阿特拉津降解菌AG1、ADG1和SA1的分离鉴定及其降解特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污染环境的微生物修复具有其它修复方法不可比拟的优势,如何充分开发利用参与环境净化的微生物资源已成为一项重要研究课题。阿特拉津是国内外使用时间最长,使用量最大的除草剂之一。因其长时间大范围使用,造成大面积的土壤、地表水、地下水等环境的污染。本论文的研究目的是使用一种不同于常规富集分离培养的降解菌分离方法,分离阿特拉津污染土壤中的原位优势降解菌,并在国内外阿特拉津的微生物降解研究的基础上对这些降解菌的降解特性、降解基因到生物修复进行较为系统的研究。
     一、阿特拉津降解菌的分离与鉴定
     不经过富集培养,直接将长期受阿特拉津污染的土壤稀释涂布加有土壤浸出液和阿特拉津的平板,分别从三个采自不同地区的污染土壤S1、S2和S3中各分离了一株阿特拉津高效降解菌株AG1、ADG1和一个混合降解菌AH,通过反复的液体培养和划线分离从AH中分离到一株纯的降解菌SA1。AG1、ADG1和SA1均可快速有效地降解阿特拉津。16S rDNA核甘酸序列分析结合培养和生理生化特征,AG1与ADG1被鉴定为Arthrobacter spp.,SA1被鉴定为Pseudomonas sp.。
     二、降解菌生长特性和降解特性的研究
     AG1的最适碳源为麦芽糖、蔗糖和甘露醇,最适氮源为有机氮;最适碳氮比6/1(摩尔比);最适生长温度为25℃-30℃;最适生长pH值范围7-10;静息细胞在25℃-42℃时降解效果较好,降解率受pH值影响很小;能以西玛津、特丁津、莠灭净、西草净、扑草净为唯一氮源生长;AG1以阿特拉津为唯一碳氮源生长时,降解终产物为氰尿酸,降解4000mg/L的阿特拉津也不会产生反馈抑制现象。
     ADG1以葡萄糖、麦芽糖、蔗糖、淀粉、甘露醇、柠檬酸钠为碳源,有机氮、硝态氮、铵态氮和脲为氮源时生长都很好;最适碳氮比6/1(摩尔比);最适生长温度为25℃-37℃;在pH值4-10范围内生长都能很好地生长;静息细胞在25℃-42℃时降解效果较好,降解率受pH值影响很小;ADG1降解谱与AG1相同;ADG1以阿特拉津为唯一碳氮源生长时,降解终产物为氰尿酸。
     SA1最适碳源为葡萄糖、麦芽糖和柠檬酸钠,最适氮源为硝态氮和铵态氮;所测
Bioremediation has advantages other pollution remediation methods absent. It has been an important research item for us to exploit and utilize microbial resource to remove environmental pollutions. In recent years, a large amount of unexploited microbial resources were detected by culture-independent microbiological molecular technology, which give us a hint that there are also many pollutant-degrading microbial resources untouched now. Atrazine has been widely used for a long time in the world, which lead to the pollution of a large area of soil, ground water and underground water. In this dissertation we tried to isolate degrading bacteria by the way different from enrichment isolation usually employed, to isolate dominant in situ atrazine-degrading bacteria from polluted soil, and studied their characteristics, degrading genes and applied them to remove atrazine in simulated pollution soil on the base of others' research achievements.
    1. Isolation and identification of high efficient atrazine-degrading bacteria
    High efficient atrazine-degrading bacteria AG1, ADG1 and a consortium AH were isolated without enrichment by diluting and plating long time atrazine-contaminated soil samples(S1, S2, S3), which was collected from different area, directly onto plates containing soil extracts and atrazine. By repeated alternation of liquid cultivating and plate streaking for a long time, a pure atrazine-mineralizing bacterium strain SA1 was isolated from AH. AG1, ADG1 and SA1 all could degrade more than 500 mg ·L-1 of atrazine. Combined their 16S rDNA sequences analysis with physiobiochemical characteristics, AG1 and ADG1 were identified as Arthrobacter spp., and SA1 was Pseudomonas sp..
    2. Studies of growth and degradation characteristics
    The optimal carbon sources for AG1 were maltose, sucrose and mannitaol, and the optimal nitrogen source was organic nitrogen, and the most optimal C/N (mol atom) was 6/1. It grew well under conditions of 25℃-30℃ and pH7-10. Its resting cellsdegraded atrazine well at 25℃-42℃, and their degrading efficiency was not affected greatly by pH. AG1. Besides atrazine, AG1 could also grow on simazine, terbuthylazine, ametryn, simetryn and prometryn as sole nitrogen sources. AG1 could grow on atrazine as
引文
1.微生物研究法讨论会 编译.微生物学实验方法[M].石家庄:科学出版社,1982:58-63
    2. Amann R I, Ludwig W, Schleifer K2H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 1995,59 (1): 143~1691
    3. Rappe', M. S., and S. J. Giovannoni. The uncultured microbial majority. Annu. Rev. Microbiol. 2003.57:369-394.
    4. Felske, A., A. Wolterink, R. van Lis, W. M. de Vos, et al.. 1999. Searching for the predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol. Ecol. 30:137-145.
