鄱阳湖形态特征及其对流域水沙变化响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄱阳湖是长江干流重要的调蓄性湖泊,在我国长江流域中发挥着巨大的调蓄洪水和保护生物多样性等特殊生态功能。鄱阳湖湿地是我国七个国际重要湿地之一,也是世界自然基金会划定的全球重要生态区之一,在全球生态系统中起着举足轻重的作用,鄱阳湖研究对于维系区域、国家乃至世界生态安全具有重大意义。
     洞庭湖和鄱阳湖为长江中下游的两个仅有的大型通江湖泊,洞庭湖自上世纪50年代以来,湖泊萎缩速率大大增加,鄱阳湖与洞庭湖相比,虽然面积、容积萎缩速率小于洞庭湖,但仍具有明显的缩小趋势。因此,本文在分析近50年来鄱阳湖湖泊形态变迁,以及鄱阳湖流域土地利用、降水蒸发及径流泥沙变化趋势及持续性特征的基础上,通过建立径流模型、输沙模型以及湖泊形态对水沙变化响应的模型,对未来土地利用和降水蒸发条件发生变化时,鄱阳湖面积和容积做出的响应进行定量分析和预测,以期弥补对鄱阳湖形态特征变化研究的不足,为改善鄱阳湖面积缩小、湖容锐减的现状,维持鄱阳湖对长江洪水的调蓄能力,以及协调、处理流域河湖关系与江湖关系提供一定的科学依据。
     对近50年来鄱阳湖面积、容积以及低水位下岸线形态特征变化的分析表明,鄱阳湖在高程14m以上面积减小较为明显,16m以上湖容减小较为明显,岸线长度缩短,几何形态趋于简单,1990s之后湖泊面积容积基本处于稳定状态,但岸线形态变化特征更为明显;湖区部分对鄱阳湖形态的影响因素主要包括水土流失和围垦两个方面,除湖区外的鄱阳湖流域对其影响则主要通过人类活动和自然条件直接影响入湖径流量和泥沙量,从而间接地使鄱阳湖形态发生变化,降水、蒸发的变化是影响径流量的主要因子,降水、径流和土地利用方式则对输沙量的变化起主导作用。
     以流域蒸发、降水、土地利用等资料数据为基础,分别采用C++环境下基于不同下垫面产汇流原理的模型以及由小波支持向量机和自适应正态变异粒子群算法组成的模型对鄱阳湖流域进入6个水文控制站的径流量、输沙量以及鄱阳湖形态对流域水沙变化的响应进行模拟,结果表明模拟后的日流量过程变化趋势与实测值基本一致,年径流量模拟的精度相对较高,模拟误差的主要来源为原始数据本身的误差以及对复杂的自然条件变化的忽略,输沙量及形态响应的模拟结果相对误差范围为±1%,小波支持向量机和自适应正态变异粒子群算法相结合的模型的拟合能力明显强于传统的BP神经网络和多元线性回归两种方法。
     从鄱阳湖流域土地利用转移矩阵来看,从1990-2000年,流域内各种土地利用类型之间转换频繁,大面积、大比例的土地利用类型转换主要发生在草地、水田、林地、旱地和建设用地5种类型之间,水体总体面积变化最小,建设用地总体面积变化最为明显,未利用地主要向林地、旱地和建设用地转换,其中向建设用地的转换面积最大;在平水、枯水两种气候条件下,未利用地向这3种土地利用类型转换均可能导致鄱阳湖的面积和容积减小,但转化为林地时变化幅度最小,转化为耕地和建设用地均使湖泊大面积萎缩,且后者引起的萎缩更为明显。
     采用MK非参数检验法与R/S法分别对近50年来鄱阳湖流域年、主汛期降水量和年蒸发量的变化趋势及持续性特征进行分析,结果表明各站点年降水量均呈上升趋势,大部分站点在3年、5年、10年3种时间尺度上表现为持续性特征;各站点主汛期降雨量变化趋势不一致,在3种时间尺度上均表现为持续性特征;各站点年蒸发量呈明显的下降趋势,3种时间尺度上均表现为持续性特征,但不同时间尺度的持续性强度变化较小。根据近50年来降水量和蒸发量的极端变化确定各时间序列不同的持续性/反持续性等级所对应的具体变化量,将变化后的降水、蒸发数据输入以上3个模型,结果表明在未来3年和10年两个时间尺度上,湖口站水位21m时对应的湖泊面积和容积均可能有所扩大,在2009年的土地利用背景下,未来3年面积的变化范围可能为3441.69-4330.22km2,容积的变化范围可能为253.37-280.69×108m3,未来10年面积的变化范围可能为3974.37-4450.07 km2,容积的变化范围可能为262.17~290.71×108m3。
     本文研究结果表明土地利用变化对湖泊形态的影响主要体现在对输沙量的影响,降水蒸发条件的变化对湖泊形态产生的影响主要体现在径流量方面,且未来自然条件的变化可能不会造成湖泊萎缩,土地利用方式的变化可能成为导致湖泊萎缩的主要原因。
Poyang Lake is one of the important lakes in the mainstream of Yangtze River. It plays a large part in flood storage, biodiversity protection of Yangtze River basin and so on. Poyang Lake wetland is one of the 7 wetlands of international importance in China, and one of the global important ecotopes demarcated by World Wildlife Fund as well. Poyang Lake is an essential part of global ecosystem. Therefore, study on Poyang Lake is significant to guarantee the regional, national and even international ecological security.
     Dongting and Poyang Lake are the only two lakes still linked with the Yangtze River in the middle and lower reaches, and are playing a very important part in the regional flood storage. The area of Dongting Lake has decreased rapidly since 1950s. Compared with Dongting Lake, Poyang Lake is shrinking slowly but still getting small obviously. Therefore, this paper simulates the runoff, sediment load and the response of lake area and volume to them, based on the morphological characteristics change of Poyang Lake, the trend and persistence/antipersistence of land use, precipitation and vaporation of Poyang Lake basin in recent 50 years. Then the lake area and volume in the future are predicted quantificationally, when land use and climate condition changes. All these works could provide scientific references for improving the decrease of lake area and volume, maintaining its flood storage capacity, coordinating and handling the relationship among the five rivers, Yangtze River and Poyang Lake. They also could make up the deficiency of the research on morphological characteristics of Poyang Lake.
     The area and volume are decreasing gradually in recent 50 years, especially the area above 14m and volume above 16m reduce obviously. The shoreline has become shorter and simpler. After 1990s, the change of area and volume gets stable, while the shoreline changes more significantly. The impact factors on lake morphology of Poyang Lake region mainly include soil erosion and inning. The other part of Poyang Lake basin changes the lake form through the direct influence of natural conditions and human activities on runoff and sediment load getting into the lake. Precipitation and vaporation are the primary factors affecting the runoff, and rainfall, runoff and land use dominate the sediment load changes.
