jurassic source rocks and Mesozoic and Tertiary reservoir and cover rocks. The petroliferous systems with only Tertiary reservoir and cover rocks were mainly developed in the Mangai depression, and with the Quarternary reservoir and cover rocks only in Sanhu depression.
     The surface structures consist of a series of en echelon“reverse S”fold belts with NWW or NW trending. The anticline is narrow, but synform wide. These en echelon“reverse S”fold belts mainly develop in the northern areas. The trending of the belts from west to east changes from NWW to NW, then to NWW. The anticline locations move toward SE from north to south. Every“reverse S”fold belt consists of several anticlines, and every anticline consists of several small heights. The western head anticlines of the“reverse S”fold belts are tight with SW dipping axial plane. The eastern tail anticlines of the“reverse S”fold belts are wide with NW dipping axial plane. The formation of the“reverse S”fold belt developed gradually from the head to tail.
     The Meso-Cenozoic anticlines in Qaidam Basin are divided into two types. One type is basement swell-controlled anticlines which inherit the basement swells. There often develop a wide depression between anticlines and forms pectination anticline system. The sediments on the axial areas are think and coarse-grained. These kind of anticlines formed early and are located close to the source rock sags with ample hydrocarbon, therefore, they have generally high hydrocarbon concentration. The other type anticline is shallow cover fold which formed about early Pleistocene in the deep depression of the central basin without control by basement swell. The anticlines in Sanhu sag, such as the Tainan anticline, are late shallow fold, but with syn-sedimentary characters. The anticlines are wide and are Quaternary gas-producing structures in the basin.
     From Miocene the basement in the NW part of the basin started gradually uplifting. The depocenter moved toward SE. The basin receded from the west and overlaid to the east. The anticlines of the cover were formed from deep to surface and from west to east with the time. The height of the anticline in the deep immigrates toward NW relative to the height on the surface.
     Folding events were getting stronger form Mesozoic to Cenozoic. The evolution of Qaidam Basin is divided into three stages. The first stage is Jurassic-Cretaceous, during this period the Qaidam Basin and the SW part of the Tarim Basin were connected as one extensional half-graben basin, the depocenter were located in the NW and small with relative thick Jurassic-Cretaceouse sediments. The second stage is Oligocene-Pliocene during which the Qaidam Basin reached the biggest deposition area. With the uplifting of the Altyn Mt. from late Miocene, the basin depocenter was moved toward east more than 240km. During the Quaternary (the third stage) the depocenter was in the Sanhu areas in the SE part in which more than 3500 km thick lacustrine sediments were deposited.
     Multiple tectonic events formed different genesis and style structure frameworks, the overprinting of these structures is very important for capturing the oil and gas to form reservoir. The typical examples of this kind of reservoir are Gasikule oil field, Huatugou oil field and Shaxi oil field and so on in the western part of the basin, which are all large oil fields and located in the overprinted areas of the NWW and NNW structures.
     The thrust faults in the basin were well developed, which are so-called spade thrust faults with high dip angle but small offset close to the surface and lower dip angle but relative large offset in the deep. They often have growing fault features. Some slide thrust faults have high dip angle but large offset close to the surface and lower dip angle but relative small offset in the deep, they are often disappear in the Oligocene mudstone layer and not influence the deep structures. The faults have preferred orientation horizontally. In the NW part of the basin the fault system distribution is banded from N to S, sectioned from W to E and layered from surface to deep.
     The reservoir formation in the Qaidam Basin has close relationship with the fault development. The large scale faults control the formation and deformation of the whole basin, and also control the distributions of oil-producing sags and sedimentary facies, they provide different geological settings to form different trap structures. The fault systems control the petroliferous system, their development and continuing activity control the location, shape and distribution of the traps.
     The fault system controls the distribution and development of the petroliferous zones. Fault-controlled extension structures, flower structures and nappe-thrust structures control the distribution and development of the most traps in the basin. The petroliferous zones occur often together with fault belts. Fault is the pass way to connect source rocks to traps, the traps close to the faults which connect to source rocks are generally good reservoirs.