    5. Hugenholtz, P., B. M. Goebel, N. R. Pace. Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity [J].J. Bacteriol. 1998. 180:4765-4774.
    6. Huber H, Hohn M J, Rachel R et al. A new phylum of Archaea represcnted by a nanosized hyperthermophilic symbiont [J]. Nature, 2002, 417: 63-67
    7. Felske, A., and A. D. L. Akkermans. Prominent occurrence of ribosomes from an uncultured bacterium of the Verrucomicrobiales cluster in grassland soils. Lett. Appl. Microbiol. 1998. 26:219-223.
    8. Felske, A., W. M. de Vos, and A. D. L. Akkermans. 2000. Spatial distribution of 16S rRNA levels from uncultured acidobacteria in soil. Lett. Appl. Microbiol. 31:118-122.
    9. Oladele Ogunseitan. Microbial Diversity [M].Blackwell Publishing,2005
    10. Jizhong Zhou, Dorothea K. Thompson, Ying Xu et al. Microbial Functional Genomics[M]. A John Wiley & Sons, Inc., Publication, the United States of America, 2004,21-40
    11.高平平,赵立平.微生物群落结构探针杂交评价不同培养基从活性污泥分离优势凶群的能力[J].微生物学报,2003,43(2):264-269
    12. John Dunbar et al. Autoradiographic Method for Isolation of Diverse Microbial Species with Unique Catabolic Traits [J]. Appl. Environ. Microbiol., 1996, 62(6):4180-4185
    13. Tabacchioni S, chiarini L, et al. Bias caused by using different isolation media for assessing the genetic diversity of a natural microbial population [J]. Microbial Ecology, 2000, 40: 169-1761
    14. McCaig, A. E., S. J. Grayston, J. et al.. Impact of cultivation on characterisation of species composition of soil bacterial communities. FEMS Microbiol. Ecol. 2001.35:37-48.
    15. Allison E, McCaig A, Susan J, et al. Impact of cultivation on characterisation of species composition of soil bacteria communities. FEMS Microbiol Ecol, 2001, 35: 37~481
    16. John Dunbar, Scott White, Larry Forney. Genetic Diversity through the Looking Glass: effect of Enrichment Bias [J]. Appl. Environ. Microbiol., 1997, 63(4): 1326-1331
    17. Schoenborn, L., P. S. Yates, B. E. Grinton, P. Hugenholtz, and P. H. Janssen. Liquid serial dilution is inferior to solid media for isolation of cultures representing the phylum-level diversity of soil??bacteria[J]. Appl. Environ. Microbiol. 2004. 70: 4363-4366.
    18.焦瑞身.新世纪微生物学者的一项重要任务——未培养微生物的分离培养[J].生物工程学报.2004,20(5):641-645
    19. Shayne J. Joseph,Philip Hugenholtz, Parveen Sangwan et al.. Laboratory Cultivation of Widespread and Previously Uncultured Soil Bacteria[J]. Appl. Environ. Microbiol., Dec. 2003, p. 7210-7215
    20. T. Kaeberlein, K. Lewis, S. S. Epstein. Isolating "Uncultivable" Microorganisms in Pure Culture in a Simulated Natural Environment [J]. Science, 2002,296:1127-1129
    21. Kathryn E. R. Davis, Shayne J. Joseph, arid Peter H. Janssen. Effects of Growth Medium, Inoculum Size, and Incubation Time on Culturability and Isolation of Soil Bacteria [J]. Appli Environ Microbiol, 2005, 71(2): 826-834
    22. Zengler K, Toledo G, Rapp é Met al. Cultivating the uncultured [J]. Proc Natl Acad Sci USA, 2002,26:15681-15686
    23. Peter H. Janssen, Penelope S. Yates, Bronwyn E. Grinton et al. Improved Culturability of Soil Bacteria and Isolation in Pure Culture of Novel Members of the Divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia [J]. Appli Environ Microbiol, 2002, 68(5): 2391-2396
    24. Alke Bruns, Heribert Cypionka, and Jorg Overmann. Cyclic AMP and Acyl Homoserine Lactones Increase the Cultivation Efficiency of Heterotrophic Bacteria from the Central Baltic Sea[J]. Appli Environ Microbiol,2002, 68(8): 3978-3987
    25. Balestra, G. M., and I. J. Misaghi Increasing the efficiency of the plate count method for estimating bacterial diversity [J]. J. Microbiol. Methods. 1997, 30: 111-117.
