西太平洋下地幔D”层的地震波速度各向异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位于地幔底部数百公里的D”层是固体地幔和液态外核的动力学、热学和化学边界,它控制着CMB物质、能量的交换,对地幔对流、板块的运动、磁场的变化有关键性的影响。地震学研究表明D”层具有明显的地震各向异性。地震各向异性是理解地球动力学过程的重要工具,携带了大量的关于固体地球演化与动力学过程的潜在信息。在合适的条件下,地震各向异性可以为采用其它方法(如层析成像)观测不到的地幔对流提供地震学上的指示。因此,对D”层地震各向异性位置、强度和方向的研究有助于深化对核幔边界附近区域物理性质的认识。西太平洋地区是地球上现今构造活动非常活跃、复杂的地区之一,其深地幔中可能存在非常复杂的结构,并且和中国大的地质活动背景有关。因此西太平洋下D”层地震各向异性的研究对于认识该区域的地球动力学过程及地球演化具有十分重要的意义。
     首先,本文利用1994-2007年间发生在汤加-斐济及周边地区的146个地震,由IRIS36个台站记录到的数据和2000-2005年发生在东亚北部及北太平洋地区的26个地震,由IRIS的18个台站记录到的数据,使用ScS-S的相对走时分析方法研究了西太平洋下D”层的剪切波速度各向异性。我们得到了512个ScS波径向分量和横向分量的分裂时间,并计算了D”层的地震波速度各向异性强度。发现沿近北-南方向传播的地震波和沿近北西-南东方向传播的地震波产生的剪切波分裂模式差别较大:前者以V_(ScSH)>V_(ScSV)的分裂为主,后者以V_(ScSH)<V_(ScSV)(V_(ScSH)和V_(ScSV)分别表示水平和垂直极化的ScS震相的速度)的分裂为主,并且后者的各向异性强度明显要大于前者。整体而言,剪切波分裂呈现出V_(ScSH)<V_(ScSV)的模式,并且V_(ScSH)<V_(ScSV)的剪切波分裂主要分布在研究区的中东部,V_(ScSH)<V_(ScSV)的剪切波分裂主要位于研究区的西南部。ScS的分裂时间值从-4.08s到4.53s,绝对值平均值分别为1.26s;各向异性强度值为从-1.96%到2.55%,绝对值平均值为0.61%;分裂时间的分布和各向异性强度的分布趋势一致。
     用S-ScS相对走时分析方法研究D”层各向异性可以非常方便地消除震源一侧和台站一侧各向异性的影响,但是只能在径向和横向分量上测量,从而只能检测具有垂直对称轴的横向各向同性。如果要探测具有更一般形式的各向异性,则需要采用更复杂的算法。为此,本文利用来自发生在汤加-斐济俯冲区及周围地区的15个地震,由IRIS的8个台站记录到的数据,利用旋转相关法获取了对西太平洋下D”层采样的ScS震相的分裂参数-快分量的极化方向和快慢分量的延迟时间,并将其结果与相对走时方法的结果进行了比较。发现快波的极化方向(以正北方向为参考,顺时针方向为正)变化很大,从4°变化到170°(存在180°整数倍的不确定性);快轴方向与径向的夹角从7.48°变化到73.86°,大部分分裂结果的夹角小于45°,说明研究区的大部分区域有V_(ScSV)>V_(ScSH);时间延迟从0.2s变化到3.9s,平均值为2.2s;其各向异性的强度值从0.11%变化到2.01%,平均值为1.06%。旋转相关方法与相对走时方法得出的结果对于V_(ScSV)和V_(ScSH)相对大小的判断有75%相符,两者得出的延迟时间与各向异性强度存在一些差别。由于互相关计算中波形窗口的选择和时间平移等会引起误差,并且上地幔各向异性校正存在很大的不确定性,D”层剪切波各向异性的旋转相关方法分析结果可能会存在较大的误差,但是它可以在更大的方位角范围内探测快波的极化方向。
     地震各向异性是地球内部动力学过程的反映,利用地震各向异性的测量可以推测地幔不同部分的主要变形机制和流动特性。但是,地震各向异性的解释非常复杂,解释结果常常互相矛盾。由于震源与接收台站的地理局限性,目前所有的D”层各向异性研究的方位覆盖采样都是有限的,有限的方位覆盖很难区分D”层不同的各向异性模式,因此由分裂测量到D”层各向异性的解释必须作一些必要的假设。基于对西太平洋下D”层采样的剪切波分裂观测数据,本文详细讨论了西太平洋下D”层各向异性可能的流变场机制:西太平洋下D”层内垂直上升流应占支配地位;水平流动构造也可能同时存在,但尺度相对小一些,并主要分布在研究区的西南面。研究区下可能存在上升流所致的不均匀性物质定向排列成的垂直组构;下地幔物质的晶格优选方位也是一种可能的机制;研究区中可能存在偏离水平面的流动,使各向异性晶体或不均匀性物质定向排列形成方位各向异性,可以解释成具有倾斜对称轴的横向各向同性。
     (Mg,Fe)SiO_3后钙钛矿可能是D”层的主要矿物,具有明显的弹性各向异性,为解释D”层地震波各向异性等现象提供了一种新的途径。后钙钛矿滑动系和所导致的晶格优选方位对于理解观测到的各向异性非常重要,但是人们对于后钙钛矿主滑移系的性质有不一致的认识。因此,针对复杂的D”层应力环境中晶体特征与应力场和晶轴取向的密切关系,采用第一原理模拟三轴应力场中的MgSiO_3后钙钛矿相的弹性性质,利用最小能量原理获得稳定的晶体空间取向类型。D”层的晶体取向和应力差对晶体性质产生明显的影响,其能量、弹性常数和波速随晶体取向和应力差的变化而变化;晶体a轴取向平行于最大压缩方向,以b轴为垂直对称轴的三轴应力场中的剪切波横向各向异性大于静水应力场中的剪切波横向各向异性,随着应力差的增加,具有最小能量的晶体空间取向类型比其他取向类型更为稳定,结果支持以(010)面为主滑移面的观点。在D”层垂直上升流区域,[010]水平取向时具有V_(SH)<V_(SV)的各向异性;在水平流区域,[001]和[010]垂直取向均可产生V_(SH)>V_(SV)的各向异性。
D" layer, the lowermost few hundred kilometers of the mantle, serves as a dynamical, thermal and chemical boundary layer between the solid mantle and the liquid outer core. Heat, angular momentum, and possible some materials are exchanged across the core-mantle boundary (CMB) and this layer is postulated to influence mantle convection, the plate motion and the earth's magnetic field. Seismological studies indicate the presence of anisotropy in D" layer. Seismic anisotropy is an important tool in understanding dynamic processes in the Earth and carries potential information on the evolution and dynamics of the solid Earth. In the favorable conditions it can provide a seismic signature to mantle flow invisible to other methods such as tomography. Therefore the location, orientation, and magnitude of seismic anisotropy in D" layer is helpful to constrain how chemical and melt heterogeneity or anisotropic minerals are oriented by patterns of flow near CMB. The western Pacific is one of the active and complex tectonic regions presently in the Earth and may have extremely complicated structure in the deep mantle. Therefore study of the D" layer beneath the western Pacific is critical to understand the deep structure and dynamic process of this region.
     At first, Using seismic shear phases from 146 Tonga-Fiji and its adjacent region events during 1994 and 2007 recorded by 36 stations of the Incorporated Research Institute for Seismology (IRIS) broadband arrays, and from 26 northeast Asia and north Pacific events during 2000 and 2005 recorded by 18 stations of IRIS, we studied the shear wave anisotropy in D" layer beneath the western Pacific utilizing the ScS-S differential travel time method. We obtained 512 splitting time values between the radial and transverse components of ScS wave and calculated the anisotropy strength. The pattern of the shear wave splitting is different between the seismic waves propagating in the direction of N-S and that in the direction of NW-SE: The former mainly involve major V_(ScSH)> V_(ScSV) (V_(ScSH) is velocity of horizontally polarized ScS wave, V_(ScSV) is velocity of vertically polarized ScS wave) splitting value, the latter mainly contain the V_(ScSH) < V_(ScSV) value, and the anisotropy strength of the latter is obviously larger than that of the former. On the whole, the large majority of shear waves involve the pattern of V_(ScSH) < V_(ScSV) value. The shear wave splitting with V_(ScSH) < V_(ScSV) is focused on the central and eastern part of the study area, while the shear wave splitting with V_(ScSH) < V_(ScSV) is mainly distributed in the southwestern part of the study area. The splitting time values of ScS wave range from -4.08s to 4.53s with an average absolute value of 1.26s. The strength of anisotropy varies from -1.96% to 2.55% with an average absolute value of 0.61%. The distribution trend of the splitting time values and the anisotropy strength are consistent.
     Using the ScS-S differential time method can remove the effect of upper mantle anisotropy conveniently and reveal the anisotropy in D" layer preferably. But the splitting observation measure is limited on the radial and the transverse components, thus attempting to examine transverse isotropy with a vertical axis of symmetry (VTI). A more complex method must be used to resolve more general forms of anisotropy. Therefore, using seismic shear phases from 15 Tonga-Fiji and its adjacent region events recorded by 8 stations of IRIS, we obtained the splitting parameters (i.e. the polarization direction of the fast wave and the time delay between the separated fast and slow waves) of the ScS phase in D" layer beneath the western Pacific utilizing the rotating-correlation method and compared the result with that of ScS-S differential time method. The polarization direction (given by azimuth from north) of the fast wave vary greatly from 4°to 170°(note: it has n times 180 degree ambiguity). The angles between the fast direction and the radial direction range from 7.48°to 73.86°, and most of the angles are less than 45°, suggesting that there is a pattern of V_(ScSV)>V_(ScSH) in most of the study area. The delay time is 0.2s-3.9s with an average value of 2.2s and the strength of anisotropy is 0.11%-2.01% with an average value of 1.06%. The estimation about the relative size of V_(ScSV) and V_(ScSH) from the two methods has 75% similarity, but their delay time and anisotropy strength has some difference. Due to the uncertain of the upper mantle anisotropy correction and the computing errors of the correlation value from the selection of the waveform windows and the shift of time, there may be larger errors in the anisotropy result using the rotating-correlation method. But it can examine the polarization direction of fast wave at a wider variety of azimuths.
     Seismic anisotropy may reveal the dynamical process of the Earth interior, by which the dominant deforming mechanism and rheology property of the different layer of the mantle can be inferred. But it is very complex to interpret the seismic anisotropy results and there are often contrary explanations. Due to geographical limitations in the distribution of earthquake sources and seismic sensors, at present, none of the deep mantle anisotropy studies has significant azimuthal raypath sampling. Limited azimuth coverage makes it difficult to distinguish one anisotropy pattern from another. Therefore assumptions are necessary to proceed from measurements to interpretations. Based on the observation and analyse of the shear wave splitting, we inferred the possible rheological field mechanism for the D" layer beneath the western Pacific. In this area, the vertical upwelling flow is expected to be dominant. The horizontal flow structures may exist but the magnitude may be relatively small and mainly located at the southwestern part of the study area. There may be vertical fabrics formed by the aligned heterogeneous materials resulting from the ascending flow. Lattice preferred orientation (LPO) of the lower mantle minerals in this region is a possible mechanism for the observed anisotropy too. Additionally, flow out of horizontal plane may also exist and align anisotropic crystals or heterogeneous materials to form azimuthal anisotropy which can be explained as transverse isotropy with a tilted axis of symmetry.
     (Mg, Fe) SiO_3 post-perovskite may be the main mineral phase in D" layer and is remarkably anisotropic. It can provide a new approach for explain the seismic observations such as the seismic anisotropy in D" layer. Therefore, the slip systems of those phases and resultant LPO are important for understanding the observed seismic anisotropy. But the nature of the dominant slip system for post-perovskite phase has yet to be clarified. Considering the complex stress environment of D" layer and properties of minerals associated with the stress field and the orientation of crystallographic axes, single-crystal energy in triaxial stress field was calculated to study elastic constants, single crystal and aggregated acoustic velocities. The conditions were found under which energy is a minimum. The calculations show that the orientation of crystallographic axes and the differential stress significantly affect on the properties of the post-perovskite mineral. The a-axis tend to align paralleling to the maximal compression direction, and transverse anisotropy in shear wave velocity with the b-axis as vertical symmetry axis is larger than that under the condition in hydrostatic stress field. The crystal orientation type with minimum energy becomes more stable than the other orientation type with the differential stress increasing. The results also support (010) plane as the dominant slip plane. There is anisotropy with V_(SH)< V_(SV) in the upwelling region of the D" layer when [010] axis orients horizontally. While in the horizontal flow region, vertically oriented [001] and [010] axes both result in anisotropy with V_(SH)> V_(SV).
引文
丁志峰,曾融生,吴大铭.青藏高原的Pn波速度和Moho面的起伏.地震学报,14(增刊):592-599,1992.
    黄金莉,宋晓东,汪素云.川滇地区上地幔顶部Pn速度细结构.中国科学D辑,S1,2003.
    李志伟;胥颐;Steven W.Roecker;郝天珧;刘劲松.中天山地区的Pn波速度结构与各向异性.地球物理学报,50(4):1066-1072,2007.
    刘堃,张中杰等,中国陆区S波分裂与上地幔各向异性,地球物理学进展,16(2),81-87,2001.
    罗艳,黄忠贤等,中国大陆及邻区SKS波分裂研究,地球物理学报,47(5),812-821,2004.
    倪四道,傅容珊.D”层研究的进展.中国地球物理,21,24-25,2005.
    唐群署,李丽红,核幔边界D”区的地震学研究进展,地学前沿,13(2),213-223,2006。
    裴顺平,许忠淮,汪素云等.新疆及邻区Pn速度层析成像.地球物理学报,45(2):218-225,2002.
    裴顺平,许忠淮,汪素云.中国及邻区Pn波速度结构成因探讨.地震学报,26(1):1-10,2004.
    许忠淮,汪素云,裴顺平.青藏高原东北缘地区Pn波速度的横向变化.地震学报,25(1):24-31,2003.
    王良书,李成,薛革等.山东及邻区上地幔波速各向异性.地质科学,35:40-46,2000.
    王良书,陈运平,米宁等.从地震波各向异性到各向异性地震学:地震波各向异性研究综述.高校地质学报,11(4):544-554,2005.
    王霄翔.西太平洋下方地幔底部剪切波分裂研究.硕士论文,合肥:中国科学技术大学,2006.
    汪素云,Hearn T M,许忠淮等.中国大陆上地幔顶部Pn速度结构.中国科学(D辑),31(6):449-454,2001.
    汪素云,许忠淮,裴顺平.华北地区上地幔顶部Pn波速度结构及其构造含义,中国科学D辑,S1,2003.
    胥颐,李志伟,郝天珧等.2007.南海东北部及其邻近地区的Pn波速度结构与各向异性.地球物理学报,50(5):1 473-479.
    张虎.下地幔底部矿物第一原理方法研究.硕士论文,合肥:中国科学技术大学,2007.
    郑斯华,高原,中国大陆岩石层的方位各向异性,地震学报,16(2),131-140,1994。
    Akber-Knutson,S.,G.Steinle-Neumann,and P.D.Asimow.The effect of Al on the sharpness of the MgSiO3 perovskite to post-perovskite phase transition,Geophys.Res.Lett.,32,L14303,doi:10.1029/2005GL023192,2005.
    Anderson,D.L.,and T.C.Hanks,Formation of Earth's core,Nature,237,387-388,1972.
    Anderson,D.L.,Theory of the Earth.Blackwell Scientific Publications,Boston,366 pp,1987.
    Anderson,D.L.,Theory of the Earth,Blackwell Sci.,Cambridge,Mass.,1989.
    Anderson,D.L.,The EDGES of the mantle,in The Core-Mantle Boundary Region,edited by M.urnis,M.E.Wysession,E.Knittle,and B.A.Buffett,pp.255-271,AGU,Washington,D.C.,1998.
    Anderson,O.L.,The power balance at the core-mantle boundary.Phys.Earth Planet.Int.131,1-17,2002.
    Anderson,W.W.and T.J.Ahrens,An equation of state for liquid iron and implications for Earth's core,J.Geophys.Res.,99,4273-4284,1994.
    Ando,M.,Y.Ishikawa,and E Yamazaki,Shear waves polarization anisotropy in the upper mantle beneath Honshu,Japan,J.Geophys.Res.,88,5850-5864,1983.
    Ansel,V.,and H.-C.Nataf,Anisotropy beneath nine station of the Geoscope broadband network as deduced form shear-wave splitting, Geophys. Res. Lett., 16, 409-412,1989.
    Aster, R. C, P. M. Shearer, and J. Berger, Quantitative measurements of shear wave polarizations at the Anza seismic network, southern California: Implications for shear wave splitting and earthquake prediction, J. Geophys. Res., 95,12,449-12,473,1990.
    Babuska, V., J. Plomerova and J. Sileny, Models of seismic anisotropy in the deep continental lithosphere. Phys. Earth Planet. Inter., 78,167-191,1993.
    