     Late Himalayan movement generally breaks the original reservoirs and results in the re-transporting of oil and gas, which forms the secondary reservoirs in the shallow level or overflow to the surface to form oil seepage. Therefore, the faults during Himalayan period not only break the original reservoirs but also favor of forming secondary reservoirs.
     The oil fields in Qaidam Basin occur in oil-producing depressions or in the margin of the depressions. Oil fields are distributed in rings, e.g. the oil in inner ring and the gas in outer ring. Reservoirs are distributed along the fault zones and normally located on the height of fault-related anticline. The reservoirs occur vertically in different layers. In the SW part of the basin the reservoirs occur in E13 and E23-N11, in E32-N11 and N1-N2 in the middle part and in all Cenozoic layers in the northern margin area.
     The main exploration targets in the future should be focused on the Tertiary in the western part of Qaidam Basin, which has ample hydrocarbon resources and favorable conditions of forming reservoir. Many oil and gas fields have been found in this area, therefore, the area has a big oil exploration potential. More exploration works and the systematic research should be done in this area, including the analysis of the favorable petroliferous zones and the target selection of the exploration. While more detail explorations are carried out for complicated structures and lithological reservoirs in the SW part of the basin, the deep layer reservoir exploration and studies should be emphasized in the front thrust zone of Kunlun Mt., Shizigou– Youshashan - Dawusi structure belt, and Jiandingshan and Nanyishan in the NW part of the basin.
     The northern margin of Qaidam basin has potential to finding middle-scale oil fields, more seismic exploration and research works should be carried out in this area, especially in Lenghu and Maxian structure belts. The exploration for the Quaternary bio-gas should be focused on the small scale structures and lithological reservoirs.
引文
1. 青海省地质矿产局. 青海省区域地质志. 北京:地质出版社,1991.
    2. 青藏油气区石油地质志编写组. 中国石油地质志卷十四,青藏油气区. 北京:石油工业出版社,1990.
    3. 国家地震局《阿尔金活动断裂带》课题组. 阿尔金活动断裂带. 北京:地震出版社,1992.
    4. 新疆维吾尔自治区地质矿产局. 新疆维吾尔自治区区域地质志. 北京:地质出版社,1993.
    5. 甘肃省地质矿产局. 甘肃省区域地质志. 北京:地质出版社,1989.
    6. 黄汉纯,黄庆华,马寅生. 柴达木盆地地质与油气预测—立体地质·三维应力·聚油模式. 北京:地质出版社,1996.
    7. 李四光,孙殿卿,吴磊伯等. 旋卷和一般扭动构造及地质构造体系复合问题. 科学出版社,1958.
    8. 黄汲清,任纪舜,姜春发等. 中国大地构造及其演化. 北京:科学出版社,1980.
    9. 黄汲清,任纪舜,姜春发等. 中国大地构造基本轮廓. 地质学报,1977,51(2):117-135.
    10. 黄汲清,陈炳蔚. 中国及邻区特提斯海的演化. 北京:地质出版社,1987.
    11. 张以弗. 对青海省地质构造若干基本问题的认识. 青藏高原地质文集(1),地质出版社,1982.
    12. 任纪舜,姜春发,张正坤等. 中国大地构造及其演化. 北京:科学出版社,1980.
    13. 任纪舜,王作勋,陈炳蔚,姜春发等. 从全球看中国大地构造-中国及邻区大地构造图简要说明. 北京:地质出版社,2000.
    14. 任纪舜,姜春发,张正坤等. 中国大地构造及其演化. 北京:科学出版社,1980.
    15. 任纪舜,王作勋,陈炳蔚,姜春发等. 从全球看中国大地构造-中国及邻区大地构造图简要说明. 北京:地质出版社,2000.
    16. 李春昱,王荃,刘雪亚等. 亚洲大地构造图及说明书. 北京:地图出版社,1982.
    17. 李春昱. 关于划分大陆古板块的商榷. 中国地质,1985,(1):13-16.
    18. 王鸿祯. 从活动论观点论中国大地构造分区. 地球科学-武汉地质学院学报,1981,(1):42-66.