     On the basis of vaporation, precipitation and land use in Poyang Lake basin, runoff output-and-affluence theory-based C++ program, wavelet v-support vector machines and adaptive and normal mutation particle swarm optimization are used to simulate the runoff, sediment load getting into the 6 hydrological stations and the response of lake form to their change. It shows that the daily flow simulated is consistent with the observed values. The annual runoff simulation is high in precision and the error principally comes from the original data itself and the ignorance of complicated natural conditions. The relative error ranges of sediment load and form response simulation are±1%. Model composed of wavelet v-support vector machines and adaptive and normal mutation particle swarm optimization fits much better than BP neural network and multiple linear regression.
     Land use transition matrix of Poyang Lake basin shows that cover areas of different land use types convert frequently from 1990 to 2000. The most obvious transition occurs among grassland, paddy, forest, irrigated field and built-up land. The area change amplitude of water is smallest and that of built-up land is greatest. Unused land mainly coverts to forest, irrigated field and built-up land and the area converted to built-up land is largest. The transition of unused land to all the three types will result in decrease of lake area and volume either in dry year or normal year. When it converts into forest, the area and volume change slightly; when it converts into irrigated field and built-up land, especially the latter, the lake area and volume decrease significantly.
     Mann-Kendall test and R/S method are used to analyze the change trends and persistence/antipersistence of annual vaporation, annual and flood season precipitation in Poyang Lake basin. As a result, in recent 50 years, the annual precipitations of all the stations have increased and most of the stations show persistence on 3 different time scales of 3,5 and 10 years; the flood season precipitation of the stations change differently and all of them show persistence on 3 time scales; the vaporation has decreased obviously and all the stations show persistence on 3 time scales. The persistence levels of vaporation are similar on 3 time scales. The daily variations of different persistence/antipersistence classes are determined based on the extreme change of precipitation and vaporation in recent 50 years, and then the new data are input into the 3 models. It indicates that the lake area and volume may increase either in the next 3 or 10 years. In the land use conditions of 2009, Poyang Lake area at Hukou station's water level of 21m will vary between 3441.69 and 4330.22km2, and the volume will vary between 253.37 and 280.69X 108 m3 in the next 3 years; in the next 10 years, the variance of area will range from 3974.37 to 4450.07 km2, and that of volume will range from 262.17 to 290.71 X 108m3.
     The conclusions of this paper indicate that land use type changes the lake form mainly in terms of the sediment load, while the impact of precipitation and vaporation on Poyang Lake morphology primarily comes from the direct influence of runoff. Besides, the variation of natural condition in the future will not lead to the decrease of lake area and volume. It is the change of land use types that may make the lake get smaller.
引文
[1]李世杰.中国湖泊的变迁[J].森林与人类,2007,(7):12-25.
    [2]李一平,谢坚.全球湖泊加速死亡,一半面临生态威胁[N].环球时报,2006-11-27.
    [3]咸海危机敲响警钟——面积缩小一半水量减少六成[N].中国海洋报,1999-6-4(3).
    [4]Sidle R.C., Ziegler A.D., Vogler J.B.. Contemporary changes in open water surface area of Lake Inle, Myanmar[J]. Sustainability Science,2007, (1):55-65.
    [5]Labrecque S., Lacelle D., Duguay C. et al. Contemporary (1951-2001) Evolution of Lakes in the Old Crow Basin, Northern Yukon, Canada:Remote Sensing, Numerical Modeling, and Stable Isotope Analysis[J]. Arctic,2009,62(2):225-238.
    [6]Guirguis S.K., Hassan H.M., EI-Raey M.E., Hussain M.M.A.. Multi-temporal change of Lake Brullus, Egypt, from 1983 to 1991[J]. International Journal of Remote Sensing,1996,17(15): 2915-2921.
    [7]吴岗.失色的陆地明珠——中国湖泊状况的思考[J].国土资源,2002,(10):18-21.
    [8]张海滨.气候变化与中国国家安全[M].北京:时事出版社,2010.
    [9]武进军,童康玉,罗爱涓.新疆艾比湖水域面积减小原因与生态环境治理初步探讨[J].水利技术监督,2003,(5):29-30,33.
    [10]张运林,秦伯强.太湖水环境的演变研究[J].海洋湖沼通报,2001,(2):8-15.
    [11]李新国,江南,曹凯等.太湖流域主要湖泊的水域面积动态变化[J].水资源保护,2006,22(3):20-23.
    [12]Du Y, Cai S.M., Zhang X.Y. et al. Interpretation of the environment change of Dongting Lake, middle reach of Yangtze River, China, by 210Pb measurement and satellite image analysis[J]. Geomorphology,2001,41:171-171.
    [13]闵骞.近50年来鄱阳湖形态和水情的变化及其与围垦的关系[J].水科学进展,2000,11(1):76-81.
    [14]吴小兵.洪泽湖60年的变迁[J].中国水利,2009,(14):21-23.
    [15]魏显虎,杜耘,蔡述明等.湖北省湖泊演变及治理对策[J].湖泊科学,2007,19(5):530-536.
    [16]朱琰,崔广柏,杨珏.青海湖萎缩干涸原因、发展趋势及对生态环境的影响[J].河海大学学报,2001,29(4):104-108.
    [17]姜加虎,黄群.洞庭湖近几十年来湖盆变化及冲於特征[J].湖泊科学,2004,16(3):209-214.
    [18]揭二龙,李小军,刘士余.鄱阳湖湿地动态变化及其成因分析[J].江西农业大学学报,2007,29(3):500-503.
    [19]蔡伟,余俊清,李红娟.遥感技术在湖泊环境变化研究中的应用和展望[J].盐湖研究,2005,13(4):14-20.
    [20]柯长青.湖泊遥感研究进展[J].湖泊海洋通报,2004,23(4):81-86.
    [21]鲁安新,姚檀栋,王丽红等.青藏高原典型冰川和湖泊变化遥感研究[J].冰川冻土,2005,27(6):783-792.
    [22]鲁安新,王丽红,姚檀栋.青藏高原湖泊现代变化遥感方法研究[J].遥感技术与应用,2006,21(3):173-177.
    [23]王海波,马明国.基于遥感的湖泊水域动态变化监测研究进展[J].遥感技术与应用,2009,24(5):674-683.
    [24]丁永建,刘时银,叶柏生等.近50a中国寒区与干旱区湖泊变化的气候因素分析[J].冰川冻土,2006,28(5):623-632.