    Badro, J., G. Fiquet, F. Guyot, J.-P. Rueff, V. V. Struzhkin, G. Vank6, and G. Monaco. Iron partitioning in Earth's mantle: Toward a deep lower mantle discontinuity, Science, 300, 789-791,2003.
    Badro, J., J.-P. Rueff, G. Vank6, G Monaco, G Fiquet, and F. Guyot. Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle, Science, 305,383-386,2004.
    Bataille, K., and F. Lund, Strong scattering of short-period seismic waves by the core-mantle boundary and the P-diffracted wave, Geophys. Res. Lett., 18, 2413-2416,1996.
    Blackman, D. K., and J. M. Kendall, Sensitivity of teleseismic body waves to mineral texture and melt in the mantle beneath a mid-ocean ridge, Philos.Trans. R. Soc. London, Ser. A, 355,217-231, 1997.
    Bl6chl, P.E. Projector augmented-wave method. Phys. Rev. B 50:17953-17979, 1994.
    Bloxham, J., D. Gubbins, and A. Jackson, Geomagnetic secular variation, Philos. Trans. R. Soc. London A, 329, 415-502, 1989.
    Boschi, L., and A. M. Dziewonski, High- and low-resolution images of the Earth's mantle: Implications of different approaches to tomographic modeling, J. Geophys. Res., 104, 25,567-25,594, 1999.
    Boschi, L., and A. M. Dziewonski, Whole Earth tomography from delay times of P, PcP, and PKP phases: Lateral heterogeneities in the outer core or radial anisotropy in the mantle?, J. Geophys. Res., 105, 13675-13696,2000.
    Bostock, M.G. Mantle stratigraphy and evolution of the Slave province, J. Geophys. Res., 103:21183-21200, 1998.
    Bowman J.R., and Ando M., Shear-wave splitting in the upper mantle wedge above the Tonga subduction zone, Geophys. JR Astron. Soc, 88,25-41, 1987.
    Breger, L., B. Romanowicz, and C. Ng, The Pacific plume as seen by S, ScS, and SKS, Geophys. Res. Lett., 28, 1859-1862,2001.
    Brown, J. M., T. J. Ahrens, and D. L. Shampine, Hugoniot data for pyrrhotite and Earth's core, J. Geophys. Res., 89, 6041-6048, 1984.
    Buffett, B.A., Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophys. Res. Lett. 29 (12), 10.1029/2001GL014649, 2002.
    Bullen, K. E., Compressibility-pressure hypothesis and the Earth's interior, Month. Not. R. Astr. Soc, Geophys. Suppl., 5, 355-368, 1949.
    Cara M and J. Leveque. Oriented olivine crystals in the upper mantle: a test from the inversion of multimode surface-wave data. Phys. Earth Planet. Int., 47: 246-252, 1987.
    Caracas, R., and R.E Cohen. Effect of chemistry on the stability and elasticity of the perovskite and post-perovskite phases in the MgSiO3-FeSiO3-Al2O3 system and implications for the lowermost mantle, Geophys. Res. Lett., 32, L16310, doi:10.1029/2005GL023164,2005.
    Castle, J.C., Creager, K.C., and J.P. Winchester, Shear wave speeds at the base of the mantle, J. Geophys. Res., 105, 21,543-21,557,2000.
    Castle, J.C., van der Hilst, R.D., The core-mantle boundary under the Gulf of Alaska: no ULVZ for shear waves. Earth Planet. Sci. Lett. 176, 311-321, 2000.
    Cormier, V.F., Anisotropy of heterogeneity scale lengths in the lower mantle from PKIKP precursors. Geophys. J. Int. 136, 373-384, 1999.
    Christensen, N.I., Continental mantle seismic anisotropy: A new look at the Twin Sisters massif, Tectonophysics, 355,163-170,2002.
    Christensen, U.R., Hofmann, A.W., Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res. 99, 19867-19884, 1994.
    Christoffel, E. B., Uber die Fortpflanzung von Stossen durch elastische feste Korper, Ann. Mater., 8, 193-243, 1877.
    Crampin S and McEvily T V. Seismic fracture anisotropy in the Earth's crust:An overview. J.Geophys.Res., 95(B7):11105-11114, 1990.
    
