西施和大黄鱼遗传多样的ISSR分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过简单重复序列区间标记技术,即ISSR标记分别分析西施(Coelomactra antiquate)和大黄鱼(Pseudosciaena crocea Richardson)的群体遗传特性。为西施和大黄鱼的系统发育研究、种质资源调查、遗传多样性的保护以及品系培育和品种改良提供分子生物学依据。
     利用ISSR分子标记技术分析西施种群的遗传多样性和遗传分化。用17个引物对江苏赣榆(GY)、启东(QD)及福建长乐(CL)3个种群共68个个体进行扩增,共测到236个位点,其中多态位点234个,每个引物扩增条带数为8~20之间,片段长度200~3000bp。GY、QD和CL各种群的多态位点百分率(PPL)分别为;94.92%,86.86%和90.25%,GY、QD和CL种群的Shannon’s信息指数分别为:0.5419,0.4918和0.4895,Nei’s基因多指数分别为:0.3700,0.3361和0.3301。研究表明:西施各种群均具有很高的遗传多样性水平;聚类分析显示GY群体和QD群体先聚一起后,再与CL群体构成姐妹支。
     利用ISSR分子标记技术分析大黄鱼种群的遗传多样性和遗传分化。用7个引物对江苏(JS)、浙江(ZJ)及福建(FJ)3个种群共72个个体进行扩增,共测到78个位点,其中多态位点74个,每个引物扩增条带数为8~14之间,片段长度200~3000bp。JS、ZJ和FJ各种群的多态位点百分率(PPL)分别为;75.64%,65.38%和80.77%,JS、ZJ和FJ种群的Shannon’s信息指数分别为:0.4610,0.3909和0.4758,Nei’s基因多指数分别为:0.3183,0.2697和0.3592。研究表明:大黄鱼各种群均具有较高的遗传多样性水平;聚类分析显示JS群体和FJ群体先聚一起后,再与ZJ群体构成姐妹支。
The Inter Simple Sequence Repeat (ISSR) technique was applied to assess the genetic variation and the genetic differentiation among three populations of Coelomactra antiquate, and Pseudosciaena crocea Richardson. The results will have positive effects to the study of three economic animals’phylogenesis, germplasm resources and genetic diversity.
     The Inter Simple Sequence Repeat (ISSR) technique was applied to assess the genetic variation and the genetic differentiation among three populations of Coelomactra antiquate, the Jiangsu Ganyu (GY) population, Qidong (QD) population and the Fujian Changle (CL) population. Under predetermined optimal reaction conditions, 236 sites including 234 polymorphic sites were detected ranging from 200 bp to 3000 bp with 17 primers. The number of amplified bands ranged from 8 to 20 in every individual. The proportion of polymorphic loci (PPL) of GY、QD and CL was 94.92%, 86.86% and 90.25%, respectively; value of Shannon diversity in GY、QD and CL was 0.5419, 0.4918 and 0.4895, respectively; Value of Nei’s genetic variation in the three populations was 0.3700, 0.3361 and 0.3301, respectively. It’s shown that all the three groups have a high level of genetic diversity; the clustering analysis showed that the nearest phylogenetic relationship occured between the GY and QD populations and then posed a sister branch to the CL population.
     The Inter Simple Sequence Repeat (ISSR) technique was applied to assess the genetic variation and the genetic differentiation among three populations of Pseudosciaena crocea Richardson, the Jiangsu (JS) population, Zhejiang (ZJ) population and the Fujian (FJ) population. Under predetermined optimal reaction conditions, 78 sites including 74 polymorphic sites were detected ranging from 200 bp to 3000 bp with 7 primers. The number of amplified bands ranged from 8 to 14 in every individual. The proportion of polymorphic loci (PPL) of JS、ZJ and FJ was 75.64%, 65.38% and 80.77%, respectively; value of Shannon diversity in JS、ZJ and FJ was :0.4610,0.3909 and 0.4758, respectively; Value of Nei’s genetic variation in the three populations was 0.3183, 0.2697 and 0.3592, respectively. It’s shown that all the three groups have a high level of genetic diversity; the clustering analysis showed that the nearest phylogenetic relationship occured between the JS and FJ populations and then posed a sister branch to the ZJ population.