    19. 王鸿祯. 中国地质构造发展的主要阶段. 地球科学,1982,(3):155-177.
    20. 王鸿祯(主编). 中国古地理图集. 北京:地图出版社,1985.
    21. 马杏垣(主编). 中国岩石圈动力学纲要,1:400 万中国及邻近海域岩石圈动力学图说明书. 北京:地质出版社,1987.
    22. 葛肖虹,刘俊来. 北祁连造山带的形成与背景. 地学前缘. 1999,6(4):223-230.
    23. 段吉业,葛肖虹. 论塔里木-扬子板块及其古地理格局. 长春地质学院学报,1992,22(3).
    24. 车自成,刘良,罗金海. 中国及邻区区域大地构造学. 北京:科学出版社,2002.
    25. 段吉业,葛肖虹. 再论中国西北地区构造格局. 地质通报,2005.
    26. 潘桂棠等,陈智梁,李兴振等. 东特提斯地质构造形成演化. 北京:地质出版社,1997,154-171.
    27. 许志琴,崔军文. 大陆山链变形构造动力学. 北京:冶金工业出版社,1996,166-184.
    28. 葛肖虹,刘俊来. 被肢解的“西域克拉通”. 岩石学报,2000,16(1):59-66.
    29. 葛肖虹,段吉业,刘先文等. 中国西北的大陆构造. 地质矿产部岩石圈构造与动力学开放研究实验室,1995 年年报:北京:地质出版社,1996,9-18.
    30. 朱日祥,杨振宇,吴汉宁等. 中国主要地块显生宙古地磁视极移曲线与地块运动.中国科学(D辑),1998,28(增刊):116.
    31. 顾家裕. 塔里木盆地沉积层序特征及其演化. 北京:石油工业出版社. 1996,140-209.
    32. 刘永江,葛肖虹,叶慧文等. 阿尔金断裂变形岩激光微区 40Ar/39Ar 年龄及其构造意义. 科学通报,2000,45(19):2101-2104.
    33. 陆松年. 青藏高原北部前寒武纪地质初探. 地质出版社. 2002,1-120.
    34. 黄汉纯,周显强,王长利. 柴达木盆地构造演化与油气富集规律.地质论评. 1989,35(4):314-323.
    35. 王云山、陈基娘. 柴达木地块的形成与发展. 青藏高原地质文集,1984,14:26-37.
    36. 朱志澄,杨森楠,马杏垣. 大陆构造的若干基本问题. 中国大陆构造论文集,武汉:中国地质大学出版社,1992,1-4.
    37. 朱夏,陈焕疆,孙肇才等. 中国中、新生代构造与含油气盆地.地质学报,1983,57(3):235-242
    38. 刘训,姚建新,王永. 再论塔里木板块的归属问题.地质论评,1997,43(1):1-9.
    39. 罗中舒. 青藏高原板块构造及发展模式. 青藏高原地质文集(1),地质出版社,1982.
    40. 刘和甫. 中国沉积盆地演化与联合古陆的形成和裂解. 现代地质,1992,6(4):480-493.
    41. 刘和甫. 沉积盆地地球动力学分类及构造样式分析. 地球科学,1993,18(6):699-724.
    42. 陈发景. 我国含油气盆地的类型、构造演化和油气分布. 地球科学—武汉地质学院学报,1986,11(3):221-229.
    43. 陈发景,汪新文. 盆地构造分析与油气勘探. 勘探家(石油与天然气),1996,(1):25-28.
    44. 陈焕疆等. 中国含油气盆地的格架. 石油实验地质,1986,8(2):97-106.
    45. 陈焕疆,孙肇才,张渝昌. 中国含油气盆地的格架. 石油实验地质,1986,8(2):97-106.
    46. Allen, P.A, Allen, J.R, Basin Analysis: Principles Applicationns, Blackwell scientific publications,1990
    47. PAllen,P.A. & Allen,J.R. , Basin analysis: principles and applications: Blackwell Scientific Publication, Oxford, London, 1990.