    Crampin, S., The fracture criticality of crustal rocks, Geophys. J. Int., 118, 428-438,1994.
    Crampin, S., Y. Gao, S. Chastin et al. Speculations on earthquake forecasting. Seism. Res. Lett.,74(3): 271-273,2003.
    Davies, G., Mantle plumes, mantle stirring and hotspot chemistry, Earth Planet. Sci. Lett., 99, 94-109, 1990.
    Dziewonski, A.M., Anderson, D.L. Preliminary reference Earth model. Phys. Earth Planet. Int. 25, 297-356, 1981.
    Ding, X., and D. V. Helmberge (1997), Modeling D" structure beneath Central America with broadband seismic data, Phys. Earth Planet. Inter., 101,245- 270, 1997.
    Duffy, T. S. and T. J. Ahrens, Thermal expansion of mantle and core materials at very high pressures, Geophys. Res. Lett., 20, 1103-1106, 1993
    Dziewonski, A.M., D. L. Anderson, Preliminary reference earth model, Phys. Earth Planet Int., 25, 297-356,1981.
    Earle, P. S., and P. M. Shearer, Observations of PKKP precursors used to estimate small-scale topography on the core-mantle boundary, Science, 277,667-670,1997.
    
    Fearn, D. R., and D. E. Loper, Compositional convection and stratification of Earth's core, Nature, 289, 393-394, 1981.
    Flores, C, and T. Lay. The trouble with seeing double, Geophys. Res. Lett., 32, L24305, doi:10.1029/2005GL024366, 2005.
    
    Fischer, K. M., Flow and fabric deep down, Nature, 415,745-748, 2002.
    Fouch, MJ., and Fischer, K.M., Mantle anisotropy beneath northwest Pacific subduction zones, J. Geophys. Res., 101, 15987-16002, 1996.
    Fouch, M. J., K. M. Fischer, and M. E. Wysession, Lowermost mantle anisotropy beneath the Pacific: Imaging the source of the Hawaiian plume, Earth Planet. Sci. Lett., 190, 167-180, 2001.
    Fukao, Y., S. Widiyantori, and M. Obayashi, Stagnant slabs in the upper and lower mantle transition region, Rev. of Geophys., 39, 291-323, 2001.
    
    Gaherty, J.B., Lay, T., Investigation of laterally heterogeneous shear velocity structure in D" beneath Eurasia. J. Geophys. Res. 97,417-435, 1992.
    Gaherty, J. B., T. H. Jordan, and L. S. Gee, Seismic structure of the upper mantle in a central Pacific corridor. J. Geophys. Res., 101, 22,291-22,309, 1996.
    Gao Y. , S. Crampin. Observation of stress relaxation before earthquake. Geophys. J. Int., 157(2): 578-582, 2004.
    
    Garnero, E.J., Helmberger, D.V., Engen, G., Lateral variations near the core-mantle boundary. Geophys. Res. Lett. 15,609-612, 1988.
    
    Garnero, E.J., Grand, S.P., Helmberger, D.V., Low P wave velocity at the base of the mantle. Geophys. Res. Lett. 20,1843-1846,1993a.
    