引文
[1]张祖兴,李明云. (2006)大黄鱼种质资源研究进展.水产科学, 25 (7): 376-378.
    [2]孟学平,高如承,董志国,等. (2006)蛤蜊科3种贝类16SrRNA基因片段及ITS2核苷酸序列分析.湛江海洋大学学报, 26(4): 8-13.
    [3]常念,吴皓,陈蕾. (2009)四角蛤蜊药用研究进展.中华中医药学刊, 27(2): 291-293.
    [4]孟学平,程汉良,董志国. (2005)我国西施研究现状及展望.河北科技师范学院学报, 19(4): 71-75.
    [5]陈爱华,姚国兴. (2005)江苏经济贝类养殖概况与对策研究.科学养鱼, 3: 3-5.
    [6]赵匠. (1999)四角蛤蜊稚贝的温度试验初探.松辽学刊(自然科学版), 2(1): 29-32.
    [7]李永明. (1999)四角蛤蜊产品加工技术初探.中国水产, 12: 45.
    [8]殷悦. (2001)四角蛤蜊的加工技术.中国水产, 4: 62-63.
    [9]孙振兴. (2008)聚类分析在双壳贝类染色体研究中的应用.安徽农业科学,36(26): 11357- 11358.
    [10]郑典元,王春景,周雯,等. (2008)人工养殖海产品鲜样中铅的荧光分光光度测定法.环境与健康杂志, 25(5): 433-434.
    [11]吴瑶庆,宫胜臣,宋林. (2005)石墨炉原子吸收光谱法测定四角蛤蜊中镉、铅的研究。丹东纺专报, 12(45): 22-23.
    [12]王兰萍,王得元,巩振辉. (2007)蛤类寄生的鱼钩虫属形态学观察.水产科学,26(2): 84-86.
    [13]肖静,张鹭,刘跟成. (2006) 4种软体动物凝集素的洗把凝集性研究.牡丹江师范学院学报, 53: 1-2.
    [14]赵艳景,胡虹,王颖. (2008)真瓣鳃目5种海洋贝类生物活性的研究.安徽农业科学,36(18): 7718-7720.
    [15]陈大鹏,沈怀舜,丁亚平,等. (2004)文蛤、青蛤和四角蛤蜊的随机扩增多态性DNA(RAPD)的比较分析.海洋通报, 23(6): 85.
    [16]齐秋贞,高如承,邱文仁,等.西施的生活史.福建师范大学学报(自然科学版),1995,11(4): 82-88.
    [17]王婷,丁君,于佳平,常亚青.利用ISSR技术研究虾夷扇贝不同地理种群的遗传多样性及其分化。2009,22(1).
    [18]郭俊,邓岳文,杜晓东,王庆恒.马氏珠母贝黄壳选育G1遗传结构的ISSR分析.2009,29(1)
    [19]刘德经,石玉心,郑敏艳,等. (1998)西施的人工繁殖.水产养殖, 21: 15-17.
    [20]刘德经,王家滂,肖华霖,等. (2003)西施生长的研究.湛江海洋大学学报, 23(1): 17-21.
    [21]刘德经,黄进升,蔡起彬,等. (2004)西施人工育苗高产稳产技术初步研究.齐鲁渔业: 31-33.
    [22]侯和要,朱景友,孙玉忠,等. (2008)西施人工繁育技术研究.齐鲁渔业, 25(7): 38-39.
    [23]饶小珍,许友勤,陈寅山,等. (2003)西施的核型分析.动物学杂志, 38(2): 2-5.
