稻属植物微形态特征的比较分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻属属于禾本科、稻亚科、稻族、稻亚族,由2个栽培稻种和20多个野生稻种组成。野生稻抗逆性较强,蕴藏着许多栽培稻不具有或已经消失的特异优良性状和遗传基因,是栽培稻育种的宝贵种质资源。为了利用不同的性状指标对稻属植物的亲缘关系进行深入研究,本文对稻属20个种的外稃、叶片植硅体、叶片下表皮微形态和亚显微结构、茎和叶的解剖结构进行比较分析,为野生稻种质资源利用提供重要的参考资料。主要研究结果如下。
     1、稻属植物外稃比较分析。根据外稃乳突的形态特征,将稻属植物外稃乳突分为5类,分别是双峰乳突类,多峰乳突类、单峰乳突类、瘤状乳突类、凹痕乳突类。属于双峰乳突类的稻种最多,有亚洲栽培稻、非洲栽培稻、普通野生稻、尼瓦拉野生稻、南方野生稻、展颖野生稻、短野生稻、药用野生稻、根茎野生稻、高杆野生稻、宽叶野生稻和澳洲野生稻12个种;属于多峰乳突类的稻种有斑点野生稻、小粒野生稻和紧穗野生稻3个种;属于单峰乳突类和凹痕乳突类的稻种各一个,分别是马来野生稻和短花药野生稻;属于瘤状乳突类的稻种有颗粒野生稻和疣粒野生稻2个种。根据外稃表皮毛的差异,将稻属植物分为光稃型、稀少型、中间型和密布型四类。芒的有无、长短和表面微形态在不同稻种间差异也很大。
     2、稻属植物叶片扇形植硅体的比较分析。扇形植硅体存在于叶片泡状细胞中,由扇柄、扇面和扇沿几部分构成,具有扇柄长度(a)、扇面长度(b)和宽度(c)以及b/a值等可测量的性状特征,根据b/a值,将扇形植硅体分为三种类型,即长柄型、短柄型和中间型。同一稻种扇形植硅体差异很大,三种类型的扇形植硅体均有,但有一个类型占优势。
     3、稻属植物叶片下表皮微形态比较分析。气孔密度、气孔列数、长细胞面积及其长宽比和三种类型乳突数目等下表皮形态特征均在不同的稻种中存在较大的差异,可以为稻种鉴定和分类提供一定的依据。
     4、稻属植物叶片下表皮亚显微结构比较分析。大瘤状乳突是下表皮长细胞上的典型特征。除斑点野生稻、小粒野生稻、高杆野生稻、宽叶野生稻和马来野生稻以外,其余稻种长细胞上均有大瘤状乳突;不同的稻种气孔器上乳突数目不同,分布比较有规律。表皮毛在稻属植物之间也存在一定的差异。
     5、稻属植物叶和茎解剖结构比较分析。根据叶脉是否突出于叶片,将叶片分为叶脉突出型和水平型2类;根据茎节间纤维细胞壁的厚薄,将茎分为厚壁类和薄壁类。厚壁类根据外圈维管束与纤维细胞带的关系,又分为包埋型、突出型、连接型和间隔型。薄壁类根据外圈和内圈维管束与纤维细胞带的关系,分为凸出型、包埋型和连接型。
The rice genus (Oryza L.) belongs to the subtribe Oryzinae, tribe Oryzeae, subfamily Oryzoideae of the grass family (Poaceae), and contains over 20 wild species and 2 cultivated rice species. Wild rice species have higher tolerance to environmental stresses, many agriculturally excellent characters and important genes, which have not existed in cultivated rice, but play an important role in cultivated rice breeding. In this paper, the morphological features of lemma, leaf phytolith, and leaf lower epidermis, and anatomical structure of leaf and culm were investigated. The results may provide an important reference to use the wild rice germplasm. The major results of the present study are as follows.
     (1) Comparison of the lemma in Oryza. The 5 kinds of tubercles have been classified based on the characters of tubercles, which were e.g.“bi-peak”tubercle kind,“multi-peak”tubercle kind,“simple-peak”tubercle kind,“trace”tubercle kind and“warty-peak”tubercle kind. The 4 kinds of lemma hairs have been classified based on the difference of lemma hairs. The length and epidermal microstructure of awn showed some difference among rice species.
     (2) Comparison of fan phytolith of leaf in Oryza. Fan phytolith from leaf bulliform cell consists of fan handle, fan circle and fan lateral, and has some measurable indicators:the length of fan handle (a), the length (b) and width (c) of fan circle, and b/a. Fan phytolith was classified as long handle,short handle and intermediate types based on the ratio of b/a. In one species, there was much difference among fan phytolith, all the three types existed, but only one was in the majority.