    Garnero, E.J., and D.V. Helmberger, A very slow basal layer underlying large-scale low-velocity anomalies in the lower mantle beneath the Pacific: evidence from core phases, Phys. Earth Planet. Int., 91, 161-176, 1995.
    Garnero, E. J., and T. Lay, Lateral variations in lowermost mantle shear wave anisotropy beneath the north Pacific and Alaska, J. Geophys. Res., 102, 8121-8135,1997.
    Garnero, E. J., and T. Lay. Effects of D" anisotropy on seismic velocity models of the outermost core, Geophys. Res. Lett., 25, 2341-2344,1998.
    Garnero, E.J., Revenaugh, J.S., Williams, Q., Lay, T., Kellogg, L.H., Ultralow velocity zone at the core-mantle boundary, in The Core-Mantle Boundary Region, edited by M. Gurnis, M. E. Wysession, E. Knittle, and B. A. Buffett, pp. 319-334, AGU, Washington, D.C., 1998.
    Garnero, E.J., Lower mantle heterogeneity. Ann. Rev. Earth Planet. Sci. 28, 509-537, 2000.
    Garnero, E.J., Lay, T., D" shear velocity heterogeneity, anisotropy, and discontinuity structure beneath the Caribbean and Central America. Phys. Earth Planet. Int. 140, 219-242, 2003.
    Garnero, E.J., A new paradigm for Earth's core-mantle boundary, Science, 304, doi: 10.1126/ science. 1097849,2004.
    Garnero, E.J., Maupin, V., Lay, T., MJ. Fouch. Variable azimuthal anisotropy in Earth's lowermost mantle. Science, 306: 259-261, 2004b.
    Gong, Z., Y. Fei, F. Dai, L. Zhang, and F. Jing. Equation of state and phase stability of mantle perovskite up to 140 GPa shock pressure and its geophysical implications, Geophys. Res. Lett., 31, L04614, doi:10.1029/2003GL019132, 2004.
    Grand, S.P., van der Hilst, R.D., Widiyantori, S., Global seismic tomography: a snapshot of convection in the Earth. GSA Today 7,1-7,1997.
    Grand, S.P., Mantle shear-wave tomography and the fate of subducted slabs, Phil. Trans. R. Soc. Lond., A,360,2475-2491, 2002.
    Gu, Y.J., A.M. Dziewonski, W. Su, and G. Ekstrom, Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities, J. Geophys. Res., 106, 11,169-11,199,2001.
    Guilbert, J., G. Poupinet, and J. Mei, A study of azimuthal P residuals and shear-wave splitting across the Kunlun range (northern Tibetan Plateau). Phys. Earth Planet. Inter., 95,167-174, 1996.
    Gumis, M., Wysession, M.E., Knittle, E., Buffett, B.A. (Eds.), The Core-Mantle Boundary Region. Geodynamics Series, vol. 28., 334 pp, AGU, Washington, D.C., 1998.
    Hadiouche O Montagner J P Montagner J P. Anisotropy of the African continent inferred from surface waves. Phys. Earth Planet. Inter. 58: 61-81,1989.
    Havens, E., Revenaugh, J., A broadband study of the lowermost mantle beneath Mexico: constraints on ultralow velocity zone elasticity and density. J. Geophys. Res. 106, 30809-30820, 2001.
    He, Y., L. Wen, and T. Zheng. Geographic boundary and shear wave velocity structure of the "Pacific anomaly" near the core-mantle boundary beneath western Pacific, Earth Planet. Sci. Lett., 244, 302-314,2006.
    Hedlin, M. A. H., and P. M. Shearer, An analysis of large-scale variations in small-scale mantle heterogeneity using Global Seismographic Network recordings of precursors to PKP, J. Geophys. Res., 105,13,655-13,673,2000.
    
    Hellfrich, G. R., and B. J. Wood, The Earth's mantle, Nature, 412, 501-507, 2001.
    Helmberger, D. V., T. Lay, S. Ni, and M. Gurnis Deep mantle structure and the post-perovskite phase transition, Proc. Natl. Acad. Sci. USA., 10.1073/pnas.0502504102, 2005.
    Hernlund, J. W., C. Thomas, and P. J. Tackley (2005), A doubling of the post-perovskite phase boundary and structure of the Earth's lowermost mantle, Nature, 434, 882-886, 2005.
    Hess, H. H., Seismic anisotropy of the uppermost mantle under oceans, Nature, 203, 629-631, 1964.
    
    Hide, R., and J. O. Dickey, Earth's variable rotation, Science, 253, 629-637, 1991.
    
    Hilst, R.D.v.d., et al., Seismostratigraphy and Thermal Structure of Earth's Core-Mantle Boundary Region. Science, 315: 1813-1818, doi: 10.1126/science. 1137867, 2007.
    Hirose, K., and Y. Fujita. Clapeyron slope of the post-perovskite phase transition in CaIrO_3, Geophys. Res. Lett., 32, L13313, doi:10.1029/2005GL023219,2005.
    Hirose, K., S. Karato, V. F. Cormier, J. P. Brodholt, and D. A. Yuen. Unsolved problems in the lowermost mantle, Geophys. Res. Lett., 33, L12S01, doi:10.1029/2006GL025691, 2006.
    Hofmann, A. W., Mantle geochemistry: the message from oceanic volcanism, Nature, 385, 219-229, 1997.
    Hutko, A.R., et al., Seismic detection of folded, subducted lithosphere at the core-mantle boundary. Nature, 441: doi:10.1038/nature04757., 2006.
    Idehara, K., A. Yamada, and D. Zhao, Seismological constraints on the ultralow velocity zones in the lowermost mantle from core-reflected waves. Physics of the Earth and Planetary Interiors 165: 25-46,2007.
    Iitaka, T., K. Hirose, K. Kawamura, and M. Murakami. The elasticity of the MgSiO3 post-perovskite phase in the Earth's lowermost mantle, Nature, 430, 442-445 , 2004.
    Karason, H., and R.D. van der Hilst, Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases (PKP, Pdiff), J. Geophys. Res., 106, 6569-6587,2001.
    Karato, S., and P. Li, Diffusion creep in perovskite: Implications for the rheology of the lower mantle, Science, 255, 1238- 1240, 1992.
    Karato, S., S. Q. Zhang, and H. R. Wenk, Superplasticity in Earth's lower mantle: Evidence from seismic anisotropy and rock physics, Science, 270,458-461, 1995.
    
    Karato, S., Some remarks on the origin of seismic anisotropy in the D" layer, Earth Planets Space, 50, 1019-1028, 1998a.
    
    Karato, S.I., Seismic anisotropy in the deep mantle, boundary layers and the geometry of mantle convection, Pure Appl. Geophys., 151, 565-587, 1998b.
    Karato, S., and B. B. Karki. Origin of lateral heterogeneity of seismic wave velocities and density in Earth's deep mantle, J. Geophys. Res., 106, 21,771-21,783, 2001.
    Kato, T., and A. E. Ringwood, Melting relationships in the system Fe-FeO at high pressures: Implications for the composition and formation of Earth's core, Phys. Chem. Miner., 16, 524-538, 1989
    
    Kellogg, L.H,, Growing the Earth's D" layer: effect of density variations at the core-mantle boundary. Geophys, Res. Lett. 24, 2749-2752, 1997.
    Kellogg, L.H., Hager, B.H., and R.D. van der Hilst, Compositional stratification in the deep mantle, Science, 283, 1881-1884,1999.
    Kelvin, Lord (W. Thomson), Baltimore Lectures, Cambridge Univ. Press, New York, 1904.
    
    Kendall, J. M., and C. Nangini, Lateral variations in D" below the Caribbean, Geophys. Res. Lett., 23, 399-402, 1996.
    
    Kendall, J. M, and P. G. Silver, Constraints from seismic anisotropy on the nature of the lowermost mantle, Nature, 381, 409-412, 1996.
    Kendall, J. M, and P. G. Silver, Investigating causes of D" anisotropy, in The Core-Mantle Boundary Region, Geodyn. Sen, vol. 28, edited by M. Gurnis et al., pp. 97- 118, AGU, Washington, D. C, 1998.
    
