超高压输电线路的单端行波保护方案
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着电力系统的迅速发展,我国电网呈现出大容量、远距离、高电压的发展趋势,对电网运行的稳定性提出了更高的要求。快速切除故障不仅有助于提高输电线路的传送功率,更重要的是能够增强电力系统的暂态稳定性。因此,具有高速甚至是超高速动作特性的行波保护成为未来继电保护设备的发展方向之一。
     针对目前单端型行波保护存在的主要问题是反射波的识别。本文提出一种新的高压输电线路的单端行波保护方案,只需要识别行波初始波波头。对不对称接地故障,本文通过对接地故障时零模和线模行波传输规律的分析,提出模量波速度差异的行波保护算法,形成了一种不对称接地故障的行波保护方案。对非接地故障,本文在分析输电系统频率特性的基础上,分析了边界条件对电压行波的衰减特性,用电压行波到达测量点的电压经过贝杰隆模型反推到故障点的电压和附加电压源大小的比率大小形成判据来区分区内外故障,提出了一种非接地相间保护方案,并且此方案也适用于三相短路保护。
     采用PSCAD/EMTDC电磁暂态仿真软件搭建了两个的500kV超高压输电线路模型,对不同故障距离、不同故障类型、不同故障过渡电阻等多种故障情况进行了大量的仿真,并利用MATLAB处理仿真数据,对算法进行验证,仿真结果表明了本文所提出单端行波保护算法的有效性。
Power system in China develops very fast in latest years, and the trend of large capacity, long distance, and high voltage is formed, which demands higher transient stability for power system. Clearing the faults rapidly is an effective method not only to increase power transfer but also to improve transient stability of transmission system. So the transient based protection principle with high speed even ultra-high-speed operating performance becomes one of the development directions of power system protective relaying.
     The identification of reflection wave is the primary trouble of the existing single-ended traveling-wave protection schemes. The paper proposes a novel single-ended protection for EHV/UHV transmission line, which only needs initial traveling wave. For unsymmetrical grounded faults, the paper present a new protection scheme based on the vilocity gap between aerial-model and zero-model through analyzing aerial-model and zero-model traveling wave propagation rule. Form a new kind of traveling wave grounded protection programs. For ungrounded faults. The frequency characteristics of transmission line are analyed. And the attenuated effcet of boundary conditions on Voltage traveling wave is considered. The fault voltage is calculated by Bergeron model based on the voltage of fault point.Then the amplitude of voltage is Compared to the additional voltage, and ratio is used to distinguish an internal or external fault. Simulation results show that the protection method proposed is also suitable for three-phase faul.
     Two simulation models of 500kV extremely high voltage transmission systems are established on the platform of PSCAD/EMTDC. A lot of simulations about different fault conditions such as fault location, fault resistance, fault type and fault inception angle are carried out, and the simulation data is treated to validate the algorithms with MATLAB. The simulation results prove that the new algorithms are correct.
引文
[1]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1996.
    [2]董杏丽,葛耀中,董新洲,等.基于小波变换的行波测距式距离保护原理的研究[J].电网技术,2001,25(7):9-13.
    [3]葛耀中,董新洲,董杏丽.测距式行波距离保护的研究(一)理论与实现技术[J].电力系统自动化,26(6),34-40,2002.
    [4]董杏丽,葛耀中,董新洲.测距式行波距离保护的研究(二)原理方案与仿真[J].电力系统自动化,26(9),53-58,2002.
    [5]T. Takagi, J. Baba, K. Uemura, T. Sakagushi. Fault Protection Based on Travellin gW aveT heory PartⅠ:Theory. IE EEP ESS ummerM eeting,1977. A77-750-3:1-7.
    [6]T. Takagi, J. Baba, K. Uemura, T. Sakagushi. Fault Protection Based on Travelling Wave Theory PartⅠ:Theory. IEEE PES Summer Meeting,1977. A77-750-3:1-7.
    [7]T. Takagi, J. Baba, K. Uemura, T. Sakagushi. Fault Protection Based on Tra velling Wave Theory Partll:Sensitivity and Laboratory Test. IEEE PES Summer Meeting,1977. A77-750-3:8-14.
    [8]H. W. Dommal, J. M. Michels. High Speed Relay Using Travelling Wave Transient Analysis. IEEEP ESW inter Meeting, New York, USA,1978:1-7.
    [9]A. T. Johns. New Ultra-high-speed Directional Comparison Technique for the Protection of EHV TransmissionL ines. IEE Proc. C.1980,12 7(4):228-239.
    [10]A. T. Johns. New Ultra-high-speed Directional Comparison Technique for the Protection of EHV Transmission Lines. IEE Proc. C.1980,127(4):228-239.
    [11]T. Takagi, J.Baba, K. Uemura, T. Sakagushi. Fault Protection Based on Travelling Wave Theory PartⅠ:Theory. IEEE PES Summer Meeting,1977. A77-750-3:1-7.
    [12]T. Takagi, J.Baba, K. Uemura, T. Sakagushi. Fault Protection Based on Tra veiling Wave Theory Partll:Sensitivity and Laboratory Test. IEEE PES Summer Meeting,1977. A77-750-3:8-14.
    [13]M. Chamia,S. Liberman. Ultra High Speed Relayf or EHV/UHVT ransmission Lines-Development, Designand A pplication. IEEE,Trans..1978,PAS-97(6):2104-2116.
    [14]M. Chamia, S. Liberman. Ultra High Speed Relay for EHV/UHV Transmission Lines-Development, Design and Application. IEEE, Trans.1978, PA S-97(6):2104-2116.