    26. Salt, M., P. Hugenholtz, and P. H. Janssen. 2002. Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys [J]. Environ. Microbiol. 4: 654-666
    27.上海植物生理研究所植物激素室除草组 编译.除草剂的降解[M].上海:人民出版社,1974
    28.苏少泉等主编.中国农田杂草化学防治[M].北京:中国农业出版社,1996
    29.张玉聚等.均三氮苯类除草剂的药害与安全应用[J].农药,2003,42(4):42-44
    30.市场动态[J].河南化工,2005,22:53-56
    31.关注莠去津国际发展动向调整相应对策略[J].农药科学管理,2004,26(2):36-38
    32.谢文明等.莠去津在土壤中的残留动态和淋溶动态[J].农药学学报,2003,5(1):82-87
    33.乔雄梧等.阿特拉津在土壤中的降解途径及其对持留性的影响[J].农村生态环境,1995,11(4):5-8
    34.王英姿等.土壤中莠去津对几种农作物安全临界浓度的确定[J].沈阳农业大学学报,2002,33(1):33-34
    35.米长虹等.水田环境中阿特拉津允许浓度的研究[J].农业环境保护,1996,15(2):89-9936.袁会珠等.莠去津对冬小麦生长的影响[J].植物保护,1995,21(3):48-49
    37.李萃义等.洋河下游农灌区作物受灾与水质污染的关系[J]中国环境监测,1996,12(4):49-51
    38. Goodrich, J. A., B. W. Lykins, R. M. Clark. Drinking water from agriculturally contaminated ground water [J]. J. Environ. Qual. 1991.20: 707-717.
    39. Buster H R. Atrazine and other s-triazine herbicides in lakes and rains in Switzerland [J]. Environ Sci & Technol, 1990, 24: 1049~1058.
    40. Beltuck D A, B L S. Groundwater contamination by atrazine and its metabolites [J]. ACS Syrup Set, 1991, 459: 254~273.
    41. Derek W Gammon et al. A risk assessment of atrazine use in California: human health and ecological aspects [J]. Pest Manag Sci, 2005, 61: 331-355
    42. Sintein B. Evaluating the environmental fate of atrazine in France. Chemosphere, 1996, 32:2441-2456
    43.任晋等.官厅水库水中阿特拉津残留的分析及污染来源[J].环境科学,2002,23(1):126-128
    44.任晋等.阿特拉津及其降解产物对张家口地区引用水资源的影响[J].科学通报,2002,47(10):758-762
    45.任晋等.官厅水库水中莠去津及其降解产物残留的分析[J].分析试验室,2004,23(12):17-20
    46. Storrs S. I., Kiesecker J. M.. Survivorship patterns of larval amphibians to low concentration of atrazine [J]. Environ Health Perspect,2004,112(10): 1054-1057
    47.刘爱菊等.除草剂阿特拉津的环境毒理研究进展[J].土壤与环境,2002,11(4):405-408
    48.周鸿等.水中内分泌干扰物在我国的研究进展[J].中国给水排水,2002,18(9):26-28
    49.欧盟规定莠去津和西玛津最后使用期限[J].农药科学管理,2004,26(7):39
    50. Cook A M, Beilstein P, Brossenbacher H, et al. Ring cleavage and degradative pathway of cyanuric acid in bacteria [J]. Biochem J, 1985, 231: 25~30.
    51. Karns J S. Gene sequence and properties of an s-trianzine ring-cleavage enzyme from Pseudomonas sp. strain NRRLB-12227 [J]. Appl Environ Microbiol, 1999, 65: 3512~3517.
    52. Behki R M, Khan S U. Degradation of atrazine by Pseudomonas: N-Dealkylation and dehalogenation of atrazine and its metabolites. J Agric Food Chem, 1986, 34: 746~749.
    53. Cook, A M, Hurter R. Ring dechlorination of deethylsimazine by hydrolase from Rhodococcus corallinus [J]. FEMS Microbiol Lett, 1986, 34: 335~338.
    54. Mandelbaum R T, Allan D L, Wackett L P. Isolation and characterization of a Pseudomonas. sp. that mineralizes the s-triazine herbicide atrazine [J]. Appl Environ Microbio, 1995, 61: 1451~1457.
    55. Yanze-Kontchou C, Gschwind N. Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain [J]. Appl Environ Microbiol, 1994, 60: 4297~4302.
    56. Topp E, Zhu H, Nour S M, Houot S, et al. Characterization of an atrazine-degrading Pseudaminobacter sp. isolated from Canadian and French agricultural soils [J]. Appl Environ??Microbiol, 2000, 66: 2773-2782.
    57. Struthers J K, Jayachandran K , Moorman T B . Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil [J]. Appl Environ Microbiol, 1998, 64: 3368-3375.
