渭河流域产水产沙区域分异特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,渭河下游水沙问题日渐复杂和突出,河道淤积严重,水患频发,严重影响到渭河健康发展,并直接威胁到下游地区人民生命和财产安全,渭河下游已经成为社会广泛关注和研究的热点地区之一。渭河及其支流上游土壤侵蚀严重、三门峡水库抬高渭河河口水位导致泥沙下泻不畅、河道水资源利用过度和全球气候变化导致的降水减少等是引起和加剧渭河下游水沙矛盾的主要原因。作为黄河最大的支流,渭河中下游地区水资源与水环境特征不仅直接决定着陕西自然、经济和社会的发展,也直接影响着黄河及其中下游地区的可持续发展,亟需进行水沙调控,缓解下游水沙矛盾。
     建立渭河水沙综合调控体系,是解决渭河下游水沙问题的根本。由于水土保持可从源头上减少土壤侵蚀和河流泥沙,不同措施减少单位泥沙量时对径流量的影响程度(减流减沙比)存在差异,通过水土保持措施类型和区域配置,可以实现以减沙、增流和调节水沙过程为核心的河流水沙调控。由于不同区域径流量和入河泥沙量对渭河水沙贡献程度不同,通过分析渭河流域产水产沙区域分异特征,既可以促进对渭河流域产水产沙格局的认识,也可以为渭河流域水土保持措施布设提供科学依据。
     本文以渭河流域28个主要水文站1971年~1986年实测降雨、径流和泥沙系列资料,通过统计分析和现场调查相结合的方法,运用水文学、土壤学等理论基础,借助于地理信息系统等新方法,进行渭河流域产水产沙区划分,并分析了渭河流域产水产沙区域分异特征,主要结论如下。
     (1)渭河流域水文分区、侵蚀分区:根据流域地形地貌、气候、植被、水文并结合水文站特征,分别以年降水量、径流深、产流模数、径流系数为水文分区指标体系,以年降水量、产沙模数、地面坡度、流域比降、沟壑密度为侵蚀分区指标体系;通过模糊聚类分析法将渭河流域划分为3个一级水文分区,11个二级水文分区,3个一级侵蚀分区和13个二级侵蚀分区。
     (2)渭河流域产水产沙模型及其适宜性评价:根据研究目的,选择SCS径流曲线数模型作为研究区产水模型,通过对不同水文区降雨产生的径流量进行模拟,表明SCS模型能够较好的模拟渭河流域的产流特征。以降雨量作为降雨因子的量化指标,以地面坡度、沟壑密度、植被净初级生产力等指标作为流域下垫面总体特征的量化指标,输沙模数作为侵蚀产沙指标,建立了渭河流域不同侵蚀分区输沙模数与降雨量和下垫面总体特征之间的回归模型,作为渭河流域不同侵蚀分区侵蚀产沙预报模型,通过对不同侵蚀分区输沙模数模拟,表明该模型能够较好的模拟渭河地区的侵蚀产沙情况。
     (3)渭河流域产水产沙区的划分:运用“水文-地貌”法,借助于RACGIS9.0将渭河流域划分为280个产沙区和46个产水区。进一步分析表明渭河流域产流中心集中在渭河下游及渭河南山支流诸流域。流域产水呈现明显的地带性特征,即从北到南,产水过程呈现从小到大—变小—增大的过程,其中位于渭河流域西北部(洪德以上)流域,产流模数最小,其产流模数<1.0万m3/km2·a,位于渭河下游的流域,尤其是渭河以南流域,产流模数最大,产流模数>20.0万m3/km2·a。渭河流域产沙亦呈现明显的地带性特征,即从北到南,侵蚀产沙强度呈现从小到大—变小的过程,其中位于渭河流域西北部(洪德以上)流域,北洛河流域刘家河以下、渭河(支流)下游产沙模数最小,其产沙模数<1000t/km2·a。泾河流域雨落坪、杨家坪以上至洪德区间、渭河(支流)天水以上、北洛河流域刘家河以上,产沙模数最大,其产沙模数>5000t/km2·a,是渭河流域侵蚀产沙中心。
     (4)流域产水产沙区域分异规律:结果表明渭河流域年均产流强度5.37万m3/km2·a,年产流量74.43亿m3,其中北洛河状头以上产流强度4.71万m3/km2·a,泾河张家山以上产流强度3.76万m3/km2·a,渭河(支流)华县以上产流强度7.64万m3/km2·a。单位面积产流贡献率北洛河流域最小,为21.48%,渭河(支流)最大,为52.64%,泾河流域次之,为25.89%。
     渭河流域年均侵蚀强度为2796.03t/km2·a,年产沙总量33063.79万t。其中北洛河状头以上侵蚀强度2888.48t/km2·a,泾河张家山以上侵蚀强度3225.85t/km2·a,渭河(支流)华县以上侵蚀强度2273.78t/km2·a。单位面积产沙贡献率北洛河流域最小,为22.3%,泾河流域最大,为45.58%,渭河(支流)次之,为32.13%。
As the largest tributary of the Yellow River, the Wei River is the 'Mother River' of Guanzhong region in Shaanxi province. It plays a very important role in the development of West China and the health of the ecosystem of the Yellow River. Runoff and sediment problem has been complicated in the downstream area of the Wei River Basin in the last several decades because of the Sanmen reservoir that rising the outlet water level, the excessive demand of the channel water resources and the precipitation reduction caused by the global climate change, and so on. The severe sedimentation and the frequent flood do not only affect seriously the Wei River healthy development, but threaten directly the people life and the property security of its lower reaches area. Therefore the Wei River already becomes one of the hot spot areas drawing wide social and study attention.
