压升规律可控的高超声速内收缩进气道设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设计高超声速内收缩进气道的核心在于设计优良的基准流场。本文采用有旋特征线理论,研究了一种压缩面压升规律可控的新型轴对称基准流场设计方法,对二次曲线压升规律进行了参数化研究,得到了设计参数对基准流场总体性能的影响规律,并分析了粘性对基准流场流动特征及性能的影响。
     基于压升规律可控的轴对称基准流场设计方法,结合流线追踪技术设计了圆形进口内收缩进气道,并进行了数值研究。结果表明,采用新型基准流场的内收缩进气道能较好地保持其基准流场的压升规律,采用压力梯度逐渐增大压升规律的进气道压缩效率较高,流量系数较低,采用压力梯度逐渐减小压升规律的进气道压缩效率较低,但流量系数较高。
     为了兼顾进气道的压缩效率和流量系数,探索了三次曲线压升规律,设计了矩形转圆形内收缩进气道,并进行了数值及实验研究。结果表明进气道前缘激波较弱,总压恢复较高,并且具有较高的流量系数。风洞实验表明,该进气道在Ma6、4度攻角状态总压恢复为0.45,增压比为41.2,至少可抗200倍来流静压的反压。
     基于三次曲线压升规律的研究,提出了反正切曲线压升规律,研究了这种压升规律基准流场特性及压升规律各个系数对基准流场性能的影响。对采用该规律的圆形进口内收缩进气道进行的数值研究表明,进气道前缘激波较弱,内收缩比较小,在设计点和非设计点进气道均具有较高的压缩效率和流量捕获特性。之后采用该压升规律设计了带斜楔前体的矩形转圆形内收缩进气道,并进行了数值和实验研究。数值研究表明,在Ma4~Ma7范围内,进气道具有较高的压缩效率、较高的流量系数和良好的攻角特性。风洞实验结果表明,设计点和非设计点,进气道顶板沿程压力分布均具有反正切曲线的特征,设计点Ma6状态进气道总压恢复为0.517,增压比为37.0。在Ma5、8度攻角进行的起动特性实验表明,无放气状态,进气道在风洞中不能正常起动。通过在顶板压缩面上的激波与附面层相互作用区域放气可使进气道顺利起动,起动后放气量约为唇口封闭截面流量的1.2%。
     为减弱进气道内压段较强的激波与附面层相互作用,通过改变中心体形状,设计了新型轴对称基准流场,反射激波强度显著降低,压缩效率明显提高。对采用该基准流场的圆形流管内收缩进气道研究表明,进气道设计点和接力点肩点附近激波与附面层相互作用明显减弱,流场结构优于传统内收缩进气道,压缩效率明显提高,同时起动性能改善。对采用该基准流场的矩形转圆形内收缩进气道进行了数值模拟和风洞实验。数值研究表明,进气道内压段唇口激波与附面层相互作用较弱,流场结构较好。实验结果表明,在Ma6、4度攻角状态,进气道总压恢复为0.518,增压比为52。在Ma5、8度攻角状态,在顶板上开两道很小的放气槽后进气道可顺利起动,起动后放气量约为1.1%。
     最后,初步设计了腹下进气的乘波前体、矩形转圆形内收缩进气道一体化构型,数值研究表明,设计点一体化进气系统前缘激波较好的贴在前缘线上,乘波性能良好,前体产生的三维流场导致进气道流场不再对称。此外,采用乘波前体和类水滴形高超声速内收缩进气道设计了两侧进气布局的进气系统。数值研究表明,前体外流场和进气道内流场在高马赫数下基本独立,低马赫数下前体前缘激波面和进气道前缘激波面耦合。由于没有前体附面层的影响,进气道流场结构较好,压缩效率较高,进气系统升阻比几乎不随来流马赫数变化。
The key of designing hypersonic inward turning inlet is to design its basic flowfield. A new kindof design methodology of axisymmetric basic flowfield with controlled wall pressure rise law isinvestigated using the rotational method of characteristics. Parametric study is performed to obtain thelaws of overall performance variation with design parameters of basic flowfield using pressure riselaw of two-order curve, and the effect of viscosity is also studied.