    58. Pooja Singh et al. Isolation of a member of Acinetobacter species involved in atrazine degradation[J]. Biochemical and Biophysical Research Communications, 2004, 317: 697-702
    59. Topp E et al. Characterization of s-triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils [J]. Appl Environ Microbiol, 2000, 66: 3134-3141.
    60. Rousseaux S , Hartmann A , Soulas G . Isolation and characterization of new gram-negative and gram-positive atrazine degrading bacteria from different French soils [J]. FEMS Microbiol Ecol , 2001, 36: 211-222 .
    61. Corinne Bouquard et al. Dechlorination of Atrazine by a Rhizobium sp. Isolate [J]. Appl Environ Microbiol, 1997, 63(3): 862-866
    62. Shao Z Q, Behki R . Cloning of the genes for degradation of the herbicides EPTC (s-ethyl dipropylthiocarbamate) and atrazine from Rhodococcus sp. strain TE1 [J]. Appl Environ Microbiol, 1995,61:2061-2065.
    63. Strong L C, Rosendahl C , Johnson G , et al. Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds[J]. Appl Environ Microbial, 2002, 68: 5973-5980.
    64. B. Cai, Y. Han, B. Liu et al. Isolation and Characterization of an atrazine-degrading bacterium from industrial wastewater in china
    65. 胡江等.阿特拉津降解菌BTAH1的分离与鉴定[J].中国环境科学, 2004,24(6): 738-742
    66. Jackie et al. Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil New Zealand [J]. FEMS Microbiology Ecology, 2005, 52 :279-286
    67. Nagy I, Compernolle F , Ghys K J , et al. A single cytochrome P-450 system is involved in degradation of the herbicide EPTC (s-ethyl dipropylthiocarbamate) and atrazine by Rhodococcus sp. strain NI86/21 [J]. Appl Environ Microbial, 1995, 61: 2056-2060.
    68. Mulbry W W, Zhu H , Nour SM, et al. The triazine hydrolase gene trzN from Nocardioides sp. strain C190: Cloing and construction of gene-specific primers [J]. FEMS Microbiology Letters,2002, 206: 75-79.
    69. Eaton R W, Karns J S . Cloning and analysis of s-triazine catabolic genes from Pseudomonas sp. strain NRRLB-12227 [J]. J Bacteriol, 1991, 173: 1363-1366.
    70. Behki R M, Topp E , Dick E , et al. Metabolism of the herbicide atrazine by Rhodococcus strains [J]. Appl Environ Microbiol, 1993, 59: 1955-1959.
    71. Radosevich M, Traina S J , Hao Y ,et al. Degradation and mineralization of atrazine by a soil bacterial isolate [J]. Appl Environ Microbiol, 1995, 61: 297-302.
    72. Daniel Smith, Sam Alvey, David E. Crowley. Cooperative catabolic pathways within an atrazine-??degrading enrichment culture isolated from soil [J]. FEMS Microbiology Ecology, 2005, In Press
    73. Ernst C, Rehm HJ. Development of a continuous system for the degradation of a cyanuric acid by absorbed Pseudomonas sp. NRRL B-12228. Appl Microbiol Biotechnol. 1995 Apr;43(1): 150-5.
    74. Shao Z Q, Seffens W, Mulbry W, et al. Cloning and expression of the s-triazine hydrolase gene (trzA) from Rhodococcus corallimus and development of Rhodococcus recombinant strains capable of dealkylating and dechlorinating the herbicide atrazine [J]. J Bacteriol, 1995, 177: 5748~5755.
    75. Masaphy S, Levanon D, Vaya J, et al. Isolation and characterization of a novel atrazine metabolite produced by the fungus Pleurotus pulmonarius, 2-chloro-4-ethylamino-6-(1- hydroxyisopropyisopropyl) amino-1,3,5-triazine [J]. Appl Environ Microbiol, 1993, 59: 4342~4346
    76. Mougin C, Laugero C, Asther M, Dubroca J, et al. Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium [J]. Appl Environ Microbiol, 1994, 60: 705~708
    77.叶常明,王杏君,弓爱君等.阿特拉津在土壤中的生物降解研究.环境化学[J],2000,19(4):300~305
    78. Wackett L P, Sadowsky M J, Martinez B, et al. Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies [J]. Appl Microbiol Biotechnol, 2002, 58: 39~45.
    79. http://umbbd.ahc.umn.edu
    80. WW Mulbry. Purification and Characterization of an Inducible s-Triazine Hydrolase from Rhodococcus corallinus NRRL B-15444R [J]. Appl. Environ. Microbiol., 1994, 60(2): 613-618
    81. Eaton R W, Karns J S. Cloning and comparison of the DNA encoding ammelide aminohydrolase and cyanuric acid amidhydrolase from three s-triazine-degrading bacterial strains [J]. J Bacterial ,1991, 173: 1363~1366.