    [25]胡争光,王讳婷,池天河等.基于混合像元分解和双边界提取的湖泊面积变化监测[J].遥感信息,2007,(3):34-38.
    [26]张洪恩,施建成,刘素红.湖泊亚像元填图算法研究[J].水科学进展,2006,17(3):376-382.
    [27]张本.鄱阳湖研究[M].北京:上海科学技术出版社,1988.
    [28]马逸麟,熊彩云,易文萍.鄱阳湖泥沙淤积特征及发展趋势[J].资源调查与环境,2003,24(1):29-37.
    [29]叶许春,张奇,刘健等.气候变化和人类活动对鄱阳湖流域径流变化的影响研究[J].冰川冻土,2009,31(5):835-842.
    [30]郭鹏,陈晓玲,刘影.鄱阳湖湖口、外洲、梅港三站水沙变化及趋势分析(1955-2001年)[J].湖泊科学,2006,18(5):458-463.
    [31]施成熙.中国湖泊概论[M].北京:科学出版社,1989.
    [32]《全国主要湖泊、水库富营养化调查研究》课题组.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1987.
    [33]窦鸿身,姜加虎.中国五大淡水湖[M].合肥:中国科学技术大学出版社,2003.
    [34]李新国,江南,王红娟等.近30年来太湖流域湖泊岸线形态动态变化[J].湖泊科学,2005,17(4):294-298.
    [35]曾忠平,裴韬,彭兰霞.武汉南湖湖区土地利用结构信息熵与湖泊形态变化分形分析[J].资源科学,2008,30(7):1061-1067.
    [36]王红娟,姜加虎,李新国.岱海湖泊岸线形态变化研究[J].长江流域资源与环境,2006,15(5):674-677.
    [37]潘文斌,黎道丰,唐涛等.湖泊岸线分形特征及其生态学意义[J].生态学报,2003,23(12):2728-2735.
    [38]Schulta G.A., Engman E.T.,韩敏(译).水文与水管理中的遥感技术[M].北京:中国水利水电出版社,2006.
    [39]Harris A.R.. Lake area measurement using AVHRR[J]. International Journal of Remote Sensing,1989,10(4,5):88-895.
    [40]Birkett CM.. Synergistic Remote Sensing of Lake Chad:Variability of Basin Inundation[J]. Remote Sensing of Environment,2000,72(2):218-236.
    [41]Li J, Narayanan R.M.. A shape-based approach to change detection of lakes using time series remote sensing images[C]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(11, Part 1):2466-2477.
    [42]Prata A.J.. Satellite-derived evaporation from Lake Eyre, South Australia[J]. International Journal of Remote Sensing,1990,11(11):2051-2068.
    [43]刘登忠.西藏高原湖泊萎缩的遥感图像分析[J].国土资源遥感,1992,(4):1-6.
    [44]朱宣清.白洋淀水域动态与演变的遥感研究[J].地理科学,1992,12(4):371-378.
    [45]戴锦芳.遥感技术在古丹阳湖演变研究中的应用[J].湖泊科学,1992,(2):68-72.
    [46]施晶晶.中巴资源一号卫星湖泊信息提取——以南京景为例[J].湖泊科学,2001,13(3):280-284.
    [47]沈芳,匡定波.青海湖最近25年变化的遥感调查与研究[J].湖泊科学,2003,15(4):289-296.
    [48]杨日红,于学政,李玉龙.西藏色林错湖面增长遥感信息动态分析[J].国土资源遥感,2003,(2):64
    [49]殷立琼,江南,杨英宝.基于遥感技术的太湖近15年面积动态变化[J].湖泊科学,2005,17(2):139-142.
    [50]谭衢霖,刘正军,胡吉平等.应用多源遥感影像提取鄱阳湖形态参数[J].北京交通大学学报,2006,30(4):26-30.
    [51]刘瑞霞,刘玉洁.近20年青海湖湖水面积变化遥感[J].湖泊科学,2008,20(1):135-138.
    [52]曾忠平,卢新海.城市湖泊时空演变的遥感分析——以武汉市为例[J].湖泊科学,2008,20(5):648-654.
    [53]蒋锦刚,李爱农,邓伟等.多时相遥感影像提取湖泊边界信息的融合算法[J].湖泊科学,2009,21(2):264-271.
    [54]邢文渊,肖继东,沙依然等.基于MODIS影响的湖泊动态变化遥感监测[J].草业科学,2009,26(7):28-31.
    [55]鲁萍丽.青海可可西里地区湖泊变化的遥感研究[M].北京:中国地质大学,2006.
    [56]于小晗.专家呼吁及早研究采取措施适应气候变化趋势[N].科技日报,2003-11-27.
    [57]Dean W.E., Bradbury J.P., Anderson R.Y., et al. The variability of Holocene climate change-evidence from varved lake-sediments[J]. Scicence,1984,226(4679):1191-1194.
    [58]Stine S, Stine M. A record from lake Cardiel of climate change in southern South America[J]. Nature,1990,345(6277):705-708.
    [59]Rosenbaum J.G., Reynolds R.L., Adam D.P., et al. Record of middle Pleistocene climate change from Buck Lake, Cascade Range, southern Oregon-Evidence from sediment magnetism, trace-element geochemistry, and pollen[J]. Geological Society of America Bulletin,1996, 108(10):1328-1341.
    [60]Oviatt C.G.. Lake Bonneville fluctuations and global climate change[J]. Geology,1997,25(2): 155-158.
    [61]Campbell C.. Late Holocene lake sedimentology and climate change in southern Alberta, Canada[J]. Quaternary Research,1998,49(1):96-101.
    [62]Low R., Kelts K., Wright H. E.. Lake evidence for mid-late Holocene climate change and anthropogenic impacts[C]. AAAS Annual Meeting and Science Innovation Exposition,1999, 35(5):1671-1683.
    [63]Karabanov E.B., Prokopenko A.A., Williams D.F., et al. A new record of Holocene climate change from the bottom sediments of Lake Baikal[J]. Palaeogeography Palaeoclimatology Palaeoecology,2000,156(3-4):211-224.
    [64]Mazzucchi D., Spooner I.S. Gilbert R., et al. Reconstruction of Holocene climate change using multiproxy analysis of sediments from Pyramid Lake, British Columbia, Canada[J]. Arctic Antarctic and Alpine Research,2003,35(4):520-529.
    [65]Schlutz F., Zech W.. Palynological investigations on vegetation and climate change in the Late Quaternary of Lake Rukche area, Gorkha Himal, Central Nepal[J]. Vegetation History and Archaeobotany,2004,13(2):81-90.