     With this design methodology of basic flowfield, in combination with streamline tracingtechnique, a circular inward turning inlet is designed and simulated numerically. Results show that theinward turning inlet can maintain the same law of pressure rise as its basic flowfield. The inlet withpressure rise law of pressure gradient increasing has the high compression efficiency, but low masscapture ratio, and the inlet with pressure rise law of pressure gradient decreasing is opposite.
     With basic flowfield based on the pressure rise law of three order curve, a hypersonic inwardturning inlet with rectangular to circular shape transition is designed and investigated with numericalsimulation and experimental method. The numerical results indicate that this inlet has weak leadingshock wave, and good overall performance. And the experimental results show that the inlet’s totalpressure recovery is0.45, it can generate a compression ratio of41.2and withstand a back pressureratio of200relative to the tunnel static pressure at Mach6with angle of attack of4degree.
     According to the investigation of three order curve law of pressure rise, the pressure rise law oftarc tangent curve is proposed. Numerical simulation is performed to study the performance ofaxisymmetric basic flowfield with this kind of pressure rise law. This curve has three parameters,whose effects on the performance parameters such as total pressure recovery, static pressure ratio,contraction ratio and internal contraction ratio was studied. Then, a circular inward turning inlet withthis basic flowfield is designed and numerically simulated to get the flow characteristics and totalperformance. The result shows this inlet has weak leading shock wave and small internal contractionratio, as well as high mass capture ratio and compression efficiency at both on-design point andoff-design conditions. In addition, a hypersonic inward turning inlet with rectangular to circular shapetransition integrated to a wedge forebody was designed and studied by numerical simulation, andtested in a hypersonic wind tunnel. Numerical results indicate that this inlet has high total pressurerecovery, mass capture ratio and good performance with angle of attack from Mach4to Mach7.Wind tunnel test data turn out that this inlet has similar pressure rise law as arc tangent curve, a totalpressure recovery of0.517, and a compression ratio of37relative to tunnel static pressure at Mach6. The starting performance with and without bleeding on top wall in the internal compression section is
     studied at Mach5,8degree angle of attack. The results indicate that the inlet can not start withoutbleeding. But when the bleed slots in the zone where shock wave and boundary layer interaction ontop wall were open, the inlet can start with about1.2%mass flow rate of the flow entering the cowlclosure section lost.
     An innovative basic flowfield with controlled centre body is designed and studied, which ishelpful to weak the reflection shock wave and increase the compression efficiency. A circular inwardturning inlet using the new basic flowfiled is designed and numerically studied. The results indicatethe new inlet has weaker cowl shock wave/boundary layer interaction, better flowfield, highercompression efficiency, and better starting performance than the previous inward turning inlets. Basedon this new kind of baisic flowfield, a hypersonic inward turning inlet with rectangular to circularshape transition is designed and studied by numerical simulation, and tested in a hypersonic windtunnel at Mach6and Mach5. The inlet has a total pressure recovery of0.518, a compression ratio of52at Mach6with4degree angle of attack, and can start with about1.2%of the flow entering thecowl closure section lost at Mach5with8degree angle of attack.
     An inlet system with waveride forebody and hypogastric hypersonic inward turning inlets withrectangular to circular shape transition is designed and numerically simulated, the leading shock waveattaches to the leading edge of forebody at design point, the three dimensional flowfield produced bythe forebody make the inlets’ flowfield be asymmetric. Then another inlet system for hypersonicaircraft with waverider forebody and lateral hypersonic inward turning inlets is designed andnumerically simulated. The results indicate that, at high Mach numbers the external flowfiled offorebody is independent from the inlet’s internal flowfiled, but at low Mach numbers the shock wavesfrom forebody leading edge and inlet leading edge are coupling. Because the boundary layer does notenter the inlets, and then interactions of shock wave and boundary layer are weak, there is noseparation in the flowfield, which is helpful for improving compression efficiency, the L/D of the inletsystem nearly does not change with the free stream Mach number.
引文
[1]约翰.霍普金斯大学应用物理实验所编,李存杰等译.冲压发动机技术(上册)[M].北京:国防工业出版社,1980,18-19.