    48. 胡受权,曹运江,黄继祥等. 柴达木侏罗纪原型盆地及其形成与演化探讨.石油实验地质,1999,21(3):189-195.
    49. 张文佑. 断块构造导论. 北京:石油工业出版社,1984.
    50. 张文佑等. 中国及邻区海陆大地构造. 北京:科学出版社,1986.
    51. 赵俊猛,张先康等. 拜城—大柴旦剖面的上地壳 Q 值结构. 地球物理学报,2003,46(4):503-509
    52. 邓晋福,吴宗絮,杨建军等. 格尔木-额济纳旗地学断面走廊域地壳-上地幔岩石学结构与深部过程. 地球物理学报,1995,38(增刊):130-144.
    53. 邓晋福,杨建军,赵海玲等. 格尔木-额济纳旗断面走廊域火成岩-构造组合与大地构造演化. 现代地质,1996,10(3):330-343.
    54. 崔作舟,李秋生,吴朝东等. 格尔木-额济纳旗地学断面的地壳结构与深部构造. 地球物理学报,1995,38(增刊):15-28.
    55. 王泽九,吴功建,肖序常. 格尔木-额济纳旗地学断面多学科综合调查研究概况. 地球物理学报,1995,38(增刊):1-2.
    56. 高锐,成湘洲,丁谦. 格尔木-额济纳旗地学断面地球动力学模型初探. 地球物理学报,1995,38(增刊):3-14.
    57. 高锐,成湘洲,丁谦,等. 格尔木—额济纳旗地学断面地球动力学模型初探. 地球物理学报,1995,38(增刊 II):3-14.
    58. 朱仁学,胡祥云. 格尔木-额济纳旗地学断面岩石圈电性结构的研究. 地球物理学报,1995,38(增刊):46-57.
    59. 崔作舟,尹周勋,高恩元等. 亚东-格尔木岩石圈地学断面综合研究-青藏高原速度结构和深部构造. 北京:地质出版社,1992.
    60. 腾吉文. 塔里木盆地地球物理场与油气. 塔里木油气地质(2),北京:科学出版社,1992.
    61. 吴光大,葛肖虹,刘永江,任收麦. 柴达木盆地地球物理场及其深部地质特征. 新疆石油地质, 2005,(1).
    62. 邱楠生. 柴达木盆地现代大地热流和深部地温特征. 中国矿业大学学报,2001,30(4):412-415.
    63. 沈显杰等. 青海省柴达木盆地的大地热流和统计热流值. 地球物理学报,1994,37(1):56-65.
    64. 刘和甫,李小军,刘立群. 盆地-山岭耦合体系与地球动力学机制. 地球科学,2001,26(6):581-596.
    65. 田在艺等. 中国含油气沉积盆地论. 北京:石油工业出版社,1996.
    66. 李国玉. 沉积盆地论. 北京:石油工业出版社,2001.
    67. 杨藩,马志强,许同春,叶素娟. 柴达木盆地第三纪磁性地层柱. 石油地质,1992,13(2):97-101.
    68. 孙知明,杨振宇,葛肖虹等. 柴达木盆地西北缘古近系磁性年代研究进展. 地质通报,2004,23(9-10):899-902.
    69. 宋建国, 廖健. 柴达木盆地构造特征及油气区的划分. 石油学报,1982,增刊:14-23.
    70. 车自成等,中国及其邻区区域大地构造学. 北京:科学出版社,2002.
    71. 贾承造等,前陆冲断带油气勘探. 北京:石油工业出版社,2000.
    72. 丁道桂,王道轩,刘伟新等. 西昆仑造山带与盆地. 北京:地质出版社,1996,1-220.
    73. 冯益民,何世平,祁连山大地构造与造山作用. 北京:地质出版社,1996.
    74. 葛肖虹,任收麦,马立祥,吴光大,刘永江,袁四化. 青藏高原末次快速隆升与“亚澳”陨击事件. 第四纪地质, 2004, 24(1):67-73.
    75. 中英青藏高原综合考察队. 青藏高原隆起的成因与演化. 北京:科学出版社,1991.