    82. Jennifer L. Seffernick, L. P. Wackett. Rapid Evolution of Bacterial Catabolic Enzymes: A Case Study with atrazine Chlorohydrolase [J]. Biochemistry, 2001,40(43): 12747-12752
    83. Clay S A, Koskinen W C . Adsorption and desorption of atrazine, hydroxyatrazine, and Sglutathione atrazine on two soils [J]. Weed Sci, 1990, 38: 262-266.
    84. de Souza M L, Wackett L P, Bound-Mills K L, et al. Cloning, Characterization, and expressiong of a gene region from Pseudomonas sp. strain ADP involved in the dechlorination of atrazine [J]. Appl Environ Microbial, 1995, 61: 3373~3378.
    85. de Souza M, Sadowsky M J, Wackett L P. Atrazine chlorohydrolase from Pseudomonas sp. strain ADP: gene sequence, enzyme purification, and protein characterization [J]. J Bacteriol, 1996, 178: 4894~4900.86. Boundy-Mills K L, de Souza M L, Mandelbaum R T, et al. The atzB gene of Pseudomonas sp. strain ADP encodes the second enzyme of a novel atrazine degradation pathway [J]. Appl Environ Microbiol, 1997, 63: 916~923.87. Sadowsky M J, Tong Z , de Souza M , et al. AtzC is a new member of the amidohydrolase protein superfamily and is homologous to other atrazine-metabolizing enzymes [J]. J Bacteriol, 1998, 180: 152-158.
    88. Shapir N, Osborne J P , Johnson G , et al. Purification, substate range, and metal center of AtzC: the N-isopropylammelide aminohydrolase involved in bacterial atrazine metabolism [J]. J Bateriol, 2002, 184: 5376-5384.
    89. Martinez B et al. Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from pseudomonas sp. strain ADP [J]. J Bacteriol, 2001, 183: 5684-5697.
    90. Seffernick J L, McTavish H , Osborne J P , et al. Atrazine chlorehydrolase from Pseudomonas sp. strain ADP is a metalloenzyme [J]. Biochemistry, 2002, 41: 14430-14437.
    91. Sajjaphan K, Shapir N , Wackett L P , et al. Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli [J]. Appl Environ Microbiol, 2004, 70: 4402-4407.
    92. S. Piutti a;l, E. Semon b, D. Landry Isolation and characterisation of Nocardioides sp. SP12, an atrazine-degrading bacterial strain possessing the gene trzN from bulk- and maize rhizosphere soil [J]FEMS MicrobiologyLetters, 2003, 221 : 111-117
    93. Allan G E , Freepons D E , Crews G M . Fertilizer compositions, processes of making them, and processes of using them. 1989, US patent 4,832,728.
    94. de Souza M L , Wackett L P , Sadowsky M J . The atzABC genes encoding atrazine catabolism are located on a self-transmissible plasmid in Pseudomonas sp. strain ADP [J]. Appl Environ Microbio , 1998,64:2323-2326.
    95. Isaac Fruchey et al. On the Origins of Cyanuric Acid Hydrolase: Purification, Substrates, and Prevalence of AtzD from Pseudomonas sp. Strain ADP[J]. Appl Environ Microbiol , 2003, 69(6): 3653-3657
    96. Nir Shapir et al. Substrate Specificity and Colorimetric Assay for Recombinant TrzN Derived from Arthrobacter aurescens TC1 [J]. Appl Environ Microbiol, 2005, 71(5) 2214-2220
    97. Jennifer L. Seffernick et al. Melamine Deaminase and Atrazine Chlorohydrolase: 98 Percent Identical but Functionally Different[J]. J& B, 2001, 183(8): 2405-2410
    98. Eva M Top, Dirk Springael. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds [J]. Current Opinion,2003, 14: 262-269
    99. Dietmar H Pieper V. AP M. dos Santos, Peter N Golyshin. Genomic and mechanistic insights into the biodegradation of organic pollutants[J]Current Opinion in Biotechnology,2004,15: 215-224
    100. Rousseaux S , Soulas G , Hartmann A . Plasmid localization of atrazine-degrading genes in newly described Chelatobacter and Arthrobacter strains [J]. FEMS Microbiol Ecol, 2002, 41: 69-75.
    101. Jizhong Zhou, Dorothea K. Thompson. Ying Xu et al. Microbial Functional Genomics[M]. A John Wiley & Sons, Inc., Publication, the United States of America, 2004102. de Souza M L, Seffernick J , Martinez B, et al. The atrazine catabolism genes atzABC are widespread and highly conserved [J]. J Bacteriol, 1998, 180: 1951~1954.