    [24]陈寅山,冯莉. (2004)西施血清和肌肉提取液凝集性能研究.漳州师范学院学报(自然科学版), 17(2): 92-96.
    [25]姚莉娅,肖宁,陈建安,等. (2006)西施16SrRNA基因片段PCR扩增及其核苷酸序列分析.淮海工学院学报(自然科学版), 15(4): 59-62.
    [26]尤仲杰,包永波,张爱菊. (2007)中国沿海西施5个自然群体形态差异和RAPD分析.海洋学报, 29(3): 98-104.
    [27]林昕,梁君荣,高亚辉,等. (2008) 3个地区西施的ITS-1基因片段序列分析.生命科学研究, 12(1): 14-19.
    [28]全成干,王军,丁少雄,等. (2000).大黄鱼染色体核型研究.厦门大学学报(自然科学版), 39(1): 107-110.
    [29]邹曙明,李思发,赵金良,等. (2003).福建官井洋海区大黄鱼的染色体核型分析.上海水产大学学报, 2(12): 179-181.
    [30]李明云,张海琪,钟爱华,等. (2003).象山港养殖大黄鱼同工酶的分析.海洋学报,增刊2: 231-236.
    [31]张海琪,薛良义,李明云,等. (2002)不同保存方法的大黄鱼肌肉样品基因组DNA提取及RAPD分析.台湾海峡, 21(3): 296-300.
    [32]李明云,张海琪. (2002)大黄鱼高质量基因组DNA的简便提取方法.海洋科学, 10(26): 15-17.
    [33]王军,全成干,苏永全,等. (2001)官井洋大黄鱼遗传多样性的RAPD分析.海洋学报, 23(3): 87-91.
    [34]王志勇,王艺磊,林利民,等. (2002)福建官井洋大黄鱼AFLP指纹多态性的研究.中国水产科学, 9(3): 198-213.
    [35]林能锋,徐斌福,曾红. (2005) PCR法筛选大黄鱼微卫星DNA.福建畜牧兽医, 27(2): 7-8.
    [36]王文文,常玉梅,梁利群. (2009)微卫星分析四个大黄鱼群体的遗传多样性.水产学杂志, 22(2): 6-11.
    [37]孙升,薛良义,童丽娟. (2009)大黄鱼gdf-8Ⅱ开放阅读框序列克隆及分析.宁波大学学报(理工版), 22(1): 39-43.
    [38]陈艺燕,钱开诚,任岗,等. (2005)大黄鱼与小黄鱼细胞色素b基因全序列的比较分析.生态科学, 24(2): 143-145.
    [39]张祖兴,李明云,朱俊杰. (2006)大黄鱼mtDNA ND5和Cytb基因的克隆与序列分析.水产科学, 25(12): 626-631.
    [40]李鹏飞,周永东,徐汉祥. (2008)大黄鱼、鮸鱼及美国红鱼线粒体DNA的Cytb基因序列比较.南方水产, 14(3): 43-47.
    [41]娄绘芳,黄艳青,吴信忠. (2008)大黄鱼( Pseudosciaena crocea)细胞色素P450 CYP4F7基因的克隆及表达分析.海洋学报, 30(4): 131-138.
    [42]龚鹏,杨效文,谭声江,等. (2001)分子遗传标记技术以其在昆虫科学中的应用.昆虫知识, 38(2): 86-91.
    [43]黎裕,贾继增,王天宇. (1999)分子标记的种类及其发展.生物技术通报, (4): 19-22.
    [44]乔利仙,戴继勋,王晶珊,等. (2008) DNA分子标记技术在紫菜属中的应用现状及展望.海洋科学, 32(9): 82-87.
    [45]宋林生,相建海,周岭华,等.六种海产虾类基因组DNA多态性的RAPD标记研究[J] .海洋与湖沼, 1999 , 30 (1) : 62 - 66.