    76. Graham, S.A., S.M.Hendrix, L.B.Wang, and A.R.Carrol, Collisional successor basins of western China:impact of tectonic inheritance on sand composition:Geological Society of America Bulletin, 1993, 105:323-344.
    77. Molnar, P., and Tapponnier, P., Cenozoic tectinics of Asia: effects of continental collision: science, 1975, 189:419-425.
    78. Molnar, P., and Tapponnier, P.Cenozoic tectonics of Asia. Effects of continental collision. Science, 1975, 189,419-425.
    79. Molnar, P., and Tapponnier, P., Active tectonics of Tibet:Journal of Geophysical Research, 1978, 83(B11):5361-5375.
    80. Molnar, P., Continental tectonics in the aftermath of plate tectonics. Nature, 1988,335, 131-137.
    81. Patriat, P., and Achache, J., India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates:Nature, 1984, 311:615-621.
    82. 黄杏珍,邵宏舜,顾树松等. 柴达木盆地的油气形成与寻找油气田的方向. 兰州:甘肃科学技术出版社,1993.
    83. 王金荣. 柴达木盆地形成与演化. 兰州大学学报(地质学专刊),1988.
    84. 马文璞(编). 区域构造解析-方法理论和中国板块构造. 北京:地质出版社,1992.
    85. 狄恒恕、王松贵. 柴达木盆地北缘中、新生代构造演化探讨. 地球科学—中国地质大学学报,1991,16 (5): 533-539.
    86. 葛肖虹,任收麦,马立祥,吴光大,刘永江,袁四化. 青藏高原多期次隆升的环境效应. 地学前缘, 2006,(6).
    87. 张明利,汤良杰,金之钧等. 柴达木震旦纪—三叠纪盆地演化研究. 地质科学,1999,34(3):289-300.
    88. Edward R.Sobel et al, A Possible middle Paleozoic suture in the Altyn Tagh, nw China, TECTONICS, 1999, 18 (1): 64-74.
    89. Da Zhou et al, Extrusion of the Altyn Tagh wedge:A Rinematic model for the Altyn Tagh fault and palinspastic reconstruction of northern China, Geology, 1996,24(5): 427-430.
    90. 任收麦,葛肖虹,刘永江,常丽华,吴光大,袁四化. 晚白垩世以来沿阿尔金断裂带的阶段性走滑隆升. 地质通报,2004, (9).
    91. 葛肖虹,刘永江,任收麦. 青藏高原隆升动力学与阿尔金断裂. 中国地质,2002,29(4):346-350.
    92. 袁四化, 刘永江,葛肖虹,任收麦,吴光大,李伟民,刘欢,郭新转. 阿尔金山中-新生代隆升历史研究进展. 世界地质,2006,(2).
    93. 范连顺,王明儒. 柴达木盆地茫崖坳陷含油气系统及勘探方向. 石油实验地质,1999,21(1):41-47.
    94. 王明儒. 柴达木盆地中新生代三大含油气系统及勘探焦点. 西安石油学院学报,2001,16(6):8-12.
    95. 郑孟林. 柴达木盆地新生代不同层次构造特征. 地质学报,2004,78(1):26-35.
    96. 杨明慧. 柴达木盆地新构造运动主要特征与成因机制. 海洋地质与第四系地质,1997,17(3):71-78.
    97. 郭占谦,师继红. 新构造运动活跃的柴达木盆地含油气系统特征. 大庆石油地质与开发,2001,20(1):9-12.
    98. 朱允铸,钟坚华,李文生. 柴达木盆地新构造运动及盐湖发展演化. 北京:地质出版社,1994,57-72.
    99. 汤锡元,罗铸金. 柴达木盆地北缘块断带的石油地质特征. 石油与天然气地质. 1986,7(2):182-191.
    100. 张宋仁等. 柴达木盆地北缘块断带的扭动构造与阿尔金构造体系的关系. 大地构造与成矿学,2000,24(3):218-223.
    101. 王宁国. 阿尔金弧形构造带与油气的关系. 石油学报,1982,(2):21-27.