    Kendall, J. M., Seismic anisotropy in the boundary layers of the mantle, in Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, Geophys. Monogr. Sen, vol. 117, edited by S. Karato et al., pp. 133- 159, AGU, Washington, D. C, 2000.
    Kennett, B.L.N. and E.R. Engdahl, Traveltimes for global earthquake location and phase identification, Geophys. J. Int. 105, 429-465, 1991.
    Kennett, B. L. N., S. Widiyantoro, and R. D. van der Hilst, Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle, J. Geophys. Res., 103, 12,469-12,493,1998.
    Kern, H. and Wenk, HR, Fabric-related velocity anisotropy and shear wave splitting in rocks from the Santa Rosa mylonite zone, California. J. Geophys. Res., 95, 11213-11224,1990.
    Kern, H., L. Burlini, and IV Ashchepkov, Fabric-related seismic anisotropy in upper mantle xenoliths: evidence from measurements and calculations. Phys. Earth Planet. Int., 95, 195-209,1996.
    Knittle, E., and R. Jeanloz, Earth's core-mantle boundary: Results of experiments at high pressures and temperatures, Science, 251,1438 - 1443,1991.
    Kobayashi, Y., T. Kondo, E. Ohtani, N. Hirao, N. Miyajima, T. Yagi, T. Nagase, and T. Kikegawa. Fe-Mg partitioning between (Mg, Fe)SiO3 post-perovskite, perovskite, and magnesiowiistite in the Earth's lower mantle, Geophys. Res. Lett., 32, L19301, doi:10.1029/2005GL023257,2005.
    Kohler, M.D., Vidale, J.E., Davis, P.M., Complex scattering within D" observed on the very dense Los Angeles Region Seismic Experiment passive array. Geophys. Res. Lett. 24,1855-1858,1997.
    Korenaga, J..Firm mantle plumes and the nature of the core-mantle region, Earth Planet. Sci. Lett., 232, 29- 37,2005.
    Kresse, G, J. Furthmuller. Efficiency of ab initio total-energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mater. Sci. 6:15-50,1996.
    Kresse, G, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59:1758-1775,1999.
    Kuo, B. Y., E. J. Garnero, and T. Lay, Tomographic Inversion of S-SKS times for shear wave velocity heterogeneity in D": Degree 12 and hybrid models, J. Geophys Res., 105,28,139-28,157, 2000.
    Lay, T., and D. V. Helmberger, A lower mantle S-wave triplication and the shear velocity structure of D", Geophys. J. R. Astron. Soc, 75, 799-838,1983.
    Lay, T, and D. V. Helmberger, The shear-wave velocity-gradient at the base of the mantle, J. Geophys. Res., 88, 8160-8170, 1983b
    Lay, T, and C. J. Young, The stably stratified outermost core revisited, Geophys. Res. Lett., 17, 2001-2004, 1990.
    Lay, T, and C. J. Young, Analysis of seismic SV waves in the core's penumbra, Geophys. Res. Lett., 18, 1373-1376,1991.
    Lay, T., Williams, Q., Garnero, E.J., The core-mantle boundary layer and deep Earth dynamics. Nature 392, 461-468, 1998a.
    Lay, T., Q. Williams, E. J. Garnero, L. Kellogg, and M. E. Wysession, Seismic wave anisotropy in the D" region and its implications, in The Core-Mantle Boundary Region, Geodyn. Ser., vol. 28, edited by M. Gurnis et al., pp. 299- 318, AGU, Washington, D. C, 1998b
    Lay, T., E. J. Garnero, and Q. Williams, Partial melting in a thermochemical boundary layer at the base of the mantle, Phys. Earth Planet. Int., 146, 441-467, 2004.
    Lay, T., J. Hernlund, E. J. Garnero, and M. Thome. A lens of post-perovskite and CMB heat flux in an iron-rich pile in D" beneath the central Pacific, Science, 314: 1272-1276.DOI: 10.1126/science.l 133280,2006.
    
    Lay, T. and E . J. Garnero. Reconciling the Post-Perovskite Phase With Seismological Observations of Lowermost Mantle Structure, Post-Perovskite: The Last Phase Change, eds. Kei Hirose, John Brodholt, Thome Lay and David Yuen, Geophysical Monograph Series 174, AGU, 2007.
    Levin, V., and J. Park, P-SH conversions in a flat-layered medium with anisotropy of arbitrary orientation, Geophys. J. Int., 131, 253-266, 1997.
    
    Levin, V., and J. Park, Shear zones in the Proterozoic lithosphere of the Arabian Shield and the nature of the Hales discontinuity, Tectonophysics, 323: 131-148, 2000.
    Liang C. T., X. D. Song and J. L. Huang. Tomographic inversion of Pn travel-time in China. J. Geophys. Res., 108:1493-1505, 2003.
    Lin, J.-F., V. V. Struzhkin, S. D. Jacobsen, M. Y. Hu, P. Chow, J. Kung, H. Liu, H.-k. Mao, and R. J. Hemley. Spin transition of iron in magnesiowustite in the Earth's lower mantle, Nature, 436, 377-380, 2005.
    Lithgow-Bertelloni C, and M. A. Richards, The dynamics of Cenozoic and Mesozoic plate motions, Rev. Geophys., 36,27-78, 1998.
    Loper, D. E. and H. K. Moffatt, Small-scale hydromagnetic flow in Earth's core: Rise of a vertical buoyant plume, Geophys. Astrophys. Fluid Dyn., 68, 177-202,1993
    
    Loper, D.E., Lay, T., The core-mantle boundary region. J. Geophys. Res. 100, 6397-6420, 1995.
    Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, 4th ed., Dover, Mineola, N. Y., 1944.
    Maggi, A., et al., Azimuthal anisotropy of the Pacific region. Earth and Planetary Science Letters, 250: 53-71,2006.
    Mao, W. L., G. Shen, V. B. Prakapenka, Y. Meng, A. J. Campbell, D. L. Heinz, J. Shu, R. J. Hemley, H. K. Mao. Ferromagnesian postperovskite silicates in the D" layer of the Earth, Proc. Natl. Acad. Sci. U. S. A., 101,15, 867-15,869, 2004.
    Mao, W. L., H.-k. Mao, W. Sturhahn, J. Zhao, V. B. Prakapenka, Y. Meng, J. Shu, Y. Fei, and R. J. Hemley. Iron-rich post-perovskite and the origin of ultralowvelocity zones, Science, 312, 564-565, 2006.
    Marson-Pidgeon, K., and M. Savage, Seismic anisotropy beneath Wellington, New Zealand from shear-wave splitting, Geophys. Res. Lett., 24, 3297-3300, 1997.
    Masters, G., G. Laske, H. Bolton, and A.M. Dziewonski, The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure, in Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, edited by S. Karato, A. M. Forte, R. C. Liebermann, G. Masters, and L. Stixrude, pp. 63-87, AGU, Washington, D.C., 2000.
    
    Matyska, C, and D. A. Yuen. Lower mantle dynamics with the postperovskite phase change, radiative thermal conductivity, temperature- and depth-dependent viscosity, Phys. Earth Planet. Inter., 154, 196-207,2006.
    