    [46]林志华,黄晓婷,董迎辉,等.广西文蛤( Meretrix)的AFL P及ITS分析[J ] .海洋与湖沼, 2009 , 40 (1) :33241.
    [47]赫崇波,丛林林,葛陇利,等.文蛤养殖群体和野生群体遗传多样性的AFLP分析[J] .中国水产科学,2008 , 15 (2) : 2152221.
    [48]林志华,董迎辉,李宁,等.基于形态参数和AFLP标记的文蛤(Meretrix )地理群体遗传变异分析[J] .海洋与湖沼, 2008 , 39 (3) : 2452251.
    [49]邱高峰,常林瑞.我国近海中国对虾种群遗传差异的RAPD分析[J].上海水产科学,2001,10(1):1-5
    [50]刘萍,徐怀恕.中国对虾黄渤海沿岸群亲本及子一代RAPD分析.海洋水产研究,2007,40 (1) :33241.
    [51]刘振辉,孔杰.(2000)中国对虾不同地理种群的遗传结构的RAPD分析.应用与环境生物学报,2000 25(5): 1-3.
    [52]中国科学院生物多样性委员会.生物多样性研究的原理与方法[M].北京;中国科学出版社,1994: 141-165.
    [53]高焕,刘萍,孟宪红,等. (2004)中国对虾(Fenneropenaeus chinensis)基因组微卫星特征分析.海洋与湖沼, 35(5): 424-431.
    [54]栾生,孔杰,王清印,等. (2007)日本囊对虾( Marsupenaeus japonicus)基因组微卫星特征分析.自然科学进展, 17(6):731-740.
    [55]陈丽梅,孔晓瑜,喻子牛,等. (2005) 3种蛏类线粒体16S rRNA和COI基因片段的序列比较及其系统学初步研究.海洋科学, 29(8): 27-32.
    [56]牛东红,李家乐,沈和定,等.(2008)缢蛏六群体线粒体DNACOI基因序列变异及群体遗传结构分析.海洋学报, 30(3):109-116.
    [57]黎中宝,王展林,张桂玲等.西施群体遗传多样性和分化的研究.2009,40(3) : 302-306.
    [58]尤仲杰,包永波,张爱菊.中国沿海西施5个自然群体形态差异和RAPD分析.海洋学报,2007,29(3) :99-103 .
    [59]中国科学院生物多样性委员会.生物多样性研究的原理与方法[M].北京;中国科学出版社,1994: 141-165.
    [60]刘德经,陈杰明等.西施早期胚胎发育温度效应的研究[J].动物学杂志,1998,2(33):1-3.
    [61]刘德经等.西施幼虫及稚贝致死温度初步研究[J].动物学杂志,2001,36(1):29-31
    [62]曾庆国,林志华,尤仲杰. (2008)蚶(Tegillarca granosa)GT微卫星位点的筛选和性质鉴定.海洋与湖沼,39(2):174-177.
    [63]刘德经等.西施幼虫及稚贝致死温度初步研究[J].动物学杂志,2001,36(1):29-31
    [64]刘必谦,戴继勋.巨蛎属牡蛎遗传多样性研究[J].水产学报,1998, 22(3): 193-197.
    [65]金彬明,方军,曾国权.西施人工育苗试验[J].水利渔业,2006,26(2): 29-31.
    [66] Brenner S, Elgar G, Sandford R, et al. (1993) Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature, 366: 265~268.
    [67] Boudry P, Heurtebise S, Lape`gue S.(2003) Mitochondrial and nuclear DNA sequence variation of presumed Crassostrea gigas and Crassostrea angulata specimens: a new oyster species in Hong Kong. Aquaculture, 228: 15-25.
    [68] Mueller U G, Wolfenbarger L L, AFLP genotyping and finger-printing. TREE, 1999, 14(10) : 389~394.
    [69] Folmer O, Black M, Hoeh W, et al. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3: 294–299.