    [66]Hallett D.J., Hills L.. Holocene vegetation dynamics, fire history, lake level and climate change in the Kootenay Valley, southeastern British Columbia, Canada[J]. Journal of Paleolimnology,2006,35(2):351-371.
    [67]Eastwood W.J., Leng M.J., Roberts N., et al. Holocene climate change in the eastern Mediterranean region:a comparison of stable isotope and pollen data from Lake Golhisar, southwest Turkey[J]. Journal of Quaternary Science,2007,22(4):327-341.
    [68]De Batist M., Chapron E.. Lake systems:Sedimentary archives of climate change and tectonics[J]. Palaeogeography Palaeoclimatology Palaeoecology,2008,259(2-3):93-95.
    [69]Trivedi A., Chauhan M.S.. Pollen proxy records of Holocene vegetation and climate change from Mansar Lake, Jammu region, India[J]. Current Science,2008,95(9):1347-1354.
    [70]Park J., Byrne R., Bohnel H., et al. Holocene climate change and human impact, central Mexico:a record based on maar lake pollen and sediment chemistry[J]. Quaternary Science Reviews,2010,29(5-6):618-632.
    [71]Choi J.S.. Lake ecosystem responses to rapid climate change[J]. Environmental Monitoring and Assessment,1998,49(2-3):281-290.
    [72]Brooks A.S., Zastrow J.C.. The potential influence of climate change on offshore primary production in Lake Michigan[J]. Journal of Great Lakes Research,2002,28(4):597-607.
    [73]Vincent W.F.. Lake ecosystems at the northern limit of high Arctic Canada:extreme sensitivity to climate change[J]. Integrative and Comparative Biology,2002,42(6):1328-1329.
    [74]Blenckner T., Omstedt A., Rummukainen M. A Swedish case study of contemporary and possible future consequences of climate change on lake function[J]. Aquatic Science,2002,64(2): 171-184.
    [75]O'Reilly C.M., Alin S.R., Plisnier P.D., et al. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa[J]. Nature,2003,424(6950):766-768.
    [76]Nara F., Tani Y., Soma Y., et al. Response of phytoplankton productivity to climate change recorded by sedimentary photosynthetic pigments in Lake Hovsgol (Mongolia) for the last 23,000 years[J]. Quaternary International,2005,136:71-81.
    [77]Komatsu E., Fukushima T., Harasawa H.. A modeling approach to forecast the effect of long-term climate change on lake water quality[J]. Ecological Modelling,2007,209(2-4): 351-366.
    [78]Moore M.V., Hampton S.E., Izmest'eva L.R., et al. Climate Change and the World's "Sacred Sea"-Lake Baikal, Siberia[J]. Bioscience,2009,59(5):405-417.
    [79]Russell J.M., Werne J.P.. Climate change and productivity variations recorded by sedimentary sulfur in Lake Edward, Uganda/D. R[J]. Congo.2009,264(1-4):337-346.
    [80]Fortin M.C., Gajewski K.. Holocene climate change and its effect on lake ecosystem production on Northern Victoria Island, Canadian Arctic[J]. Journal of Paleolimnology,2010, 43(2):219-234.
    [81]Reuss N.S., Hammarlund D., Rundgren M., et al. Lake Ecosystem Responses to Holocene Climate Change at the Subarctic Tree-Line in Northern Sweden[J]. Ecosystems,2010,13(3): 393-409.
    [82]Frisk T., Bilaletdin A., Kallio K., et al. Modelling the effects of climate change on lake eutrophication[J]. Boreal Environment Research,1997,2(1):53-67.
    [83]Hassan H., Hanaki K., Matsuo T.. A modeling approach to simulate impact of climate change in lake water quality:Phytoplankton growth rate assessment[J]. Water Science and Technology, 1998,37(2):177-185.
    [84]Stainton M.P., McCullough G.K.. Effects of climate change on nitrogen and phosphorous loading to Lake Winnipeg[C]. IAGLR Conference Program and Abstracts,2002,45:113-114.
    [85]Stainton M.P., Turner W., Page S.J.. Implications of climate change to the nitrogen and phosphorous yields from pristine and agriculturally impacted watersheds in the Lake Winnipeg watershed[C]. IAGLR Conference Program and Abstracts,2003,46:265.
    [86]Niemisto J.R., Horppila J.. The contribution of ice cover to sediment resuspension in a shallow temperate lake:Possible effects of climate change on internal nutrient loading[J]. Journal of Environmental Quality,2007,26:1318-1323.
    [87]Kovacs A., Clement A.. Impacts of the climate change on runoff and diffuse phosphorus load to Lake Balaton (Hungary) [J]. Water Science and Technology,2009,59(3):417-423.
    [88]Jeppesen E., Kronvang B., Meerhoff M., et al. Climate Change Effects on Runoff, Catchment Phosphorus Loading and Lake Ecological State, and Potential Adaptations[J]. Journal of Environmental Quality,2009,38(5):1930-1941.
    [89]Dimitriou E., Moussoulis E. Hydrological and nitrogen distributed catchment modeling to assess the impact of future climate change at Trichonis Lake, western Greece[J]. Hydrogeology Journal,2010,18(2):441-454.
    [90]Bryhn A.C., Girel C., Paolini G., et al. Predicting future effects from nutrient abatement and climate change on phosphorus concentrations in Lake Bourget, France[J]. Ecological Modeling, 2010,221(10):1440-1450.
    [91]Vilhena L.C., Hillmer I., Imberger J.. The role of climate change in the occurrence of algal blooms:Lake Burragorang, Australia[J]. Limnology and Oceanography,2010,55(3):1188-1200.
    [92]Jones R.N., McMahon T., Bowler J.M.. Modelling historical lake levels and recent climate change at three closed lakes, Western Victoria, Australia (c.1840-1990) [J]. Journal of Hydrology, 2001,246(1-4):159-180.
    [93]秦伯强,王苏民.呼伦湖的近期扩张及其与全球气候变化的关系[J].海洋与湖沼,1994,25(3):280-287.
    [94]李爽.遥感科学进展[M].北京:科学出版社,1995.
    [95]郭铌,张杰,梁芸.西北地区近年来内陆湖泊变化反映的气候问题[J].冰川冻土,2003,25(2):211-214
    [96]吴敬禄,林琳.新疆艾比湖湖面波动特征及其原因[J].海洋地质与第四纪地质,2004,24(1):57-60.
    [97]周哲,杨小平.近年来内蒙古东部达赉诺尔湖泊地区沙漠化与湿地演变初探[J].第四纪研究,2004,24(6):678-682.
    [98]赵慧颖,李成才,赵恒和等.呼伦湖湿地气候变化及其对水环境的影响[J].冰川冻土,2007,29(5):795-801.