    103. Vicente Garcy a-Gonza'lez et al.. Nitrogen Control of Atrazine Utilization in Pseudomonas sp. Strain [J]. Appl Environ Microbiol, 2003, 69(12): 6987-6993
    104. Ellen B. Ostrofsky et al. Effect of cyanuric acid amendment on atrazine mineralization in surface soils and detection of the s-triazine ring-cleavage gene trzD [J]. Soil Biolo. & Biochem., 2001, 33: 1539-1545
    105. Entry J A. Influence of nitrogen on atrazine and 2,4 dichlorophenoxyacetic acid mineralization in blackwater and redwater forested wetland soils [J]. Biol Fertil Soils, 1999, 29: 348~353.
    106. Gebendinger et al. Inhibition of atrazine degradation by cyanazine and exogenous nitrogen in bacterial isolate M91-3 [J]. Appl Microbiol B iotechnol, 1999, 51(3): 375-81
    107. Marion Devers et al. Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil [J]. J Micro. Methods, 2004, 56: 3-15
    108. Vicente Garcy'a-Gonza'lez et al. Regulation of the Pseudomonas sp. Strain ADP Cyanuric Acid Degradation Operon [J]. J&B, 2005, 187(1): 155-167
    109. Moorman T B, Cowan J K, Arthur E L, et al. Organic amendments to enhance herbicide biodegradation in contaminated soils [J]. Biol Fertil Soils, 2001, 33: 541~545
    110. Armstrong De et al. Adsorption catalyzed chemical hydrolysis of atrazine [J]. Environ Sci Technol, 1968, 2: 683-689
    111. Rousseaux S, Hartmann A, Lagacherie B, et al. Inoculation of an atrazine-degrading strain, Chelatobacter heintzii Citl, in four different soils: effects of different inoculum densities [J]. Chemosphere, 2003, 51: 569~577.
    112. Topp E. A comparison of the three atrazine-degrading bacteria for soil bioremediation [J]. Biol Fertil Soils, 2001, 33: 529~534.
    113. Wenk M, Baumgartner T, Dobovsek J, et al. Rapid atrazine mineralisation in soil slurry and moist soil by inoculation of an atrazine-degrading Pseudomonas sp. strain [J]. Appl Microbiol Biotechnol, 1998, 49: 624~630.
    114. Newcombe D A, Crowtey D E. Bioremediation of atrazine-contaminated soil by repeated applications of atrazine-degradaing bacteria [J]. Appl Microbiol Biotechnol, 1999, 51: 877~882.
    115.周启星,宋玉芳等著.污染土壤修复原理与方法[M].北京:科学出版社,2004
    116.李顺鹏主编,《环境生物学》,北京:中国农业出版社,2002
    117.李法云,臧树良等.污染土壤生物修复技术研究[J].生态学杂志,2003,22(1):35~39
    118.孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001
    119.张从,夏立江.污染土壤生物修复技术[M].北京:环境科学出版社,2001
    120. Hicks B. N et al. Bioremediation: A natural solution. Pollution Engineering, 1993,25(2):30-33
    121. Torma A. E. The basics of bioremediation, pollution engineering, 1994,26(6):46-47122. Pritchard P. H., Mueller J. G., Rogers J. C,. et al. Oil spill bioremediation: experiences, lessons and results from the Exxon Valdex oil spill in Alaska. Biodegradation. 1992,3(3): 315-335
    123.李培军等.不同类型原油污染土壤生物修复技术研究[J].应用生态学报,2002,13(11):1455-1458
    124. MORGAN P. Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds[J]. FEMS Microbiology Reviews, 1989, 63: 277-300.
    125.刘期松等. Research on microbial ecology andits decomposition of petroleum in petroleum wastewater irrigation area[J]. 环境科学, 1981, 2 (3): 1-6
    126. Miethling, R., and U. Karlson. 1996, Accelerated mineralization of pentachlorophenol in soil upon inoculation with Mycobacterium chlorophenolicun PCP-1 and Sphingomonas chlorophenolica RA2. Appl. Environ. Microbiol. 36:254-258
    127. PETER R, KENNETH N T. Degradation of chlorobenzenes at nanomolar concentrations by Burkholderia sp. strain PS14 in liquid cultures and in soil[J]. Appl Environ Microbiol, 1999, 65(9):
    128.甘平等.氯苯类化合物的生物降解[J]..环境污染治理技术与设备,2000,1(4):1-12
    129. Schack-Kirchner, H., Hildebrand, E.E.. Changes in soil structure and aeration due to liming and acid irrigation [J]. Plant and Soil, 1998, 199: 167~176.