     (3) Comparison of leaf lower epidermis in Oryza. Oryza plants showed significantly differences in the following traits: the density and row number of stoma, the area and length/width of long cell, the number and distribution of papillae with different sizes. These traits were valuable for the identifying Oryza species and for assessing systematic relationships in the genus.
     (4) Comparison of sub-microstructure of leaf lower epidermis in Oryza. Big warty tubercle was the typical feature of lower epidermal long cell, which existed in most of rice species excluding of O. punctata, O. minuta, O. alta, O. latifolia and O. ridleye. The number and location of small papillae in stomatal complexes were particularly different between species.
     (5) Comparison of the anatomical structures of leaf and culm in Oryza. The two kinds of leaf have been classified based on the characters of middle vein, which were prominent type and horizontal type. The two kinds of culm have been classified based on the thickness of fiber cell wall, which were thick-walled and thin-walled type. Thick-walled type culm was classified into 4 types: embedded type, connective type, prominent type, and interval type. Thin-walled type culm was classified into 3 types: bulgy type, embedded type, and connective type.
引文
[1] Freea D, David T. Wild and domesticated forms of rice (Oryza sp.) in early agricultureat Qingpu, lower Yangtze, China: evidence from phytoliths. Journal of Archaeological Science, 2007, 34: 2101-2108.
    [2]钟代彬,罗时军,应存山.野生稻有利基因转移研究进展.中国水稻科学, 2000, 14(2): 103-106.
    [3]范树国,张再军,刘林,等.中国野生稻遗传资源的保护及其在育种中的应用.中国种业, 2000, 8(2): 198-207.
    [4]罗时军.稻种资源研究现状和发展预测.中国种业, 1998, 3: 11-15.
    [5] Lu B R. Taxonomy of the genus Oryza (Poaceae): historical perspective and current status. International Rice Research Notes, 1999, 24: 4-8.
    [6] Kurata N, Omura T. Karyotype analysis in rice: A new method for indentifying all chromosomes pairs. Japanese Journal of Genetics, 1978, 53(4): 251-255.
    [7] Aggarwal R K, Brar D S, Khush G S. Two new genomes in the Oryza complex identified on the basis of molecular divergence analysis using total genomic DNA hybridizationg. Molecular and General Genetics, 1997, 254: 1-12.
    [8] Ge S, Sang T, Lu B R, et al. Phylogeny of rice genomes with emphasis on origins of alloteraploid species. Proceedings of the National Academy of Sciences, 1999, 96(25): 14400-14405.
    [9] Vaughan D A. Wild relative of ric: A genetic resource handbook. Mnila: IRRI, 1994.
    [10] Khush G S, Brar D S. Origin, dispersal, cultivation and variation of rice. Plant Mocular Biology, 1997, 35(1): 35-34.
    [11]范树国,张再军,刘林,等.稻属植物分类研究的历史及现状.武汉植物究, 2000, 18(18): 328-337.
    [12]卢宝荣,葛颂,桑涛,等.稻属分类的现状及存在的问题.植物分类学报,2001, 39(4): 373-388.
    [13]张乃群,李运贤,祝莉莉,等.稻属分类研究综述.中国水稻科学, 2003, 17(4): 393-397.
    [14]王永吉,吕厚远.植物硅酸体研究及应用.北京海洋出版社, 1993, l11-l18.
    [15] Madella M, Alexandre A, Ball T. International Code for phytolith Nomenclature 1.0. Annals of Batanty, 2005, 96: 253-260.
    [16]张新荣,胡克,刘莉莉.吉林敦化地区全新世炭沉积中植硅体分析.微体古生物学报, 2005, 22(2): 202-207.
    [17]顾延生,秦养民,朱宗敏,等.浙江长兴中-晚更新世红土植硅体与分子化石记录及其环境意义.海洋地质与第四纪地质, 2007, 27(1): 12-131.
    [18]陈天虎,徐晓春, Huifang Xu,等.苏皖坡缕石粘土中蛋白石特此及其成因意义.矿物学报, 2005, 25(1): 81-86.
    [19]吉利明,陈践发,赖旭龙,等.植物硅酸体研究在黄土古气候恢复中的应用.地质地球化学, 2002, 30(4): 57-82.
    [20]郑云飞,游修龄,徐建民,等.龙南遗址红烧土植物蛋白石分析.中国水稻科学, 1994, 8(1): 55-57.
    [21]吕厚远,贾继伟,王伟铭,等.“植硅体”的含义和禾本科植硅体的分类.微体古生物学报, 2002, 19(4): 389-396.