    [99]牛沂芳,李才兴,习晓环等.卫星遥感检测高原湖泊水面变化及与气候变化分析[J].干旱区地理,2008 31(2):284-290.
    [100]Liu J, Kang S, Gong T, et al. Growth of a high-elevation large inland lake, associated with climate change and permafrost degradation in Tibet[J]. Hydrology and Earth System Science, 2010,14(3):481-489.
    [101]Yu G, Shen H.D.. Lake water changes in response to climate change in northern China: Simulations and uncertainty analysis[J]. Quaternary International,2010,212(1):44-56.
    [102]陆胤昊.洞庭湖的演变及其驱动因子研究[D].武汉:华中师范大学城市与环境科学学院,2009.
    [103]Klein T.. Impact on lake development of changed agricultural watershed exploitation during the last 3 centuries[J]. Hydrobiologia,1993,251(1-3):297-308.
    [104]Hilfinger M.F., Mullins H.T., Burnett A., et al. A 2500 year sediment record from Fayetteville Green Lake, New York:evidence for anthropogenic impacts and historic isotope shift[J]. Journal of Paleolimnology,2001,26(3):293-305.
    [105]Bradbury J.P., Colman S.M., Reynolds R.L.. The history of recent limnological changes and human impact on Upper Klamath Lake, Oregon[J]. Journal of Paleolimnology,2004,31(2): 151-165.
    [106]Brown A.G., Hatton J., O'Brien C.E., et al. Vegetation, landscape and human activity in Midland Ireland:mire and lake records from the Lough Kinale-Derragh Lough area, Central Ireland[J]. Vegetation History and Archaeobotany,2005,14(2):81-98.
    [107]Farmer J.G.. Geochemical records of anthropogenic change:lake sediments and peat bogs[J]. Geochimica ET Cosmochimica Acta,2007,71(15):A268.
    [108]Hanisch S., Wessels M., Niessen F., et al. Late Quaternary lake response to climate change and anthropogenic impact:biomarker evidence from Lake Constance sediments[J]. Journal of Paleolimnology,2009,41(3):393-346.
    [109]Katsuki K., Seto K., Nomura R., et al. Effect of human activity on Lake Saroma (Japan) during the past 150 years:Evidence by variation of diatom assemblages[J]. Estuarine Coastal and Shelf Science,2009,8(2):215-224.
    [110]Brunschon C., Haberzettl T., Behling H.. High-resolution studies on vegetation succession, hydrological variations, anthropogenic impact and genesis of a subrecent lake in southern Ecuador[J]. Vegetation History and Archaeobotany,2010,19(3):191-206.
    [111]Bookman R., Driscoll C.T., Effler S.W., et al. Anthropogenic impacts recorded in recent sediments from Otisco Lake, New York, USA[J]. Journal of Paleolimnology,2010,43(3): 449-462.
    [112]Olsen J, Noe-Nygaard N., Wolfe B.B.. Mid-to late-Holocene climate variability and anthropogenic impacts:multi-proxy evidence from Lake Bliden, Denmark[J]. Journal of Paleolimnology,2010,43(2):323-343.
    [113]Rao KN, Krishna GM, Malini BH. Kolleru lake is vanishing-a revelation through digital processing of IRS-1D LISS-Ⅲ sensor data[J]. Current Science,2004,86(9):1312-1316.
    [114]Hirai Y.. Environment changes affected by human activities in the littoral zone of Lake Kasumigaura[J]. Quaternary Research (Tokyo),2006,45(5):333-345.
    [115]Ahmed M.H., Leithy B.M., Thompson J.R., et al. Application of remote sensing to site characterisation and environmental change analysis of North African coastal lagoons[J]. Hydrobiologia,2009,622:147-171.
    [116]Querner E.P., Povilaitis A.. Hydrological effects of water management measures in the Dovine River basin, Lithuania[J]. Hydrological Sciences Journal,2009,54(2):363-374.
    [117]Haga H.. Confirmation of surface area of the southern basin of Lake Biwa Japan[J]. Japanese Journal of Limnology,2006,67(2):123-126.
    [118]杨云良,阎顺,贾宝全等.艾比湖流域生态环境演变与人类活动关系初探[J].生态学杂志,1996,15(6):43-49.
    [119]李景保.近数十年洞庭湖湖盆形态与水情的变化[J].海洋与湖沼,1992,23(6):626-634.
    [120]李景保,朱红旗,龙经文.从湖泊水域环境异变论洞庭湖区洪涝灾害[J].灾害学,1997,12(4):80-84.
    [121]吕娟,周魁一.洞庭湖的萎缩:人类围垦是自然淤积的三倍[J].中国水利,1999,(12):46.
    [122]苏成,莫多闻,王辉.洞庭湖的形成、演变与洪涝灾害[J].水土保持研究,2001,8(2):52-55.87.
    [123]李仁东,张晓阳.湖北省四湖地区湖泊水域近期变迁的遥感应用研究[J].遥感技术与应用,1997,12(2):26-31.
    [124]李劲峰,李蓉蓉,李仁东.四湖地区湖泊水域萎缩及其洪涝灾害研究[J].长江流域资源与环境,2000,9(2):265-268.
    [125]李昌峰,张鸿辉.建国以来人类活动对湖北省四湖地区水环境的影响研究[J].国土与自然资源研究,2003,(4):68-70.
    [126]李玲.江汉平原四湖地区河湖环境与人类活动系统研究[D].武汉:中国科学院测量与地球物理研究所,2002.
    [127]肖生春,晓洪浪.近百年来人类活动对黑河流域水环境的影响[J].干旱区资源与环境,2004,18(3):57-62.
    [128]吴庆龙,胡耀辉,李文朝等.东太湖沼泽化发展趋势及驱动因素分析[J].环境科学学报,2000,20(3):275-279.
    [129]柯长青,秦年秀.过去76年来射阳湖湖沼环境的动态变化[J].湿地科学,2003,1(2):81-85.
    [130]陈锦,武占云,张志超.武汉市湖泊演变与合理开发利用[J].高等函授学报(自然科学版),2003,16(5):43-47.
    [131]张毅,曾群,陈玉华等.20世纪50-70年代的围湖垦殖与江汉平原湖泊湿地演化[J].湿地科学与管理,2009,5(2):52-55.
    [132]张家玉.湖泊围垦的生态经济效益分析[J].自然资源学报,1988,3(1):28.
    [133]张家玉,冯慧芳.98洪灾的反思—湖泊湿地围垦的生态影响及其资源的利用与保护[J].环境科学与技术,2000,(增刊):77-79.
    [134]金卫斌,刘章勇.围湖垦殖对湖泊调蓄功能的累加效应分析[J].长江流域资源与环境,2003,12(1):74-77.