    Matzel, E., M. K. Sen, and S. P. Grand, Evidence for anisotropy in the deep mantle beneath Alaska, Geophys. Res., Lett., 23, 2417-2420,1996.
    Maupin, V., Partial derivatives of surface wave phase velocities for flat anisotropic models. Geophys. J. R. Astron. Soc, 83, 379-398,1985.
    Maupin, V., On the possibility of anisotropy in the D" layer as inferred from the polarization of diffracted S-waves, Phys. Earth Planet. Inter., 87,1- 32,1994.
    Maupin, V., E. J. Garnero, T. Lay, and M. J. Fouch Azimuthal anisotropy in the D" layer beneath the Caribbean, J. Geophys. Res., 110, B08301, doi:10.1029/2004JB003506, 2005.
    McNamara, A. K., S. Karato, and P. E. van Keken, Localization of dislocation creep in the lower mantle: Implications for the origin of seismic anisotropy, Earth Planet. Sci. Lett., 191, 85- 99,2001.
    McNamara, A. K., P. E. van Keken, and S. I. Karato, Development of anisotropic structure in the Earth's lower mantle by solid-state convection, Nature, 416, 310- 314, 2002.
    McNamara, D. E., W. R. Walter and T. J. Owens. Upper mantle velocity structure beneath Tibet plateau from Pn travel time tomography. J. Geophys. Res., 102: 493-505, 1997.
    Megnin, C, and B. Romanowicz, The three-dimensional shear velocity structure of the mantle from the inversion of body, surface, and higher-mode waveforms, Geophys. J. Int., 143,709-728, 2000.
    Merkel, S., A. Kubo, L. Miyagi, S. Speziale, T. S. Duffy, H.-k. Mao, and H.-R. Wenk. Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures,Science, 311,644-646,2006.
    Merkel, S., et al., Deformation of (Mg,Fe)SiO3 Post-Perovskite and D" Anisotropy. Science, 316: 1729-1732.DOI: 10.1126/science. 1140609,2007.
    Miyajima, N., K.Ohgushi.M. Ichihara, T.Yagi. Crystalmorphology and dislocation microstructures of CaIrO3: a TEM study of an analogue of theMgSiO3 post-perovskite phase.Geophys. Res. Lett.33Ll 2302, doi: 10.1029/2005GL025001,2006.
    Miller V. and Savage M. Changes in seismic anisotropy after volcanic eruptions: evidence from Mount Ruapehu. Science, 295:2231-2233, 2001.
    Mitchell, B. J., and D. V. Helmberger, Shear velocities at base of mantle from observations of S and ScS, J. Geophys. Res., 78, 6009-6020,1973.
    Mizukami, T, S.R. Wallis, and J. Yamamoto, Natural examples of olivine lattice preferred orientation patterns with a flow normal a-axis maximum. Nature, 427(6973): 432-436, 2004.
    Monkhorst, H.J., J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 : 5188-5192,1976.
    Montagner, J.-R, Where can seismic anisotropy be detected in the Earth's mantle? In boundary layers, Pure Appl. Geophys., 151, 223-256,1998.
    Montagner, J.-P., Guillot, L., Seismic Anisotropy and Global Geodynamics, In: Plasticity of. Minerals and Rocks, edited by Karato S.I., Wenk H.R., Mineralogical Society of America, pp. 353-380, 2002.
    Moore, M. M., E. J. Garnero, T. Lay, and Q. Williams. Shear wave splitting and waveform complexity for lowermost mantle structures with low-velocity lamellae and transverse isotropy, J. Geophys. Res., 109, B02319, doi:10.1029/2003JB002546, 2004.
    
    Murakami, M. et al., Post-perovskite phase transition in MgSiO3. Science, 304(5672): 855-858,2004.
    Murakami, M., K. Hirose, N. Sata, and Y. Ohishi. Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle, Geophys. Res. Lett., 32, L03304, doi: 10.1029 /2004GL021956, 2005.
    
    Nakagawa, T, and P. J. Tackley. Effects of a perovskite-post perovskite phase change near core-mantle boundary in compressible mantle convection, Geophys. Res. Lett., 31, L16611, doi:10.1029/2004GL020648, 2004.
    Namiki, A., Can the mantle entrain D"? J. Geophys. Res. 108 (B10), 2487, doi: 10.1029/ 2002JB002315.2003.
    Nataf, H. and J. Montagner. Inversion of the azimuthal anisotropy of surface waves. EOS Trans. AGU, 65:1000, 1984.
    Nataf, H., Houard, S., Seismic discontinuity at the top of D": a world-wide feature? Geophys. Res. Lett. 20,2371-2374,1993.
    
    Ni, S., E. Tan, M. Gurnis, and D. Helmberger, Sharp sides to the African superplume, Science, 296, 1850-1852,2002.
    Ni, S., Helmberger, D.V., Seismological constraints on the South African superplume could be the oldest distinct structure on earth. Earth Planet. Sci. Lett. 206, 119-131, 2003a.
    Ni, S., Helmberger, D.V., Ridge-like lower mantle structure beneath South Africa. J. Geophys. Res. 108 (B2), 2094, doi: 10.1029/2001JB001545, 2003b.
    Niu, F., and Wen L., Strong seismic scatterers near the core-mantle boundary west of Mexico, Geophys. Res. Lett., 28, 3557-3560, 2001.
    Niu, F., and Wen L., Hemispherical variations in seismic velocity at the top of the Earth's inner core, Nature, 410, 1081-1084,2001.
    Oganov, A.R. and S. Ono, Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D " layer. Nature, 430(6998): 445-448..2004.
    Oganov, A. R., R. Martonak, A. Laio, P. Raiteri, and M. Parrinello. Anisotropy of Earth's D" layer and stacking faults in the MgSiO3 post-perovskite phase, Nature, 438,1142-1144,2005.
    Ohta, K., K. Hirose, T. Lay, N. Sata and Y. Ohishi, Phase transitions in pyrolite and MORB at lowermost mantle conditions: Implications for a MORB-rich pile above the core-mantle boundary, Earth Planet. Sci. Lett., 267, 107-117, 2008.
    Okal, E. A., A student's guide to teleseismic body wave amplitudes, Seismol. Res. Lett., 63, 169-180, 1992.
    Ono, S, and A. R. Oganov. In situ observations of phase transition between perovskite and CaIrO3-type phase in MgSiO3 and pyrolitic mantle composition, Earth Planet. Sci. Lett. 236, 914-932, 2005.
    Park, J., and V. Levin, Receiver functions from multiple-taper spectral correlation estimates, Bull. Seismo. Soc Amer., 90,1507-1520, 2000.
    Park, J. and V. Levin. Seismic anisotropy: Tracing plate dynamics in the mantle Science, 296: 485-489, 2002.
    Panning, M. and B. Romanowicz, Inferences on flow at the base of Earth's mantle based on seismic anisotropy. Science, 303(5656): 351-353..2004.
    Perdew, J. P., K. Burke, M. Ernzerhof. Generalized gradient approximation made simple, Phys. Rev.Lett. 77:3865-3868,1996.
    Persch, S.T., Vidale, J.E., Earle, P.S., Absence of short-period ULVZ precursors to PcP and ScP from two regions of the CMB. Geophys. Res. Lett. 28,387-390, 2001.
    Plomerova, J., Kouba, D., Babuska, V., Mapping the lithosphere-asthenosphere boundary through changes in surface-wave anisotropy, Tectonophysics, 158, 175-185, 2002.
    Poirier J.P., and Price, G.D., Primary slip system of e-iron and anisotropy of the inner core, Phys. Earth Planet. Int., 110, 147-156, 1999.
    Pulliam, J., and M. K. Sen, Seismic anisotropy in the core-mantle transition zone, Geophys. J. Int., 135, 113-128,1998.
    Rabbel W., and Mooney W., Seismic anisotropy of the crystalline crust: What does it tell us?, Terra Nova, 8, 16-21, 1996.
    Rau, R-J, Liang, W-T, Gao, H, Huang, B-S, Shear wave anisotropy beneath the Taiwan orogen, Earth Planet. Sci. Lett., 177,177-192, 2000.
    
    Ribe, N. M. Seismic anisotropy and mantle flow. J. Geophys. Res., 94: 4213-4223.
    Ribe, N. M., On the relation between seismic anisotropy and finite strain, J. Geophys. Res., 97, 8737-8747, 1992.
    