    [70] Hou L, LüH L, Zou X Y, et al. (2006) Menetic characterizations of Mactra veneriformis (Bivalve) along the Chinese coast using ISSR–PCR markers. Aquaculture, 261(3): 865-871.
    [71] Hebert P D N, Ratnasingham S, Jeremy R W. (2003) Barcoding animal life: cytochrome coxidase subunit 1 divergences among closely related species.Proceedings of the Royal Society of London. Series B: Biological Sciences, 270: 96-99.
    [72] Zietkievicz E. Rafalske A and Labuda D. 1994. Genome fingerprinting simple sequence repeat(SSR) anchored polymerase chain reaction amplification. Genome .1994.20: 178-183.
    [73] Ge X J, Sun M. Reproductive biology and genetic diversity of a cryptoviviparous mangrove Aegiceras corniculatum (Myrtinaceese) using allozyme and inter simple sequence repeat (ISSR)analysis[J] . Molecular Ecology, 1999,8: 2061-2069.
    [74] Qian W, Ge S, Hong D. Assessment of genetic variation of Oryzo granulate detected by RAPDs and ISSRs[J]. Acta Botanica Sinica, 2000, 42(7): 741-750.
    [75] Li L, Xiang J H, Liu X, et al. (2005) Construction of AFLP-based genetic linkage map for Zhikong scallop, Chlamys farreri Jones et Preston and mapping of sex-linked markers. Aquaculture, 245: 63-73.
    [76] Zane L, Bargelloni L, Patarnello T. (2002) Strategies for microsatellite isolation: a review. Molecular Ecology, 11: 1-16.
    [77] Singh S M,Green R H. Excess of allozyme homozygosityin marine mollusks and its possible biological significance.Malacologica, 1 984, 25(2):569-581.
    [78] Sarver SK, Bushek D. Genetics aspects of disease complex of bule mussel[J]. Mar boil,1993,117:105-112.
    [79] Wright S. Evolution and the genetics of populations[M].Chicago:University of Chicago Press,1978.
    [80] Roberts S B, Romano C, Gerlach G. (2005) Characterization of EST derived SSRs from the bay scallop, Argopectens irradians. Molecular Ecology Notes,5: 567-568.
    [81] Rozas J, SanchedelBarrio J C, Messenguer X, et al. (2003) DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19: 2496– 2497.
    [82] Stephen A K, Dawn S W. (2001) Phylogeography and systematics of the mud turtle, Kinosternon baurii. Copeia, 3: 797– 801.
    [83] Smulders M J M, Bredemeijer G, Rus-kortekaas W, et al. (1997) Use of shortmicrosatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theoretical and Applied Genetics. 97: 264-272.
    [84] Saavedra C, Guerra A A. (1996) Allozyme heterozygosity, founder effect and fitness traits in cultivated population of the European oyster, Ostrea edulis Aquaculture, 139: 203-224.
    [85] Schindel D E, Miller S E. (2005) DNA barcoding a useful tool for taxonomists. Nature, 435 (7038): 17.
    [86] Terranova M S, LoBrutto S, Arculeo M, et al. (2007) A mitochondrial phylomeomraphy of Brachidontes variabilis (Bivalvia: Mytilidae) reveals three cryptic species. Journal of Zooloyical Systemetics and Evolutionary Research, 45(4): 289–298.
    [87] Thompson J D, Gibson T J, Plewniak F, et al. (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25: 4876–4882
    [88] Tamura K, Dudley J, Nei M, et al. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4. Molecular Biology and Evolution. 24(8): 1596-1599.
    [89] Valdes A M, Slatkin M and Freimer N B. (1993) Allele frequencies at microsatellite loci: The stepwise mutation model revisited. Genetics, 133: 737-749.
    [90]Weber J L. (1990) Infornativeness of human (dC-dA)n- (dG-dT)n polymorphisms. Genomics, 7: 524-530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700