    102. 汤锡元等. 柴达木盆地的波浪状镶嵌构造特征及其对油气的控制. 石油实验地质,1983,5(4):258-264.
    103. G.F.Ufimteev, The Third Face of Tectonics—Tectonic Analysis of Relief, 1995,12(1).
    104. Francois Metivier et al, Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi corridor baains, China, TECTONICS, 1998, 17(6): 823-842.
    105. 李相博等. 青藏高原东北部旋卷(扭)构造变形及其形成地质条件分析. 大地构造与成矿学,2001,25(2):120-127
    106. 王燮培等. 石油勘探构造分析. 武汉:中国地质大学出版社,1992.
    107. 朱志澄. 逆冲推覆构造(第二版). 武汉:中国地质大学出版,1989.
    108. 姜洪训,高焕章. 柴达木盆地北缘逆冲推覆构造及其含油气性研究. 西安:西北大学出版社,1989.
    109. Tapponnier, P., and Molnar, P.,Slip-line field theroy and large-scale continental tectonics.Nature, 1976, 264:319-324.
    110. Tapponnier, P., and Molnar, P., Active faulting and tectonics in China: Journal of Geophysical Research, 1997,82:2905-2930.
    111. Tapponnier, P., and Molnar, P., Active faulting and Cenozoic tectonics of the Tianshan, Mongolia, and Baikal regions:Journal of Geophysical Research , 1979,84:3425-3457.
    112. Wang Tonghe, Structural Styles of Fronts of Thrust—Detachment Fauts in Petroleum —bearing Areas of Western China, ACTA Geologica sinica, 1999, 73(4).
    113. 汤良杰等. 柴达木盆地构造古地理分析. 地学前缘,2000,7(4):421-429.
    114. 汤良杰等. 柴达木震旦纪—三叠纪盆地演化研究. 地质科学,1999,34(3):289-300.
    115. 夏文臣等. 柴达木侏罗系的构造层序及前陆盆地演化. 石油与天然气地质,1998,19(3):173-180.
    116. 罗梅,贾疏源. 柴达木盆地及相邻地区地质构造演化.成都地质学院学报. 1991.18(4):56-64.
    117. 吴珍汉等. 中国大陆及邻区新生代构造—地貌演化过程与机理. 北京:地质出版社,2001.
    118. 付国民,李永军,石京平. 柴达木第三纪转换裂陷盆地形成演化及动力学. 沉积与特提斯地质, 2001,21(4):34-41.
    119. Wen chen Xia, et al., Cenozoic Qaidim basin, China:A Stronger tectonic inversed, extensional rifted basin [J] AAPG, 2001,85(4): 715-736.
    120. Sun zhen cheng et al., Sedimentary Enuironments and Hydrocarbon Generation of Cenozoic Salified lakes In China, Petroleum Industry Press, 1997.
    121. Wang Hong Zhen et al., Development of Geological Science in China in the Twentieth Century, Journal of China university of Geosciences, September 2000, 11(3):197-203.
    122. ZHAO Zheng zhang, LI yongtie, Condieions of Petroleum Gedogy of the Qiang tang Basin of the Qinghai—Tibet Plateau, ACTA GEOLOGICA SINICA, 地学前缘, 2000,74(4).
    123. 刘海涛,马立祥,葛肖虹,刘永江,管全俊,吴光大. 阿尔金断裂的研究现状及其控油意义. 西安石油大学学报(自然科学版), 2003,(6).
    124. 葛肖虹等. 阿尔金断裂研究的科学问题与研究思路. 现代地质,1998,12:(3)295-301.
    125. 谈迎等. 柴达木盆地中央断裂带及其地质意义. 石油勘探与开发,2000,27(3):21-27.
    126. 陈少军等. 柴达木盆地断裂特征及其对油气分布的控制作用. 新疆石油地质,2004,25(1):22-25.
    127. 罗群,白新华. 断裂控烃理论与与实践~断裂活动与油气聚集研究. 武汉:中国地质大学出版社,1998.