    130. Fredrickson J. K., Bolton H., Brockmon F. J., In situ and on-site bioremediation. Environ. Sci. Technol. 1993,27(9): 1711-1716
    131. Elizabeth Ward Liebeg et al.The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH contaminated soil [J]. International Biodeterioration & Biodegradation, 1999(44): 55~64
    132.张甲耀等 译,Raina M.Maier,Ian L Pepper,Charles P.Gerba编著.环境微生物学[M].北京:科学出版社,2004:485-531
    133.安淼等.土壤污染生物修复的影响因素[J].土壤与环境,2002,11(4):397-400
    134.石利利 等.DLL-1 菌在土壤中对甲基对硫磷农药的降解性能与影响因素研究[J].环境科学学报,2001,21(5):597-601
    135.罗启仕等.生物修复中有机污染物的生物可利用性[J].生态环境2004,13(1):85-87
    136. JUHASZ A L, MEGHARAJ M, NAIDU R. Bioavailability: the major challenge (constraint) to bioremediation of organically contaminated soils [A]. In: WISE D L, et al., eds. Bioremediatiom of Contaminated Soils[C]. New York: Marcel Dekker Inc, 2000: 217-241.
    137. PIGNATELLO J J, XING B. Mechanisms of slow sorption of organic chemicals to natural particles [J]. Environ Sci Technol, 1996, 30: 1-11.
    138.宋玉等.芳污染土壤生物修复中存在问题的探讨[J].环境科学,2004,25(2):129-133
    139.陈怀满等.关于我国土壤环境保护研究中一些值得关注的问题[J].农业环境科学学报,2004,23(6):1244-1245
    140.林敏等.农业重组微生物生物安全研究进展[J].中国计量学院学报,2002,1(13):194-1981. Mandelbaum RT et. al. Isolation and Characterization of a Pseudomonas sp. That Mineralizes the s- Triazine Herbicide Atrazine[J]. Appl. Envir. Microbiol, 1995, 61: 1451-1457
    2. Lisa C. Strong, Charlotte Rosendahl et al. Arthrobacter aurescens TC1 Metabolizes Diverse s- Triazine Ring Compounds[J]. Appl Environ Microbiol, 2002,68: 5973-5980
    3. Dunbar, J., S. White, and L. Forney. Genetic diversity through the looking glass: effect of enrichment bias [J]. 1997. Appl. Environ. Microbiol. 63: 1326-1331.
    4.李良章,孙佩石.土壤污染生物修复技术研究进展[J].生态科学,2003,22(2):189-192
    5.国家环境保护总局《水和废水废水监测分析方法》编委会编.水和废水废水监测分析方法[M].中国环境科学出版社 (第四版).北京:2002
    6.东秀珠,蔡妙英等.常见细菌系统鉴定手册[M].科学出版社.2001:267-273
    7. Miller, S.A., D. Dykes and H.F.Polesky. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988.16: 12-15.
    8. Sambrook J, Fritsch E F, Maniatis T, Molecular cloning. A Laboratory Manual, 2nd. New York: Cold Spring Harbor Laboratory. 1989.
    9. Wilson, K. H.. et. al. Green. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J. Clin. Microbiol. 1990.28: 1942~1946.
    10. Weissburg W G, Barns S M, et al. 16 S robosomal DNA amplification for phylogenetic study [J]. J Bacteriol, 1991. 173: 697-703
    11.陈文新.土壤和环境微生物学[M].北京:北京农业大学出版社.1989.24-251. Mandelbaum, R. T., L. P. Wackett, and D. L. Allan. Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures [J]. Appl. Environ. Microbiol., 1993, 59: 1695-1701.
    2. Mandelbaum RT et al.. Isolation and Characterization of a Pseudomonas sp. That Mineralizes the s- Triazine Herbicide Atrazine [J]. Appl. Envir. Microbiol, 1995, 61: 1451-1457
    3. MERVYN L. DE SOUZ et al. Molecular Basis of a Bacterial Consortium: Interspecies Catabolism of Atrazine [J]. Appl. Envir. Microbiol, 1998, 64(1): 178-184
    4. Mandelbaum, R. T., L. P. Wackett, and D. L. Allan. Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures [J]. Appl. Environ.Microbiol. 1993.59: 1695-1701.
    5. Daniel Smith, Sam Alvey, David E. Crowley. Cooperative catabolic pathways within an atrazinedegrading enrichment culture isolated from soil [J]. FEMS Microbiology Ecology, 2005, In Press
    6. Rousseaux S, Soulas G, Hartmann A. Plasmid localization of atrazine-degrading genes in newly described Chelatobacter and Arthrobacter strains [J]. FEMS Microbiol Ecol, 2002, 41: 69~75.1. Jennifer L. Seffernick et al. Substrate Specificity of Atrazine Chlorohydrolase and Atrazine Catabolizing Bacteria [J]. Appl Environ Microbiol, 2000, 66(10): 4247-4252
    2. Strong L C, Rosendahl C, Johnson G, et al. Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds[J]. Appl Environ Microbial, 2002, 68: 5973~5980.
    3. Topp E, Mulbry W M , Zhu H, et al. Characterization of s-triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils [J]. Appl Environ Microbiol, 2000, 66: 3134~3141.