    [15]P. A. Crossly, P. G. McLaren. Distance Protection Based on Travelling Wave. IEEE, Trans. 1983,PAS-82(9):2971-2983.
    [16]董杏丽,董新洲,张言苍,等.基于小波变换的行波极性比较式方向保护原理研究[J].电力系统自动化,2000,24(14):11-15.
    [17]董新洲,葛耀中,徐丙垠.输电线路暂态电流行波的故障特征及其小波变换[J].电工技术学报,2001,14(1):59-62.
    [18]董新洲,刘建政,余学文.输电线路暂态电压行波的故障特征及其小波变换.电工技术学报.2001,16(3):57-61,74.
    [19]董杏丽,葛耀中,董新洲,等.基于小波变换的行波幅值比较式方向保护[J].电力系统自动化,2000,24(17):11-15.
    [20]A.T.Johns, R. K. Aggarwal, Z. Q. Bo. Non-unit Protection Technique for EHV Transmission System based on Fault-generated Noise Part2,Signal Processing. IEE Proceedings -Generation, Transmission and Distribution.1994,141(2):141 - 147.
    [21]A.T.Johns, R. K. Aggarwal, Z. Q. Bo. Non-unit Protection Technique for EHV Transmission System based on Fault-generated Noise Part1, Signal Measurement. IEE Proceedings -Generation, Transmission and Distribution.1994,141(2):133-140.
    [22]A. T. Jo hns, R. K. Aggarwal, Z. Q. Bo. Non-unit Protection Techniquef or EHV Transmission System based on Fault-generated Noise Part3 Engineering and HV Laboratory. TEE Proceeding - Generation, Transmission and Distribution 1996,143(2):276-282.
    [23]J. A. S. B Jayasinghe, R. K. Aggarwal, AT. Johns, et al. A Novel Non-unit Protection for Series Compensated EHV Transmission Lines Based on Fault Generated High Frequency Voltage Signals. IEEE Transactions on Power Delivery.19 98,13(3):405-413.
    [24]张保会,哈恒旭,吕志来.利用单端暂态量实现超高压输电线路全线速动保护新原研究(一).电力自动化设备2001,21(6):1-5.
    [25]张保会,哈恒旭,吕志来利用单端暂态量实现超高压输电线路全线速动保护新原理研究(二).电力自动化设备.2001,21(7):1-6.
    [26]张保会,哈恒旭,吕志来.利用单端暂态量实现超高压输电线路全线速动保护新原理研究(三)电力自动化设备.2001,21(8):1-4.
    [27]司大军,束红洪春,陈学允.一种基于行波测距式不对称接地故障距离保护方案[J].电工技术学报,2003,18(4):65-69.
    [28]司大军,束红洪春,陈学允.一种新的相间行波距离保护方法[J].电力系统自动化,2003,11(27):41-44.
    [29]Chamia M, Liberman S. Ultra high speed relay for EHV/UHV transmission lines-development, design and application[J]. IEEE Trans on Power Apparatus and Systems, 1978,97(6):2104-2112.
    [30]Mansour M. M, Swift G. W. A multi-microprocessor based traveling wave relay-theory and realization[J]. IEEE Trans on Power Delivery,1986,1(1):272-279.
    [31]Johns A. T.. New ultra-high-speed directional comparison technique for the protection of EHV transmission lines[J]. IEE Proceedings-C, Generation, Transmission and Distribution,1980,127(4):228-239.
    [32]Aggarwal R. K, Johns A. T, Tripp D S. The development and application of directional comparison protection for series compensated transmission systems [J]. IEEE Trans on Power Delivery,1987,2(4):1037-1045.
    [33]董杏丽,葛耀中,董新洲,等.基于小波变换的行波幅值比较式方向保护[J].电力系统自动化,2000,24(17):11-15.
    [34]林湘宁,刘沛,高艳.基于故障暂态和数学形态学的超高速线路方向保护[J].中国电机工程学报,2005,25(4):13-18.
    [35]段建东,基于暂态量的超高压电网超高速保护的研究[D],西安:西安交通大学,2005.
    [36]段建东,张保会,任晋峰等.超高压输电线路单端暂态量保护元件的频率特性分析.中国电机工程学报,2007,27(1):37-43.
    [37]胡昌华等,基于Matlab系统分析与设计—小波分析[M].西安电子科技大学出版社.2000.
    [38]李友军,徐丽娜.电力系统接地短路故障中零模分量的依频关系分析[J].继电器,2007,35(15):4-8.
    [39]徐青山,陈锦根,唐国庆.计及模速差异与杂散电容的反向行波辨识[J].高电压技术,2007,33(9):70-74.
    [40]林湘宁,刘沛,高艳.基于故障暂态和数学形态学的超高速线路方向保护[J].中国电机工程学报,2005,25(4):13-18.
    [41]H.W.Dommel著),李永庄,林集明,曾韶华(译),电力系统电磁暂态计算理论[M].1991.
    [42]吴维韩 张芳榴,电力系统过电压数值计算[M],北京,科学技术出版社.1989.
    [43]李福寿.电力系统过电压计算[M],水利水电出版社,1988.2.
    [44]哈恒旭,张保会,吕志来.边界保护的理论基础[J],第一部分:故障暂态分析.继电器,2002,30(9):7-14.
    [45]哈恒旭,张保会,吕志来.边界保护的理论基础[J],第二部分:线路边界的折、反射系数的频谱。继电器,2002,30(10):1-5.
    [46]哈恒旭,张保会,吕志来.边界保护的理论基础[J],第三部分:故障暂态频谱差异EMTP仿真.继电器,2002,30(11):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700