    [135]彭锐,黄河清,郑林.鄱阳湖区1959年至2005年降水过程的持续性特征与减灾对策[J].资源科学,2009,31(5):731-742.
    [136]郭华,姜彤,王国杰等.1961-2003年间鄱阳湖流域气候变化趋势及突变分析[J].湖泊科学,2006,18(5):443-451.
    [137]Zhao G.J., Hormann G., Fohrer N., et al. Steamflow Trends and Climate Variability Impacts in Poyang Lake Basin, China[J]. Water Resource Manage,2010,24:689-706.
    [138]王怀清,赵冠男,彭静等.近50年鄱阳湖五大流域降水变化特征研究[J].长江流域资源与环境,2009,18(7):615-619.
    [139]王艳君,姜彤,许崇育.长江流域20 cm蒸发皿蒸发量的时空变化[J].水科学进展,2006,17(6):830-833.
    [140]闵骞.鄱阳湖水面蒸发量的确定[J].人民长江,1998,29(5):29-31.
    [141]闵骞,刘影.鄱阳湖水面蒸发的计算与变化趋势分析(1955-2004年)[J].湖泊科学,2006,18(5):452-457.
    [142]闵骞,苏宗萍,王叙军.近50年鄱阳湖水面蒸发变化特征及原因分析[J].气象与减灾研究,2007,30(3):17-20.
    [143]程永建,张俊才.鄱阳湖水文气候特征[J].江西水利科技,1991,17(4):291-296,306.
    [144]倪培恩,李道松.鄱阳湖江湖河湖洪水关系水文分析[J].江西水利科技,1987,(4):18-31.
    [145]闵骞,汪泽培.近40年鄱阳湖水位变化趋势[J].江西水利科技,1992,18(4):360-364.
    [146]闵骞.鄱阳湖水位变化规律的研究[J].湖泊科学,1995,7(3):281-288.
    [147]闵骞.20世纪90年代鄱阳湖洪水特征的分析[J].湖泊科学,2002,14(4):323-330.
    [148]闵骞.鄱阳湖洪水位频率变化的计算与分析[J].水文,2004,24(4):17-20.
    [149]黄虹,邹长伟,何宗键等.鄱阳湖水文承载力现状和趋势分析[J].中山大学学报(自然科学版),2003,42(增刊):161-163.
    [150]黄淑娥,章毅之,辜晓青.基于遥感(RS)和地理信息系统(GIS)的鄱阳湖区洪涝灾害研究[J].江西气象科技,2003,26(4):44-46
    [151]王忠忠,罗定贵,周文斌等.基于SWAT-X模型的抚河流域径流量模拟研究[J].地理与地理信息科学.2009,25(4):95-99.
    [152]叶许春,张奇,刘健等.土壤数据空间分辨率对水文过程模拟的影响[J].地理科学进展,2009,28(4):575-583.
    [153]郭华,苏布达,王艳君等.鄱阳湖流域1955-2002年径流系数变化趋势及其与气候因子的关系[J].湖泊科学,2007,19(2):163-169.
    [154]刘国祯.鄱阳湖泥沙淤积调查研究[J].江西水利科技,1987(4):9-18.
    [155]左长清.论鄱阳湖泥沙淤积及其对环境的影响[J].水土保持学报,1989,3(1):38-42.
    [156]李树明,蒋建平,方波.鄱阳湖面积容积量算及误差分析[J].人民长江,2002,33(9):8-9.
    [157]蔡玉林.多源遥感数据应用于鄱阳湖水环境研究[D].北京:中国科学院遥感应用研究所,2006.
    [158]闵骞.近50年鄱阳湖形态和水情的变化及其与围垦的关系[J].水科学进展,2000,11(1):76-81.
    [159]魏丽,殷剑敏,王保生.气象条件、湖口水位与鄱阳湖主体及附近水域面积关系模型的研究及应用[J].江西农业大学学报,1999,21(2):242-244.
    [160]谭衢霖,刘正军,胡吉平等.应用多源遥感影像提取鄱阳湖形态参数[J].北京交通大学学报,2006,30(4):26-30.
    [161]张桂欣,祝善友.基于RS和GIS技术的鄱阳湖水域季节变化监测研究[J].南水北调 与水利科技,2007,5(5):39-40.
    [162]顾中宇.鄱阳湖水文特征分析及水体形态特征的遥感提取[D].南昌:江西师范大学地理与环境学院,2007.
    [163]李辉,李长安,张利华等.基于MODIS影像的鄱阳湖湖面积与水位关系研究[J].第四纪研究,2008,28(2):332-337.
    [164]丁莉东.基于MODIS的鄱阳湖区水位遥感估算研究[J].安徽农业科学,2008,36(2):825-826.
    [165]舒长根,刘影,吕建星.鄱阳湖高洪水位及其预报[J].广东气象,2006,(3):50-53.
    [166]万中英,钟茂生,王明文等.鄱阳湖水位动态预测模型[J].江西师范大学学报(自然科学版),2003,27(3):232-236.
    [167]黄淑娥,钟茂生.鄱阳湖水体淹没模型研究[J].应用气象学报,2004,15(4):494-499.
    [168]刘健,张奇,左海军等.鄱阳湖流域径流模型[J].湖泊科学,2009,21(4):570-578.
    [169]Guo H., Hu Q., Jiang T.. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China[J]. Journal of Hydrology,2008,355: 106-122.
    [170]窦鸿身,闵骞,史复祥.围垦对鄱阳湖洪水位的影响及防治对策[J].湖泊科学,1999,11(1):20-27.
    [171]马逸麟,马逸琪.鄱阳湖湿地的保护与利用[J].国土与自然资源研究,2003,(4):66-67.
    [172]闵骞,刘影,马定国.退田还湖对鄱阳湖洪水调控能力的影响[J].长江流域资源与环境,2006,15(5):574-578.
    [173]吴敦银,李荣昉,王永文.鄱阳湖区平垸行洪、退田还湖后的防洪减灾形势分析[J].水文,2004,24(6):26-31.
    [174]虞孝感,窦鸿身.鄱阳湖围垦对洪水的影响及对策[J].环境保护,1998,(10):6-7.
    [175]刘影.平垸行洪退田还湖对鄱阳湖区防洪形势的影响分析[J].江西科学,2003,21(3):235-238.
    [176]闵骞.鄱阳湖围垦的洪水位效应[J].环境与开发,1998,13(2):15-18.
    [177]闵骞.鄱阳湖围垦对洪水的影响与防洪减灾对策[J].中国减灾,1998,8(4):36-41.
    [178]闵骞.鄱阳湖围垦对洪水影响的评价[J].人民长江,1999,30(7):30-32.