    [2] E.A. Lezberg, A.J. Metzler and W.D. Pack, In-stream measurements of combustion duringMach5to7tests of the Hypersonic Research Engine (HRE)[R]. AIAA-93-2324.
    [3] Earl H. Andrews, Jr,. and Ernest A. Mackley. Analysis of experimental results of the inlet forthe NASA hypersonic research engine aerothermodynamic integration model[R]. NASA TMX-3365,1976.
    [4] R. T. Voland, A. H. Auslende and M. K. Smart, CIAM/NASA Mach6.5scramjet flight andground test[R], AIAA-99-4848.
    [5] Foelsche R O, Leylegian J C, Betti A A,etc. Progress on the Development of a FreeflightAtmospheric Scramjet Test Technique[R]. AIAA2005-3297.
    [6]李璞,郭荣伟.混合模块发动机超燃模块进气道的数值仿真[J].南京航空航天大学学报,2009,41(2):176-180.
    [7]谭慧俊,郭荣伟.高超声速混合模块冲压发动机亚燃模块进气道的高焓风洞试验研究[J].航空学报,2007,28(4):783-790.
    [8]孙姝,张红英,王成鹏等.高超声速轴对称流道冷流特征及气动力特性研究[J].航空动力学报,2007,22(6):967-973.
    [9] Susumu Hasegawa, Doyle Knight, Numerical Analysis and Optimization ofTwo-Dimensional Hypersonic Inlets[R],AIAA2004-856.
    [10]梁德旺.二元高超声速进气道设计体系及优化[A].2005年高超声速进气道技术交流(研讨)会,南京,2005.
    [11]徐旭,蔡国飙.超燃冲压发动机二维进气道优化设计方法研究[J].推进技术,2001,22(6):468-472.
    [12]张晓嘉,梁德旺,李博,等.典型二元高超声速进气道设计方法研究[J].航空动力学报,22(8):1290-1296.
    [13]张堃元,Meier G E A.二元进气道非均匀超音来流试验研究[J].推进技术,1993,(1)9-15.
    [14]梁德旺,袁化成,张晓嘉.影响高超声速进气道起动能力的因素分析[J].宇航学报,2006,27(4):714-719.
    [15] R.T. Voland, K.E. Rock, L.D. Huebner, D.W. Witte, K.E. Fischer and C.R. McClinton.Hyper-X engine design and ground test program[R]. AIAA-98-1532.
    [16] Charles E. Cockrell, Jr. Aaron H. Auslender, Jeffrey A. White. Aeroheating predictions for theX-43cowl-closed configuration at Mach7and10[R]. AIAA2002-0218.
    [17] Fran ois FALEMPIN,Laurent Serre. Possible military application of high-speed airbreathingpropulsion in the XXIst Century-an European Vision [R], AIAA2003-2733.
    [18] Joseph M. Hank, James S. Murphy, and Richard C. Mutzman. The X-51A Scramjet EngineFlight Demonstration Program[R]. AIAA2008-2540.
    [19]潘瑾,张堃元,金志光.弯曲激波压缩型面的设计及数值分析[J].推进技术,2008,29(4):438-442.
    [20] Carl A. Trexler, Performance of an Inlet for an Integrated Scramjet Concept[J]. Journal ofAircraft,1974,11(9):589-591.
    [21] S.Holland and J.Perkins. A Computational Parametric Study of Three-Dimensional SidewallCompression Scramjet Inlets at Mach10[R]. AIAA90-2131
    [22] Holland, Scott D., Mach10Computational Study of a Three-Dimensional Scramjet InletFlowfield[C]. NASA Tm-4602,1995.
    [23] Holland, Scott D., Reynolds number and cowl position effects for a generic sidewallcompression scramjet inlet at Mach10: a computational and experimental investigation[R].AIAA-92-4026.
    [24] Tetsuo Hiraiwa, Takeshi Kanda, Tohru Mitani, etc. Experiments on a scramjet engine withramp-compression inlet at Mach8condition[R]. AIAA2002-4129.
    [25] Zhang Kunyuan, Xiao Xudong, Xu Hui. The parametric analysis and experimentalinvestigation of a sidewall compression inlet at Mach5.3in non-uniform incoming flow[R].AIAA95-2889.