    Ringwood, A. E., Origin of Earth and Moon, 195 pp., Springer-Verlag, New York, 1979.
    Ringwood, A. E., The Earth's core: Its composition, formation and bearing upon the origin of Earth, Proc. R. Soc. London A, 395, 1-46, 1984.
    Ritsema, J., T. Lay, E. J. Garnero, and H. Benz, Seismic anisotropy in the lowermost mantle beneath the Pacific, Geophys. Res. Lett., 25, 1229- 1232, 1998.
    Ritsema, J., and H. J. van Heijst, Seismic imaging of structural heterogeneity in Earth's mantle: evidence for large-scale mantle flow, Science Progress, 83, 243-259, 2000.
    Ritsema, J., Evidence for shear velocity anisotropy in the lowermost mantle beneath the Indian Ocean, Geophys. Res. Lett., 27,1041-1044, 2000b.
    Rokosky, J.M., T. Lay, and E.J. Garnero, Small-scale lateral variations in azimuthally anisotropic D" structure beneath the Cocos Plate. Earth and Planetary Science Letters, 248:411-425 ,2006.
    Rost, S., Revenaugh, J., Small-scale ultra-low-velocity zone structure imaged by ScP. J. Geophys. Res. 108, 2056, doi: 10.1029/2001JB001627, 2003.
    Ruff, L.J., Anderson, D.L., Core formation, evolution, and convection: a geophysical model. Phys. Earth Planet. Int. 21,181-201, 1980.
    Russell, S. A., T. Lay, and E. J. Garnero, Seismic evidence for small scale dynamics in the lowermost mantle at the root of the Hawaiian hotspot, Nature, 396,255-258, 1998.
    Russell, S. A., T. Lay, and E. J. Garnero, Small-scale lateral shear velocity and anisotropy heterogeneity near the core-mantle boundary beneath the central Pacific imaged using broadband ScS waves, J. Geophys. Res., 104,13,183-13,199,1999.
    Russell, S. A., C. Reasoner, T. Lay, and J. Revenaugh, Coexisting shear- and compressional-wave seismic velocity discontinuities beneath the central Pacific, Geophys. Res. Lett., 28, 2281-2284, 2001.
    Sakai, T., T. Kondo, E. Ohtani, H. Terasaki, N. Endo, T. Kuba, T. Suzuki, and T. Kikegawa. Interaction between iron and post-perovskite at core-mantle boundary and core signature in plume source region, Geophys. Res. Lett., Vol. 33, L15317, doi:10.1029/2006GL026868, 2006.
    Savage, M. and P. G. Silver. Mantle deformation and tectonics: Constraints from seismic anisotropy in western United States, Phys. Earth Planet. Int., 78,207-227, 1993.
    Savage, M. K., K. Gledhill, and K. Marson, A search for lower crustal anisotropy in strike-slip regions, Eos Trans. AGU, 77(22), West. Pac. Geophys. Meet. Suppl., W84, 1996a.
    Savage, M. K.., A. F. Sheehan, and A. Lerner-Lam, Shear-wave splitting across the Rocky Mountain Front, Geophys. Res. Lett., 23,2267-2270,1996b.
    Savage, M. K., Lower crustal anisotropy or dipping boundaries? Effects on receiver functions, J. Geophys. Res., 103,15,069-15,087, 1998.
    Savage, M.K., Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting? Reviews of Geophysics, 37: 65-106,98RG02075., 1999.
    Schott, B., Yuen, D.A., Braun, A., The influences of composition- and temperature- dependent rheology in thermal-chemical convection on entrainment of the D" layer. Phys. Earth Planet. Int. 129, 43-65, 2002.
    Shih, X. R., R. P. Meyer, and J. F. Schneider, An automated, analytic method to determine shear-wave anisotropy, Tectonophysics, 165, 271-278, 1989.
    Shim, S. H., T. S. Duffy, and G. Y. Shen. Stability and structure of MgSiO3 perovskite to 2300-kilometer depth in the Earth's mantle, Science, 293, 2437-2440,2001.
    Shim, S. H., T. S. Duffy, R. Jeanloz, and G. Shen. Stability and crystal structure of MgSiO3 perovskite to the core-mantle boundary, Geophys. Res. Lett., 31, L10603, doi:10.1029/2004GL019639,2004.
    Sidorin, I., Gurnis, M., Geodynamically consistent seismic velocity predictions at the base of the mantle, in The Core-Mantle Boundary Region, edited by M. Gurnis, M. E. Wysession, E. Knittle, and B. A. Buffett, 209-230, AGU, Washington, D.C., 1998.
    Sidorin, I., M. Gurnis, and D. V. Helmberger. Evidence for a ubiquitous seismic discontinuity at the base of the mantle, Science, 286, 1326-1331,1999.
    Sidorin, I., M. Gurnis, and D. V. Helmberger. Dynamics of a phase change at the base of the mantle consistent with seismological observations, J. Geophys. Res., 104,15,005-15,023, 1999b.
    Sileny, J., and J. Plomerova, Inversion of shear-wave splitting parameters to retrieve three-dimensional orientation of anisotropy in continental lithosphere, Phys. Earth Planet. Inter.,95, 277-292, 1996.
    Silver, P.G., and Chan, W.W., Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res., 96, 16429-16454, 1991.
    Silver, P. G., and M. K. Savage, The interpretation of shear wave splitting parameters in the presence of two anisotropic layers. Geophys. J. Int., 119, 949-963, 1994.
    Sinmyo, R., K. Hirose, H. St. C. O-Neill, and E. Okunishi. Ferric iron in Albearing post-perovskite, Geophys. Res. Lett, 33, L12S13, doi:10.1029/2006GL025858, 2006.
    Song, X., Ahrens, T.J., Pressure-temperature range of reactions between liquid iron in the outer core and mantle silicates. Geophys. Res. Lett. 21, 153-156, 1994.
    Stacey, F. D., and D. E. Loper, The thermal boundary-layer interpretation of D" and its role as a plume source, Phys. Earth Planet. Int., 33, 45-55, 1983.
    Stackhouse, S., J. P. Brodholt, G. D. Price. High temperature elastic anisotropy of the perovskite and post-perovskite polymorphs of AL_2O_3, Geophys. Res. Lett., 32, L132305, doi:10.1029/2005GL0223163, 2005a.
    Stackhouse, S., J. P. Brodholt, G. D. Price, J. Wookey, and J. M. Kendall. The effect of temperature on the acoustic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO_3, Earth Planet. Sci. Lett., 230, 1-10,2005b.
    Stevenson, D., Fluid dynamics of core formation, in Origin of Earth, edited by H. E. Newsom and J. H. Jones, pp. 231-250, Oxford University Press, New York, 1990.
    Stixrude, L., Elastic constants and anisotropy of MgSiO3 perovskite, periclase, and SiO2 at high pressure, in The Core-Mantle Boundary Region, Geodyn. Ser., vol. 28, edited by M. Gurnis et al., pp. 83- 96, AGU, Washington, D. C, 1998.
    Sturhahn, W., J. M. Jackson, and J.-F. Lin. The spin state of iron in minerals in Earth's lower mantle, Geophys. Res. Lett., 32, L12307, doi:10.1029/2005GL022802, 2005.
    Su, W. J., and A. M. Dziewonski, Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle, Phys. Earth Planet. Int., 100,135-156,1997.
    Sun, D., A. T.-R. Song, and D. Helmberger. Complexity of D" in the presence of slab-debris and phase changes, Geophys. Res. Lett., 33, L12S07, doi:10.1029/2005GL025384, 2006.
    Tan, E., Gurnis, M., Han, L., Slabs in the lower mantle and their modulation of plume formation. Geochem., Geophys., Geosyst. 3 (11), 1067, doi: 10.1029/2001GC000238, 2002.
    Tanaka, S., Very low shear wave velocity at the base of the mantle under the South Pacific superswell, Earth Planet. Sci. Lett., 203, 879-893,2002.
    Tanimoto T. and Anderson D. Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100-250s. J. Geophys. Res., 90: 1842-1858, 1985.
    
    Tateno, S., K. Hirose, N. Sata, and Y. Ohishi. Phase relations in Mg_3Al_2Si_3O_(12) to 180 GPa: Effect of AI on post-perovskite phase transition, Geophys. Res. Lett., 32, L15306, doi: 10.1029/2005GL023309, 2005.
    Thomas, C, Weber, M., Wicks, C.W., Scherbaum, F., Small scatterers in the lower mantle observed at German broadband arrays. J. Geophys. Res. 104, 15073-15088,1999.
    Thomas, C, and J.-M. Kendall, The lowermost mantle beneath northern Asia: (2) Evidence for D" anisotropy, Geophys. J. Int., 151,296- 308,2002.
    Thomas, C, J. M. Kendall, and J. Lowman. Lower mantle seismic discontinuities and the thermal morphology of subducted slabs, Earth Planet. Sci.Lett., 225, 105-113,2004.
    Thomsen L. Weak elastic anisotropy. Geophysics, 51: 1954-1966,1986.
    Tommasi, A , Tikoff, B., Vauchez, A., Upper mantle tectonics: Three-dimensional deformation, olivine crystallographic fabrics and seismic properties. Earth and Planetary Science Letters, 168: 173-186, 1999.
    Tong, C, Gudmundsson, O., Kennett, B.L.N., Shear wave splitting in refracted waves returned from the upper mantle transition zone beneath northern Australia, J. Geophys. Res. 99 (B8), 15783-15797, 1994.
    Trampert, J. and H.J.v. Heijst, Global azimuthal anisotropy in the transition zone. Science, 296: p. 1297-1299,2002.
    Tsuchiya, T, J. Tsuchiya, K. Umemoto, and R. M. Wentzcovitch. Elasticity of post-perovskite MgSiO3, Geophys. Res. Lett., 31, L14603, doi:10.1029/2004GL020278, 2004a..
    Tsuchiya, T, J. Tsuchiya, K. Umemoto, and R. M. Wentzcovitch. Phase transition in MgSiO3 perovskite in the Earth's lower mantle, Earth Planet. Sci. Lett.,224,241-248,2004b.
    Tsuchiya, T, and J. Tsuchiya. Effect of impurity on the elasticity of perovskite and post-perovskite: Velocity contrast across the post-perovskite transition in (Mg,Fe,Al)(Si,Al)O3, Geophys. Res. Lett., 33, L12S04, doi 10.1029/2006GL025706,2006.
    van der Hilst, R. D., and H. Karason, Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: Toward a hybrid convection model, Science, 283, 1885-1888,1999.
    Vasco, D. W., and L. R. Johnson, Whole Earth structure estimated from seismic arrival times, J. Geophys. Res., 103, 2633-2671, 1998.
    