    [179]闵骞.鄱阳湖围、退垦对洪水位影响的计算与分析[J].水文,2000,20(4):37-40.
    [180]闵骞.鄱阳湖退田还湖及其对洪水的影响[J].湖泊科学,2004,16(3):215-222.
    [181]卢兵,汪泽培.鄱阳湖湖泊气候及其围垦后的变化[J].湖泊科学,1995,7(1):77-84.
    [182]袁仁茂,杨晓燕,李树德.水土流失的多因素分析及其防治措施[J].水土保持研究,1999,6(4):80-85.
    [183]师哲,张亭,高华斌.鄱阳湖地区流域水土流失特点研究初探[J].长江科学院院报,2008,25(3):38-41.
    [184]张荣峰.鄱阳湖流域水土保持与防洪治涝[J].江西水利科技,1993,19(2):91-94.
    [185]傅国儒,姚毅臣.洪涝灾害与江西水土保持[J].土壤侵蚀与水土保持学报,1999,5(5):16-19.
    [186]傅国儒,庄荣昭.江西省洪涝灾害与水土保持[J].水土保持研究,1999,6(2):13-15,31.
    [187]舒晓波,刘影,熊小英.鄱阳湖区洪涝灾害的生态环境因素与生态减灾对策[J].江西师范大学学报(自然科学版),2001,25(2):180-185.
    [188]管日顺.江西水土流失对防洪的影响及防治对策[J].中国水土保持,2001,(10):21-22.
    [189]张荣峰.水土流失对鄱阳湖流域生态环境和经济建设的影响[J].水土保持学报,1990,4(3):80-86.
    [190]谢永生.从98洪灾看洞庭湖、鄱阳湖流域水土保持问题[J].中国水土保持,1999,(3):24-26.
    [191]陈月红,熊文红,汪岗.从98洪水看鄱阳湖流域的水土保持可持续发展[J].泥沙研究,2002,(4):48-51.
    [192]王云飞.三峡工程对鄱阳湖冲淤的影响和预测[J].湖泊科学,1997,6(2):124-130.
    [193]刘强,黄薇.水利工程建设对洞庭湖及鄱阳湖湿地的影响[J].长江科学院院报,2007,24(6):30-33.
    [194]姜加虎,黄群.三峡工程对鄱阳湖水位影响研究[J].自然资源学报,1997,12(3):219-224.
    [195]刘晓东,吴敦银.三峡工程对鄱阳湖汛期水位影响的初步分析[J].江西水利科技,1999,25(2):71-74.
    [196]吴龙华.长江三峡工程对鄱阳湖生态环境的影响研究[J].水利学报,2007,(增刊):586-591.
    [197]李红清,蒋固政.鄱阳湖控制工程对自然保护区生态环境的影响[J].人民长江,2001,32(7):37-38.
    [198]甘本根.鄱阳湖控湖工程利弊分析[J].南昌职业技术师范学院学报,2001,(2):76-80.
    [199]吴敦银,李荣昉,刘金生等.论鄱阳湖控制工程的防洪作用[J].江西水利科技,2003,29(2):83-88.
    [200]吴敦银.鄱阳湖控制工程防洪作用的探讨[J].江西科学,2003,21(3):239-243.
    [201]吴敦银,李荣防,刘影等.鄱阳湖控制工程的初步研究[J].江西师范大学学报(自然科学版),2003,27(4):376-379.
    [202]王若庚.鄱阳湖控制工程对泥沙冲於影响预测[J].江西水利科技,1996,22(1):49-55.
    [203]Serrano A, Materos V L, Garcia J A. Trend analysis of monthly precipitation over the Iberian Peninsula for the period 1921-1995[J]. Phys. Chem. Earth (B),1999,24(1-2):85-90.
    [204]符淙斌,王强.气候突变的定义和检测方法[J].大气科学.1992,16(4):482-493.
    [205]姜逢清,朱诚,胡汝骥.1960-1997年新疆北部降水序列的趋势探测[J].地理科学.2002,22(6):669-672.
    [206]郝兴明.塔里木河流域地表过程耦合关系及其驱动力分析[D].北京:中国科学院研究生院,2008.
    [207]Mandelbrot B B, Wallis J R. Some long-run properties of geographysical records[J]. Water Resource Research,1969a,5(2):321-340.
    [208]Mandelbrot B B, Wallis J R. Robustness of the rescaled ranged R/S in the measurement of noncyclic long run statistical dependence[J]. Water Resource Research,1969b,5(5):967-988.
    [209]车慧正,张小曳,李扬等.近50年来城市化对西安局地气候影响的研究[J].干旱区地理.2006,29(1):53-58.
    [210]冯新灵,冯自立,罗隆诚等.青藏高原冷暖气候变化趋势的R/S分析及Hurst指数试验研究[J].干旱区地理,2008,31(2):175-781.
    [211]樊毅,李靖,仲远见等.基于R/S分析法的云南干热河谷降水变化趋势分析[J].水电能源科学,2008,26(2):24-27.
    [212]焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1995.
    [213]闫志忠,刘金英.改进的BP神经网络在流域产沙量预测中的应用[J].世界地质,2002,21(3):266-270.
    [214]车骞,王根绪,畅俊杰等.基于人工神经网络的黄河源区枯季径流预报[J].人民黄河,2005,27(3):23-24,27.
    [215]Vapnik VN. An overview of statistical learning theory[C]. IEEE Transactions on Neural Networks,1999,10(5):988-999.
    [216]卢敏,张展羽,冯宝平.支持向量机在径流预报的应用探讨[J].人民长江,2005,36(8):38-39.47.
    [217]胡彩虹,高晶,朱业玉等.支持向量机在半干旱半湿润地区水文预报中的应用研究[J].气象与环境科学,2010,33(2):1-6.
    [218]廖杰,王文圣,李跃清等.支持向量机及其在径流预测中的应用[J].四川大学学报(工程科学版),2006,38(6):24-28.
    [219]Hansen N. Adapting arbitrary normal mutation distributions in evolution strategies:the covariance matrix adaptation[C]. Proceedings of the IEEE Conference on Evolutionary Computation, Nagoya,1996,312-317.
    [220]王景雷,吴景社,孙景生等.支持向量机在水位预报中的应用研究[J].水利学报,2003,(5):122-128.
    [221]林剑艺,程春田.支持向量机在中长期径流预报中的应用[J].水利学报,2006,37(6):681-686.
    [222]梅松,程伟平,刘国华.基于支持向量机的洪水预报模型初探[J].中国农村水利水电,2005,(3):34-36.
    [223]邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京:科学出版社,2004.