    [26]张堃元,萧旭东,徐辉.非均匀流等溢流角设计高超侧压式进气道[J].推进技术,1998,19(1):20-24.
    [27]张堃元,萧旭东,徐辉.非均匀流等压比变后掠角高超侧压式进气道研究[J].推进技术,1999,20(3):40-44.
    [28]金志光.超燃冲压发动机高超侧压式进气道设计方法研究[D],南京航空航天大学博士论文,102870206-0011.
    [29]金志光,张堃元.一种提高后掠侧压式进气道流量系数的有效措施[J].航空动力学报,2006,21(5):897-902.
    [30]潘瑾,张堃元.可变内收缩比侧压式进气道自起动性能[J].推进技术,2007,28(3):278-321.
    [31]李桦,贾地,范晓樯,等.高超侧压进气道前/后掠的数值分析和比较[J].推进技术,2007,28(1):65-91.
    [32]贾地,范晓樯,冯定华,等.高超声速侧压式进气道溢流特性研究[J].航空动力学报,2007,22(1):85-89.
    [33]王翼,范晓樯,梁剑寒,等.三维侧压高超声速进气道不启动流场试验与数值模拟研究[J].宇航学报,2008,29(6):1927-1931.
    [34]王翼.高超声速进气道启动问题研究[D].国防科学技术大学博士论文,2008-10.
    [35]范晓樯,李桦,易仕和,等.侧压式进气道与飞行器机体气动一体化设计及实验[J].推进技术,2004,25(6):499-502.
    [36]黄生洪,徐胜利,刘小勇,等.支板布局对三维侧压式进气道特性的影响[J].推进技术,2006,27(1):52-57.
    [37]骆晓臣,张堃元.侧压式进气道内部阻力分析[J].推进技术,2007,28(2):204-207.
    [38]骆晓臣,张堃元.侧压式进气道附加阻力分析[J].推进技术,2007,28(6):624-628.
    [39]金志光,张堃元.变后掠角+变侧压角曲面压缩的高超侧压式进气道数值仿真[J].2009,24(10):2176-2182.
    [40] M lder S, Szpiro J. Busemann Inlet for Hypersonic Speeds[J]. Journal of Spacecraft andRockets,1966,3(8):1303-1304.
    [41] M lder S. Internal, Axisymmetric, Conical Flow[J], AIAA Journal,1967,5(7):1252-1255.
    [42] S.M lder, D.Norbert. Application of Hypersonic small-disturbance theory and similitude tointernal hypersonic conical flows[J]. Journal of spacecraft,1970,7(2):149-154.
    [43] D.VanWie, S.M lder. Applications of Busemann inlets design for flight at hypersonicspeeds[R]. AIAA Paper,1992-1210.
    [44] Vijay R., Ryan Starkey and Mark Lewis. An Euler numerical study of Busemann andquasi-busemann hypersonic inlets at on-and off-design speeds[R]. AIAA2008-66.
    [45] Vijay R., Ryan Starkey and Mark Lewis. Numerical simulations of Busemann hypersonicinlets at finite flight angles[R]. AIAA2008-7497.
    [46] Vijay R., Mark Lewis and Ryan Starkey. Performance of various truncation strategiesemployed on hypersonic Busemann inlets[R]. AIAA2009-7249.
    [47] Walsh P C, Tahir R B, and Molder S. Boundary-layer correction for the Busemannhypersonic air inlet[J]. CASI,2003,49(1):11-17.
    [48] Yabin Xiao, Lianjie Yue, Peng Gong, XinYu,Chang. Investigation on a TruncatedStreamline-Traced Hypersonic Busemann Inlet[R]. AIAA paper2008-2634.
    [49] Billig F.S. SCRAM-A Supersonic Combustion Ramjet Missile [R]. AIAA Paper93-2329.
    [50] Billig F S, Baurle R A, Tam C J, and Wornom S F. Design and Analysis of StreamlineTracedHypersonic Inlets[R]. AIAA Paper1999-4974.
    [51] Tam C J, Baurle R A. Inviscid CFD Analysis of Streamline Traced Hypersonic Inlets atOff-Design Conditions[R]. AIAA Paper2001-0675.