     The integrated management including of the runoff and sediment regular is the key method to solve the runoff and sediment problems of the whole Wei River. Soil and water conservation may reduce soil erosion on the slope and sediment load of the river that would alleviate the sedimentation and the water to flush the sediment into lower stream of the river; furthermore, the water cost of sediment control (the ratio of runoff reduced and sediment reduced in the same time) of different soil and water conservation practices varied greatly that water or runoff would increase when reducing the same weight of sediment through the distribution of different practices of water and soil conservation in different region of the basin. It is necessary to study the regional difference of the runoff and sediment yield rate and contribution of each units for better understanding of runoff and sediment yield pattern in the Wei River basin, and the results would also be scientific reference of river basin management and soil and water conservation planning in the Wei River basin.
     The dataset covers precipitation, runoff and sediment of 28 main hydrology stations from 1971 to1986, DEM with 90 meter resolution and vegetation are used to study the runoff and sediment yield and to divide the whole basin into different runoff and sediment generation units with GIS. The regional difference of runoff and sediment are analyzed. The main results are as following.
     (1) Hydrology regions and erosion sub-regions in the Wei River basin
     Based on the distribution of existing hydrology observation stations, topography, climate, vegetation, river system characteristic, the different indicator systems are selected to divide the hydrology and soil erosion sub-regions in the Wei River basin. The indicators for hydrology sub-regions include mean annual precipitation, runoff depth, runoff yield rate, runoff coefficient,and soil erosion sub-regions division using mean annual precipitation, sediment modulus, ground slope, mean drop slope and drainage density. With the fuzzy clustering analysis, the Wei River basin would be divided 3 one level of hydrology regions, and 11 two level of hydrology sub-regions, and then 3 one level of erosion regions and 13 two level of erosion sub-regions in the Wei River basin respectively.
     (2)Runoff and sediment simulation models and their suitability in the Wei River basin
     SCS-CN (runoff curve model of Soil Conservation Service, USDA) model is selected to simulate runoff in different hydrology sub-regions in the Wei River basin. The simulation shows that results of 20 of rainfall events, accounting for the total rainfall simulation 83%, are good and the SCS-CN model could be used to simulate the runoff in the Wei River basin.
     Mean annual precipitation P selected take as quantitative index of rainfall factors, ground slope, drainage density and NPP (Net Primary Pproductivity) are selected as variables of land surface in the Wei River basin, and the statistics model of sediment yield rate are regressed in different erosion and sediment regions. The model were tested with 28 field actual sediment data and 24 of field simulation results were good that the regression model could simulate sediment yields very well in the Wei River basin.
     (3) Unit of Runoff and Sediment production Divided in the Wei River basin
     There are 46 runoff yield units of and 280 sediment yield units in the Wei River basin when using“hydrology- landform”composition and ARC GIS 9.0.
     Centralization of runoff was distributed to the lower Wei River and some branches of nanshan areas. Runoff production shows clearly zonal features, that is, from north to south, runoff process shows from small to large - smaller - larger process. Runoff yield rate of the northeast region located in the Wei River basin (above the Hongde stations) was the smallest, its produces yield rate runoff were less than 10,000 m3/km2·a. Runoff yield rate of the south region located in the Wei River basin, especially the south Wei River, was the biggest, its produces yield rate runoff were more than 200,000m3/km2·a.