    [224]Wu Q, The forecasting model based on wavelet v-support vector machine[J]. Expert Systems with Applications,2009,36(4):7604-7610.
    [225]Zhang L, Zhou W D, Jiao L C. Wavelet support vector machine[C]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2004,34(1):34-39.
    [226]吴奇,刘静,熊福力等.惩罚复杂诊断系统混合噪音的模糊小波分类机[J].自动化学报,2009,35(6):773-779.
    [227]李丽,牛奔.粒子群优化算法[M].北京:冶金工业出版社,2009.
    [228]纪振,廖惠连,吴青华.粒子群算法及应用[M].北京:科学出版社,2009.
    [229]王毛兰.鄱阳湖流域氮磷时空分布及其地球化学模拟[D].南昌:南昌大学环境科学与工程学院,2007.
    [230]樊述全.鄱阳湖流域降雨时空分布规律及其水文响应[D].南京:河海大学水文水资源于水利工程科学国家重点实验室,2007.
    [231]谢坤.生态位适宜度理论在江西省城市发展中的应用研究[D].南昌:江西师范大学地理与环境学院,2008.
    [232]王哲.江西省出生人口性别比失衡原因及对策研究[D].长春:吉林大学东北亚研究院,2010.
    [233]胡建权.江西省经济-社会-资源-环境可持续发展协调度分析[D].南昌:江西师范大学地理与环境学院,2009.
    [234]肖李静.江西省城市化的效益与成本分析[D].南昌:江西师范大学地理与环境学院,2008.
    [235]赵松霞.江西省产业结构的投入产出分析[D].南昌:江西师范大学地理与环境学院,2009.
    [236]吴道喜,谭启富.洞庭、鄱阳两湖实时调蓄量计算的探讨[J].人民长江,1996,27(4):29-32.
    [237]王晓鸿.鄱阳湖湿地生态系统评估[M].北京:科学出版社,2004.
    [238]黄先香,夏冬冬,张立波等.1948-2001年全球陆地及大尺度区域6-8月旱涝气候变化[J].气候与环境研究,2004,9(3):540-550.
    [239]施能,陈绿文.全球陆地年降水场的长期变化(1948-2000年)[J].科学通报,2002,47(21):1671-1674.
    [240]闵骞,闵聃.鄱阳湖区干旱演变特征与水文防旱对策[J].水文,2010,30(1):84-88.
    [241]左长青.江西省水土保持工作现状与战略措施[J].江西水利科技,1999,25(4):199-203.
    [242]柳艳香,赵振国,朱艳峰等.2000年以来夏季长江流域降水异常研究[J].高原气象,2008,27(4):807-813.
    [243]赵仲辉,陈创买.中国东南部夏季1954-1990年降水特征[J].中南林学院学报,2002,22(2):80-84.
    [244]姜彤,苏布达,王艳君等.四十年来长江流域气温、降水与径流变化趋势[J].气候变化研究进展,2005,1(2):65-68.
    [245]平凡,罗哲贤,琚建华.长江流域汛期降水年代际和年际尺度变化影响因子的差异[J].科学通报,2006,51(1):104-109.
    [246]谢永生.长江中游洞庭湖、鄱阳湖流域水土流失特点与防治对策[J].土壤侵蚀与水土保持学报,1999,5(1):8-12.
    [247]王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998.
    [248]江西省地质矿产局水文地质工程地质大队.鄱阳湖形成演变及发展趋势考察[R].鄱阳湖区综合考察和治理研究报告集,1987,2(12):10.
    [249]毛端谦.鄱阳湖区水旱灾害灾情分析[J].江西师范大学学报(自然科学版),1992,(3):234-240.
    [250]杨巧言,刘会庆.论鄱阳湖的围垦[J].江西师范大学学报(自然科学版),1987,(2):69-77.
    [251]蔡海生,赵小敏,蔡华锦.鄱阳湖湿地资源现状分析及其保护对策[J].江西农业大学学报,2003,25(6):943-947.
    [252]刘影.平垸行洪退田还湖对鄱阳湖区防洪形势的影响分析[J].江西科学,2003,21(3):235-238.
    [253]江惟舒,孔凡斌.鄱阳湖流域水土流失与森林生态环境控制管理对策[J].林业资源管理,2003,(6):36-40.
    [254]龚向民,李昆,刘筱琴等.赣江流域水土流失现状与发展态势研究[J].人民长江,2006,(8):48-50.
    [255]张伊,汤维增,吴官正.江西省水利志[M].南昌:江西科学技术出版社,1995.
    [256]孙鹏,张强,陈晓宏等.鄱阳湖流域水沙时空演变特征及其机理[J].地理学报,2010,65(7):828-840.
    [2571单九生,张瑛,张延亭.江西五河流域降水与重大降水过程天气系统特征分析[J].江西气象科技,2001,24(1):14-18.
    [258]万荣荣,杨桂山,李恒鹏.流域土地利用/覆被变化的洪水响应[J].自然灾害学报,2008,17(3):10-15.
    [259]李丽娟,姜德娟,李九一等.土地利用/覆被变化的水文效应研究进展[J].自然资源学报,2007,22(2):211-224.
    [260]陈莹,许有鹏,尹义星.基于土地利用/覆被情景分析的长期水文效应研究[J].自然资源学报,2009,24(2):351-359.
    [261]黄锡荃.水文学[M].北京:高等教育出版社,1985.
    [262]毛璀,孟广涛,周跃.植物根系对土壤侵蚀控制机理的研究[J].水土保持研究,2006,13(2):241-243.
    [263]曹波,曹志东,王黎明等.植物根系固土作用研究进展[J].水土保持应用技术,2009,(1):26-28.
    [264]朱显谟.黄土地区植被因素对水土流失的影响[J].土壤学报,1960,8(2):110-120.
    [265]潘义国,丁贵杰,彭云等.关于植物根系在土壤抗侵蚀和抗剪切中的作用研究进展[J]. 贵州林业科技,2007,35(2):10-13,61.
    [266]陈奇伯.林地枯枝落叶层水土保持作用探讨[J].甘肃水利水电技术,1996,(3):70-72.
    [267]吴钦孝,李勇.草本植物根系提高表层土壤抗刷性的试验分析[J].水土保持学报,1990,4(1):11-16.
    [268]张建军.晋西黄土区水土保持林地抗冲性研究[M].北京:中国林业出版社,1997.
    [269]吴彦,刘世全,王金锡.植物根系对土壤抗侵蚀能力的影响[J].应用与环境生物学报,1997,3(2):119-124.
    [270]贾俊姝.大通县土地利用/覆被变化与土壤侵蚀的研究[D].北京:北京林业大学水土保持学院,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700