    [52]孙波,张堃元,王成鹏,等. Busemann进气道无粘流场数值分析[J].推进技术,2005,26(3):242-247.
    [53]孙波,张堃元,金志光,等.流线追踪Busemann进气道设计参数的选择[J].推进技术,2007,28(1):55-59.
    [54]孙波,张堃元,金志光.流线追踪Busemann进气道马赫数3.85实验研究[J].航空动力学报,2007,22(3):396-399.
    [55] Vinogradov V A,Ogorodnikov D A and Stepanov V A. Experimental and computationalresearches of the spatial (3-D) scheme hypersonic inlets[R]. AIAA98-1527.
    [56] M lder S, Timofeev E V, and Tahir R B. Flow Starting in High Compression Hypersonic AirInlets by Mass Spillage[R]. AIAA2004-4130.
    [57] Tam C J, Baurle R A and Streby G.D. Numerical analysis of stream-traced hypersonicInlets[R], AIAA Paper,2003-13.
    [58] Tahir R B, Molder S, Timofeev E V. Unsteady Starting of High Mach Number Air Inlets–ACFD Study[R]. AIAA2003-5191.
    [59] Lance S. Jacobsen, Chung-Jen Tam, Robert Behdadnia-Starting and Operation of aStreamline-Traced Busemann Inlet at Mach4[R]. AIAA2006-4508.
    [60]孙波,张堃元. Busemann进气道起动问题初步研究[J].推进技术,2006,27(2):128-131.
    [61] Travis W. Drayna, Ioannis Nompelis, and Graham V. Candler,Hypersonic Inward TurningInlets: Design and Optimization[R],AIAA Paper2006-297.
    [62] Timothy F. O’Brien and Jesse R. Colville. Analytical Computation of Leading EdgeTruncation Effects on Inviscid Busemann Inlet Performance[R]. AIAA Paper,2007-26.
    [63] Timothy F. O’Brien and Jesse R. Colville. Blunt Leading Edge Effects on Inviscid TruncatedBusemann Inlet Performance[R]. AIAA2007-5411.
    [64] Vijay Ramasubramanian, Ryan Starkey and Mark Lewis, An Euler Numerical Study ofBusemann and Quasi-Busemann Hypersonic Inlets at On-and Off-Design Speeds[R], AIAAPaper,2008-66.
    [65] Matthews A J and Jones T V. Design and Test of A Modular Waverider Hypersonic Intake[R].AIAA2005-3379.
    [66] Daniel E F Barkmeyer, Starkey R P, Lewis M J. Inverse Waverider Design for InwardTurning Inlets[R]. AIAA2005-3915.
    [67]尤延铖,梁德旺.内乘波式进气道内收缩基本流场研究[J].空气动力学学报,2008,26(2):203-207.
    [68]尤延铖,梁德旺,黄国平.一种新型内乘波式进气道初步研究[J].推进技术,2006,27(3):252-256.
    [69] Timothy F. O’Brien,Viscous-Optimized Length-Constrained Axisymmetric Geometries forStreamline-Tracing[R]. AIAA2008-2511.
    [70] Steven Walker, Frederick Rodgers, Alan Paull, David M. Van Wie. HyCAUSE Flight TestProgram[R]. AIAA2008-2580.
    [71] Malo-Molina F J, Gaitonde D V, Kutschenreuter P H. Numerical Investigation of anInnovative Inward Turning Inlet[R]. AIAA2005-4871.
    [72] Malo-Molina F J, Ebrahimi H B. Numerical Investigation of a3-D Chemically ReactingScramjet Engine at High Altitudes Using JP8-Air Mixtures[R]. AIAA2005-1435.
    [73]岳连捷,肖雅彬,陈立红,等.高超声速流线追踪进气道基准流场设计[C]. CSTAM2009-0054.
    [74] Smart M. K. Design of Three-Dimensional Hypersonic Inlets with Rectangular to EllipticalShape Transition[R]. AIAA98-0960.
    [75] Smart M K. Experimental Testing of a Hypersonic Inlet with Rectangular-to-Elliptical ShapeTransition[R]. AIAA99-0085.