    128. 宋廷光. 同沉积逆断层的发育特点及油气聚集条件分析. 青海地质,1997,6(2):6-13.
    129. 王金荣,黄华芳. 柴达木盆地断裂构造效应. 兰州大学学报(自然科学版).1994,30(4):116-121.
    130. 刘志宏,万传彪,杨建国,刘振文,高军义. 柴达木盆地北缘地区新生代构造特征及变形规律. 地质科学,2005,40(3):404-414.
    131. 刘海涛,马立祥,管全俊,吴光大. 含油气系统与系统方法. 大庆石油地质与开发,2004,23(2):1-4.
    132. Magoon, L.B., The petroleum system-a classification scheme for research , exploration, and resource assessment, in L.B.Magoon, ed., petroleum systems of the United states. USGS Bulletin, 1988, 1870:2-15.
    133. Magoon, L.B., and Dow, W.G., The petroleum system:from source to trap. AAPG Memoir 60. 1994.
    134. Magoon, L.B., and Sanchez, R.M.O., Beyond the petroleum system. AAPG Bulletin, 1995, 79: 1731-1736.
    135. 刘志宏,杨建国,万传彪,刘振文,张立国.柴达木盆地北缘地区中生代盆地性质探讨.石油与天然气地质,2004,25(6):620-625.
    136. 戴俊生,曹代勇,张受仁. 冷湖背斜带中东段构造特征分析. 煤炭学报,1999,24(6):561-165
    137. Liu, H., Geodynamic scenario and structural style of Mesozoic and Cenozoic basin in China: AAPG Bulletin, 1986, 70:377-395.
    138. McKnight, C.L., Structural styles and tectonic significance of Tian Shan foothill fold -thrust belts, northwest China(Ph.D.thesis): Waco, Texas, Baylor University, 1993.
    139. 余一欣,汤良杰,马达德,马玉杰,张启全,谭万金. 柴达木盆地构造圈闭特征与含油气性. 西安石油大学学报(自然科学版),2006,(5).
    140. 戴俊生,曹代勇. 柴达木盆地新生代构造样式的演化特点. 地质论评,2000,46(5):455-460.
    141. 万天丰. 构造应力场研究的新进展. 地学前缘(中国地质大学,北京),1995,2(2):226-235.
    142. 万天丰编著. 古构造应力场. 地质出版社,1988.
    143. 王连捷. 地应力与油气运移. 地质力学学报,1996,2(2):3-10.
    144. 祁林. 试论油气的应力圈闭. 石油实验地质,1987,9(4).
    145. 王金荣,彭作林等. 柴达木盆地构造应力场及其地质意义. 兰州大学学报,1991,(3).
    146. 李志明,张金珠. 地应力与油气勘探开发. 北京:石油工业出版社,1997.
    147. 吴光大,葛肖虹,刘永江等. 柴达木盆地中新生代构造演化及其对油气的控制. 世界地质,2006,(4).
    148. 丁道桂,汤良杰等. 塔里木盆地形成与演化. 南京:河海大学出版社,1996.
    149. 黄汉纯,周显强等. 柴达木盆地构造演化与石油富集规律. 地质论评,1989,5(4).
    150. 顾树松编著. 柴达木盆地东部第四纪气田形成条件及勘探实践. 石油工业出版社,1993.
    151. 顾树松,狄恒恕. 柴达木盆地形成机理及其对油气的控制. 见:朱夏主编,中国中、新生代沉积盆地. 石油工业出版社,1990,186-195.
    152. 陈世悦,徐凤银,彭德华. 柴达木盆地基底构造特征及其控油意义. 新疆石油地质,2000,21(3):1-7.
    153. 吴花果,戴俊生,杨国权,王学彩. 柴达木盆地背斜构造控油作用分析. 石油大学学报,2001,25(1).
    154. 吴光大,肖康明,王献新,张恒,王海玲. 柴达木盆地马海-大红沟凸起马北地区构造特征及钻探目标选择. 汇编入张一伟、党玉琪、熊继辉等主编,《柴达木盆地油气勘探论文集》,石油工业出版社,2004,249-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700