    [22] Zheng Y F, Dong J H, Matsui A, et al. Molecular genetic basis of determinine subspecies of ancient rice using the shape of phytoliths. Journal of Archaeological science, 2003, 30: 1215-1221.
    [23]张文绪,王莉莉. 7个稻种叶片硅酸体的研究.中国农业大学学报, 1998, 8(3): 21-25.
    [24]马雪泷,房江育. 8个野生稻种叶片硅体的研究.西北植物学报, 2007, 27(8): 1531-1536.
    [25] Fujiwara H. Research into the history of rice cultivation using plant opal analysis. In Pearsall D M, Piperno DR (eds), Current research in phytolith analysis:applications in archaeology and paleoecology. MASCA, University of Pennsylvania, PA. 1993, 147-158.
    [26] Pearsall D M, Piperno D R, Dinan H E, et al. Distingishing Rice(Oryza sativa Poaceae) from wild Oryza spicies through phytolith anlysis: results of preliminary research. Economic Botany, 1995, 49(2): 183-196.
    [27] Mecader J, Runge F, Vrydaghs L, et al. Phtolith from archaeological sites in the tropical forest of Ituri Democratic Republic of Congo. Quatenary research, 2000, 54: 102-112.
    [28]靳桂兰,燕生东,宇田津彻朗,等.山东胶州赵家庄遗址4000年前稻田的植硅体证据.科学通报, 2007, 52(18): 2162-2168.
    [29]曹志洪,杨林章,林先贵,等.绰墩遗址新石器时期水稻田、古水稻土剖面、植硅体和碳化稻形态特征的研究.土壤学报, 2007, 44(5): 838-847.
    [30]杨用钊,李福春,金章东,等.绰墩农业遗址中存在中全新世水稻土的新证据.第四纪研究, 2006, 26(5): 864-868.
    [31]张玉兰,宋建,贾丽.上海志丹苑元代水闸的发现及其古环境.上海地质, 2004, 1: 6-12.
    [32]郑云飞,刘斌,松井章,等.从南庄桥遗址的稻硅酸体看早期水稻的系统进化.浙江大学学报(农业与生命科学版), 2002, 28(3): 340-346.
    [33]陈报章,王向坤.水稻颖壳硅石的初步研究及其意义.中国水稻科学, 1996, 9(4): 242-245.
    [34]孙立新,才宏伟,王向坤.水稻同工酶基因多样性及随机组合现象的研究.遗传学报, 1996, 23(4): 276-285.
    [35] Zhao Z, Pearsall D M, Benfer A R, et al. Distingishing Rice(Oryza sativa Poaceae) from wild Oryza spicies through phytolith anlysis II: finalized method. Economic Botany, 1998, 52(2): 134-145.
    [36] Fahmy A G. Diversity of lobate phytoliths in grass leaves from the Sahel region, West Tropical Africa: Tribe Paniceae. Plant Systematics and Evolution, 2008, 270:1-28.
    [37]徐德克,李泉,吕厚远.棕榈科植硅体形态分析及环境意义.第四纪究, 2005, 25(6): 785-79.
    [38]李泉,徐德克,吕厚远.竹亚科植硅体形态学研究及其生态市意义.第四纪研究, 2005, 25(6): 778-784.
    [39]徐是雄,徐雪宾.稻的形态与解剖.北京,农业出版社, 1982.
    [40]张文绪,裴鑫德.水稻稃面双峰乳突的研究.作物学报, 1998, 24(6): 691-697.
    [41]张文绪.水稻颖花外稃表面双峰乳突扫描电镜观察.见王象坤,孙传清.中国栽培稻起源与演化研究专集.北京:中国农业大学出版社, 1996: 28-32.
    [42]张文绪,汤圣祥.稻属20个种外稃乳突的扫描电镜观察.作物学报, 1997, 3(3): 280-289.
    [43]张文绪,王荔军,张福锁,等.稻属和假稻属植物外稃表面乳突结构观察.中国水稻科学, 2002, 16(3): 277-280.
    [44]汤圣祥,张文绪.中国三种野生稻谷粒外稃结构的电镜观察.植物遗传资源学报, 2003, 4(2): 134-136.
    [45]祁仲夏,宋文芹,金刚,等.稻属基因组间相关性的AFLP分析.南开大学学报, 2001, 34(3): 74-80.
    [46] Passardi F, Longet D, Penel D, et al. The classⅢperoxidase multigenec family in rice and its evolution in land plant. Phtochemistry, 2004, 65: 1879-1893.