    Vidale, J.E., Hedlin, M.A.H., Evidence for partial melt at the core-mantle boundary north of Tonga from the strong scattering of seismic waves. Nature 391, 682-684, 1998.
    Vinnik, L., F. Farra, and B. Romanowicz, Observational evidence for diffracted SV in the shadow of the Earth's core, Geophys. Res. Lett., 16, 519- 522, 1989.
    Vinnik, L. P., L.I. Makeyeva, A. Milev, A.Y. Usenko, Global patterns of azimuthal anisotropy and deformations in the continental mantle, Geophys. J. Int. 111(3), 433-447, 1992.
    Vinnik, L. P., V. G Krishna, R. Kind, P. Bormann, and K. Stammler, Shear wave splitting in the records of the German Regional Seismic Network, Geophys. Res. Lett., 21, 457-460, 1994.
    
    Vinnik, L., B. Romanowicz, Y. Lestunff, and L. Makeyeva, Seismic anisotropy in the D" layer, Geophys. Res. Lett., 22, 1657- 1660, 1995.
    
    Vinnik, L.P., Chevrot, S., Montagner, J.P., Seismic evidence of flow at the base of the upper mantle, Geophys. Res. Lett. 25, 1995-1998, 1998.
    
    Vinnik, L., L. Breger, and B. Romanowicz, Anisotropic structures at the base of the Earth's mantle, Nature, 393, 564-567, 1998b
    Wang, Y., and L. Wen. Mapping the geometry and geographic distribution of a very low velocity province at the base of the Earth's mantle, J. Geophys. Res., 109,B 10305, doi:10.1029 /2003JB002674, 2004.
    
    Weber, M., and J. P. Davis, Evidence of a laterally variable lower mantle structure from P- and S-waves, Geophys. J. Int., 102, 231-255, 1990.
    
    Wen, L., Helmberger, D.V., Ultra-low velocity zones near the core-mantle boundary from broadband PKP precursors. Science 279, 1701-1703, 1998.
    Wen, L., Intense seismic scattering near the Earth's core-mantle boundary beneath the Comoros hotspot. Geophys. Res. Lett. 27, 2630-3627, 2000.
    
    Wen, L., P. Silver, D. James, and R. Kuehnel, Seismic evidence for a thermo-chemical boundary at the base of the Earth's mantle, Earth and Planet. Sci. Lett., 189, 141-153, 2001.
    Wen, L., An SH hybrid method and shear velocity structures in the lowermost mantle beneath the central Pacific and South Atlantic Oceans, J. Geophys. Res., 107 (B3), doi: 10.1029/2001JB000499, 2002.
    Wentzcovitch, R. M., J. L. Martins, and G. D. Price. Ab initio molecular dynamics with variable cell shape: application to MgSiO3, Phys. Rev. Lett., 70, 3947-3950, 1993.
    Wentzcovitch, R. M., B. B. Karki, M. Cococcioni, and S. de Gironcoli (2004), Thermoelastic properties of MgSiO3-perovskite: insights on the nature of the Earth's lower mantle, Phys. Rev. Lett., 92, 018501-1-4.
    Wentzcovitch, R. M., T. Tsuchiya, and J. Tsuchiya. MgSiO3 postperovskite at D" conditions, Proc. Natl. Acad. Sci. U. S. A., 103, 543-546, 2006.
    
    Williams, Q., and E. J. Garnero, Seismic evidence for partial melt at the base of Earth's mantle, Science, 273,1528-1530,1996.
    Williams, Q., The temperature contrast across D", in The Core-Mantle Boundary Region, edited by M. Gurnis, M. E. Wysession, E. Knittle, and B. A. Buffett, pp. 73-81, AGU, Washington, D.C, 1998.
    Wright, C, K J. Muirhead, and A. E. Dixon, The P wave velocity structure near the base of the mantle, J. Geophys. Res., 90,623-634, 1985.
    Wolfe, C. J., and P. G Silver, Seismic anisotropy of oceanic upper mantle: Shear-wave splitting methodologies and observations, J. Geophys. Res., 103,749-771,1998.
    Wookey, J., J.-M. Kendall, and G. Barruol. Mid-mantle deformation inferred from seismic anisotropy, Nature, 415, 777-780, 2002.
    Wookey, J., J.-M. Kendall, and G. Rumpker. Lowermost mantle anisotropy beneath the north Pacific from differential S-ScS splitting, Geophys. J. Int., 161, 829-838, 2005.
    Wookey, J., S. Stackhouse, J.-M. Kendall, J. Brodholt, and G D. Price. Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties, Nature, 438,1004-1007, 2005.
    Wysession, M.E., Imaging cold rock at the base of he mantle: the sometimes fate of Slabs?, in The Core-Mantle Boundary Region, edited by M. Gurnis, M. E. Wysession, E. Knittle, and B. A. Buffett, pp. 369-384,1996.
    Wysession, M., T. Lay, J. Revenaugh, Q. Williams, E.J. Garnero, R. Jeanloz, and L. Kellogg, The D" discontinuity and its implications, in The Core-Mantle Boundary Region, edited by M. Gurnis, M. E. Wysession, E. Knittle, and B. A. Buffett, pp. 273-298, AGU, Washington, D.C., 1998.
    Wysession, M. E., A. Langenhorst, M. J. Fouch, K. M. Fischer, G. I. Al-Eqabi, P. J. Shore, and T. J. Clarke, Lateral variations in compressional/ shear velocities at the base of the mantle, Science, 284, 120-125,1999.
    Yamazaki, D., and S. Karato, Fabric development in (Mg, Fe)O during large strain, shear deformation: Implications for seismic anisotropy in Earth's lower mantle, Phys. Earth Planet. Inter., 251, 251— 267, 2002.
    Yamazaki, D.,Takashi Y. Hiroaki Ohfuji, J. Ando, A. Yoneda. Origin of seismic anisotropy in the D" layer inferred from shear deformation experiments on post-perovskite phase. Earth and Planetary Science Letters 252 :372-378, 2006.
    Young, C. J., and T. Lay, Evidence for a shear velocity discontinuity in the lower mantle beneath India and the Indian Ocean, Phys. Earth Planet. Int., 49, 37-53,1987b.
    Young, C. J., and T. Lay, Multiple phase analysis of the shear velocity structure in the D" region beneath Alaska, J. Geophys. Res., 95,17,385-17,402,1990.
    Zhang, S., and S.-I. Karato, Lattice preferred orientation of olivine aggregates deformed in simple shear, Nature, 375,774-777,1995.
    Zhang S, Karato S, Fitz Gerald J, Faul UH, Zhou Y. Simple shear deformation of olivine aggregates. Tectonophysics, 316:133 -152,2000.
    Zhao, D., Seismic structure and origin of hotspots and mantle plumes, Earth Planet. Sci. Lett., 192, 251-265,2001.
    Zhong, S., Hager, B.H., Entrainment of a dense layer by thermal plumes. Geophys. J. Int. 154, 666-676, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700