    [76] Smart M K, White J A. Computational Investigation of the Performance and Back-PressureLimits of a Hypersonic Inlet[R]. AIAA2002–0508.
    [77] Smart M K, and Trexler C A. Mach4Performance of a Fixed-Geometry Hypersonic Inletwith Rectangular-to-Elliptical Shape Transition[R]. AIAA2003-0012.
    [78] Milinda V. Suraweera and Michael K. Smart,Shock Tunnel Experiments with a Mach12REST Scramjet at Off-Design Conditions[R], AIAA2008-100.
    [79] James.C. Turner and Michael.K. Smart,Application of radical farming to a3-D scramjet atMach8[R]. AIAA2008-101.
    [80] Rowan J. Gollan and Michael K. Smart, Design of Modular, Shape-transitioning Inlets for aConical Hypersonic Vehicle[R]. AIAA-2010-0940.
    [81] Trent M. Taylor,David VanWie,Performance Analysis of Hypersonic Shape-ChangingInlets,Derived from Morphing Streamline Traced Flowpaths[R]. AIAA2008-2635.
    [82] Yancheng You, Dewang Liang, Cross Section Controllable Hypersonic Inlet Design UsingStreamline Tracing and Osculating Axisymmetric Concepts[R]. AIAA2007-5379.
    [83] Yancheng You, Dewang Liang, Ke Cai, Numerical Research of Three-Dimensional SectionsControllable Internal Waverider Hypersonic Inlet[R]. AIAA2008-4708.
    [84] Yancheng You, Dewang Liang, Rongwei Guo, High Enthalpy Wind Tunnel Tests ofThree-Dimensional Section Controllable Internal Waverider Hypersonic Inlet[R]. AIAA2009-31.
    [85] Ryan P. Starkey and Mark J. Lewis. Simple analytical model for parametric studies ofhypersonic waveriders[R]. AIAA-98-1616.
    [86] Ryan P. Starkey and Mark J. Lewis. Analytical Off-Design Lift-to-Drag-Ratio Analysis forHypersonic Waveriders[J]. Journal of spacecraft and rockets.2000,37(5):684-691.
    [87] B.S. Kim, M.L. Rasmussen, M.C. Jischke. Optimization of waverider configurationsgenerated from axisymmetric conical flows[R]. AIAA-82-1299.
    [88] H. Sobieczky, F. C. Dougherty, K. Jones. Hypersonic Waverider Design from Given ShockWaves[C]. First International Waverider Symposium, University of Maryland,17.-19.10.1990.
    [89] H. Sobieczky, B. Zores, Wang Z. etal. High Speed Flow Design Using OsculatingAxisymmetric Flows[C]. PICAST’3, Xi’an, Sept.1-5,1997.
    [90]王卓,钱翼稷.乘波机外形设计[J].北京航空航天大学学报,1999,25(2):180-183.
    [91]肖洪,商旭升,王新月,等.吻切锥乘波机的构型设计与性能研究[J].宇航学报,2004,25(2):127-130.
    [92]王发民,李立伟,姚文秀,等.乘波飞行器构型方法研究[J].力学学报,2004,36(5):513-519.
    [93] A.P. Kothari, Christopher Tarpley and Thoma A.Mclaughlin, Hypersonic Vehicle designusing inward turning flowfields[R]. AIAA96-2552.
    [94] Elvin J.D. Integrated inward turning inlets and nozzles for hypersonic air vehicle.USA:Patent Application Publication,07102293.3,2007.
    [95] Yancheng You,Chengxiang Zhu and Junliang Guo, Dual Waverider Concept for theIntegration of Hypersonic Inward-Turning Inlet and Airframe Forebody[R]. AIAA2009-7421.
    [96] Hornung H.G. Oblique shock reflection from an axis of symmetry[J]. Fluid Mech.,2001,Vol.438,231-245.
    [97]潘瑾,张堃元,王磊.几种超声速非常规压缩系统的研究[J].推进技术,2009,30(6):673-676.
    [98] Jin Pan, Kun-yuan Zhang. Experiment and numerical investigation of a curved compressionsystem designed on constant pressure gradient[R]. AIAA-2009-5270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700