    [47] Senchez E, Motiel M. Ulstrastructural morphology description of the wild rice spicies Oryza latifolia (Poaceae) in Costa Rice. Research of Biological Tropic, 2003, 51(2): 345-354.
    [48] Loffily A, Vieira C R. Cork-warts on the leaf epidermis of four genera Celastraceae. Flora, 2010, doi:10.1016/j.flora.2009.12.014.
    [49] Ramos C, Fernandez D . Classification of leaf epidermis microphotographs using texture features. Ecological Informatics. Doi: 10.1016/j.ecoinf.2009.06.003.
    [50] Zoric L, Merkulov L, Lukovic J, et al. Leaf epidermis characteristics of TrifoliumL. species from Serbia and Montenegro. Flora, 2009, 204:198-209.
    [51] Klich M G. Leaf variations in Elaeagnus angustifolia related to environmental heterogeneity. Environmental and Experimental Botany, 2000, 44: 171-183.
    [52]张乃群,舒理慧,祝莉莉,等.中国稻属植物叶片亚显微结构比较研究.西北植物学报, 2005, 25(11): 2204-2208.
    [53]马永婷,包颖.稻属三种植物叶片下表皮形态比较.热带亚热带植物学报, 2009, 17(1): 39-37.
    [54]张志耕,卢宝荣,温洁.稻属叶表皮结构特征及其系统学意义.植物分类学报, 1998, 36(1): 8-18.
    [55]杨彬,戴伟民,强胜,等.杂草稻和栽培稻叶片下表皮结构特征的观察及聚类分析.中国水稻科学, 2009, 23(5): 495-502.
    [56]林秀霞,彭秋发,吕洪飞,等.山茶属油茶组和短茶组叶解剖特征及其分类学意义.植物分类学报, 2008, 46(2): 183-193.
    [57]石东里,申保总,张衍鹏.黄河三角洲大穗结缕草解剖结构的研究.中国野生植物资源, 2009, 28(3): 51-56.
    [58]马春英,王文金,赵玉新,等.乌拉尔甘草叶片解剖结构的研究.中国中药杂志, 209, 34(8): 1034-1041.
    [59] Velliers B J D, Wyk B F V, Tilney P M, et al. The taxonomic significance of leaf anatomic characters in Cussonia(Araliaceae). South Africa Journal of Batony, 2007, 73(2): 285-292.
    [60] Namaganda M, Krekling T, Lye K A. Leaf anatomical characteristics of Ugandan species of Festuca L.(Poaceae). South Africa Journal of Botany, 2009, 75: 52-59.
    [61] Ma H Y, Peng H, Li D Z. Taxonomic significance of leaf anatomy of Aniselytron (Poaceae) as an evindence to support generic validity against Calamagrostis L. Journal of Plant Research, 2005, 118: 401-414.
    [62] Xiao Y, Jie Z, Wang M, et al. Leaf and stem anatomical response to periodical waterlogging in simulated tidal floods in mangrow Avicennia marina seedlings.Aquatic Botany, 2009, 91:231-237.
    [63] Xiao Y, Wang W, Chen L. Stem anatomic variations in seedlings of the mangrove Bruguiera gymnorrhiza grown under periodical waterlgging. Flora(2010), doi:10.1016/j.flora.2009,12,004.
    [64]孙会中,薛贤,侯小改,等.山茱萸茎的解剖结构特征研究.中国农业通报. 2009, 25(19): 73-76.
    [65]唐亚.斜翼属叶和茎的解剖结构及其系统学意义.云南植物学研究, 1995, 17(4): 439-444.
    [66]胡云,燕玲,李红. 14种荒漠植物茎的解剖结构特征分析.干旱区资源与环境. 2006, 20(1): 202-208.
    [67]余亮,薛庆中,肖建富,等.不同倍性水稻植株茎解剖结构比较研究.浙江大学学报(农业与生命科学版), 2009, 35(5): 189-196.
    [68]张文绪.稻属植物21种颖花稃尖的比较研究.中国馆农业大学学报, 1996, 1(5): 53-58.
    [69] Edward F, Terrell P M, Peterson W P. Epidermal feature and spikelet micromorphology in Oryza and related genera (Poaceae Oryzeae). Washington, DC. Smithsonian Institution Press, 2001.
    [70] Harrison C C. Evidence for intramineral macromol containing protein from plant silica. Photochemistry, 1996, 41: 37-42.
    [71] Dayanandan P, Kaufman P B, Franklin C L. Detection of silica in plant. Americ Journal of Botany, 1983, 70(7): 1084-1983.
    [72]付洪兰.实用电子显微镜技术.北京,高等教育出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700