    4. Vicente Garcy, a-Gonza'lez et al. Regulation of the Pseudomonas sp. Strain ADP Cyanuric Acid Degradation Operon[J]. J&B, 2005, 187(1): 155-1671. Martinez B, Tomkins J, Wackett L P, et al. Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from pseudomonas sp. strain ADP [J]. J Bacteriol, 2001, 183: 5684~5697.
    2. de Souza M L, Wackett L P, Sadowsky M J. The atzABC genes encoding atrazine catabolism are located on a self-transmissible plasmid in Pseudomonas sp. strain ADP [J]. Appl Environ Microbio, 1998, 64: 2323~2326.
    3. de Souza M L, Seffernick J, Martinez B, et al. The atrazine catabolism genes atzABC are widespread and highly conserved [J]. J Bacteriol, 1998, 180: 1951~1954.
    4. Isaac Fruchey et al. On the Origins of Cyanuric Acid Hydrolase: Purification, Substrates, and Prevalence of AtzD from Pseudomonas sp. Strain ADP[J]. Appl Environ Microbiol, 2003, 69(6): 3653-3657
    5. Mulbry W W, Zhu H, Nour S M, et al. The triazine hydrolase gene trzN from Nocardioides sp. strain C190: Cloing and construction of gene-specific primers [J]. FEMS Microbiology Letters,2002, 206: 75-79
    6. Topp E, Mulbry W M , Zhu H, et al. Characterization of s-triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils [J]. Appl Environ Microbiol, 2000, 66: 3134~3141.
    7. Sajjaphan K, Shapir N, Wackett L P, et al. Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli [J]. Appl Environ Microbiol, 2004, 70: 4402~4407.
    8. Strong L C, Rosendahl C, Johnson G, et al. Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds[J]. Appl Environ Microbial, 2002, 68: 5973~5980.
    9. Jizhong Zhou, Dorothea K. Thompson, Ying Xu et al. Microbial Functional Genomics[M]. A John Wiley & Sons, Inc., Publication, the United States of America, 2004
    10. Jaseph Sambrook, David W. Russell. Molecular Cloning: A Laboratory Manual (3rd)[M]. USA: Cold Spring Harbor Laboratory Press. 2002
    11.张瑞福,曹慧,崔中利等.土壤微生物总DNA 的提取和纯化[J].微生物学报,2003,43(2):276-282
    12. Rousseaux S, Soulas G, Hartmann A. Plasmid localization of atrazine-degrading genes in newly described Chelatobacter and Arthrobacter strains [J]. FEMS Microbiol Ecol, 2002, 41: 69~75.
    13.国家环境保护总局《水和废水废水监测分析方法》编委会编.水和废水废水监测分析方法[M].中国环境科学出版社 (第四版).北京:20021.乔雄梧,马利平.阿特拉津在土壤中的降解途径及其对持留性的影响[J].农村生态环境,1995,11(4):5-8
    2.李萃义,焦晓娟.洋河下游农灌区农作物受灾与水质污染的关系[J].中国环境监测,1996,12(4):49~53
    3.Storrs S. I., Kiesecker J. M.. Survivorship patterns of larval amphibians to low concentration of atrazine[J].Environ Health Perspect, 2004,112(10):1054-1057
    4. 蔡宝立,黄今勇,石建党等.阿特拉津降解菌株的分离和鉴定[J].微生物学通报,2001,28(2):22~26
    5. Mandelbaum R.T., Allan D.L., Wackett L P. Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine [J]. Appt. Envir. Microbiol, 1995, 61: 1451-1457
    6. Sajiaphan Kannika, Wackett L. P., Shapir Nir, et al. Arthrobacter aurescens TC1 atrazine catabolism genes trzN atzB and atzC are linked on a 160-kilobase region and are functional in Escherichia coli [J]. Appl Environ Microbiol, 2004, 70(7): 4402-4407
    7. Clotaire Yanze Kontchou, Nikolaus Gschwind. Mineralization of the herbicide atrazine in soil inoculated with a Pseudomonas strain [J]. J. Agic. Food Chem, 1995,43(8): 2291~2294
    8. Zhao S, Arthur EL, Coats JR. Influence of microbial inoculation (Pseudomonas sp. strain ADP), the enzyme atrazine chlorohydrolase, and vegetation on the degradation of atrazine and metolachlor in soil[J]. J. Agric Food Chem, 2003, 51(10): 3043-3048.
    9.王松文,吕宪禹,江磊等.假单胞菌AD 1 菌株对阿特拉津污染土壤的生物修复[J].南开大学学报(自然科学),2001,34(3):111-112
    10. Jeong-Hun Park, Yucheng Feng, Pingsheng Ji et al. Assessment of Bioavailability of Soil-Sorbed Atrazine[J]. Appl Environ Microbiol, 2003, 69(6): 3288~3298
    11.陈文新.土壤和环境微生物学[M].北京:北京农业大学出版社,1989:24-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700