     Sediment yield shows clearly zonal features slso, that is, from north to south, Sediment yield shows from small to large - smaller - larger process. Sediment yield rate of the northeast region located in the Wei River basin (above the Hongde stations), beiluo river catchment (below the liujiahe stations) was the smallest, its sediment yield rate was less than 1,000 t/km2·a. But between yangjiaping station,yuluoping station and hongde station in the jing river catchment, above of tianshui station in the main stream weihe catchment, above of liujiahe station in the beiluo river catchment were the biggest, its sediment yield rate was more than 5,000 t /km2·a.
     (4) Regional different of runoff and sediment in the Weihe River Basin
     The annual mean runoff yield rate was equal to 53,700 m3/km2a, the annual runoff was 7,443,000,000 m3 in the Wei River basin. Runoff yield rate of about zhuangtou station in the beiluo river catchment was 47,100 m3/km2a, for 11.38% of the total output. Runoff yield rate of about zhangjiashan station in the jing river catchment was 37,600 m3/km2a, for 21.89% of the total output. Runoff yield rate of about huaxian station in the main stream of weihe catchment was 76,400 m3/km2a, for 66.73% of the total output. Contribution rate of runoff displayed that the beiluo river is the smallest, the main stream of weihe is the biggest, and the jing river is the next biggest. Its values were respectively 21.48%, 52.64%, 25.89%.
     The average annual erosion intensity in the Wei basin was 2796.03t/km2·a, and the total amount of annual sediment yield was 330,637,900 t; at the above of zhuangtou station in the beiluo river basin, which sediment yield yield rate was 2888.48t/km2·a, the total amount of annual sediment yield was 42,882,300t, for 12.97%; at the above of zhangjiashan station in the jing river catchment, which sediment yield yield rate was 3225.85t/km2·a, the total amount of annual sediment yield was 139,898,600 t, for 42.31%; at the above of huaxian station in the main stream of weihe catchment, which sediment yield yield rate was 2273.78t/km2·a, the total amount of annual sediment yield was 147,857,000 t, for 44.72%.
     The contribution rate of sediment yield per unit area was the smallest in beiluo river basin, for 22.3 percent, and jing river basin was the largest for 45.58 percent, followed by the main stream of the weihe basin for 32.13%, which further clarified the major regional of sediment yield was concentrated in the jing river watershed and the main stream of the weihe, for more than 77%.
引文
[1]冉大川,刘斌,王宏等著.黄河中游典型支流水土保持措施减洪减沙作用研究[C].黄河水利出版社,2006.
    [2]焦菊英,马祥华,王飞.渭河流域侵蚀产沙强度的区域分异特征[J].水土保持研究,2004,11(4):60-64.
    [3]水利部水保司.渭河流域“03·8”特大暴雨洪水及水土保持调研报告[R].2003.
    [4] Nearing M A, Jetten V, Baffaut C, et al. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena, 2005, 61(2-3):131-154.
    [5] Hammad A H A, Brresen T, Haugen L E. Effects of rain characteristics and terracing on runoff and erosion under the Mediterranean. Soil and Tillage Research, 2006, 87(1):39-47.
    [6] Hamed Y, Albergel J, Ppin Y, et al. Comparison between rainfall simulator erosion and observed reservoir sedimentation in an erosion sensitive semiarid catchment. Catena, 2002, 50(1):1-16.
    [7] Erpul G, Gabriels D, Janssens D.. Assessing the drop size distribution of simulated rainfall in a wind tunnel. Soil and Tillage Research, 1998, 45(3-4):455-463.
    [8] Dennis M.F., Bryan R.B..The relationship of soil loss by interrill erosion to slope gradient. Catena, 2000,38(3):211-222.
    [9] HeerdegenRG and BeranMA.Quantifying sourceareas through landsurface curvature and shape. Journal of Hydrology, 1982, 57(3-4):359-373.
    [10] WheaterHS, ShawTL, RutherfordJC. Storm runoff from small lowland catchments in south west England. Journal of Hydrology, 1982, 55(1-4):321-337.
    [11] LiSL, CaiQG, Wu A. Effect of slope length on runoff and soil erosion. Journal of AridLand Resources and Environment, 1998,12(1):29-35.
    [12] KongYP, ZhangKL, TangKL. Impact of slope length on soil erosion process under simulated rainfall. Journal of Soil and Water Conservation, 2001, 15(2):17-24.
    [13] Chirino E, Bonet A, Bellot J, Snchez J R. Effects of 30year old Aleppo pine plantations on runoff, soil erosion, and plant diversity in a semiarid landscape in south eastern Spain.Catena,2006,65(1):19-29.
    [14] Arsenault, Bonn F. Evaluation of soil erosion protective cover by crop residues usin gvegetation indices and spectral mixture analysis of multispectral and hyperspectral data. Catena, 2005, 62(2-3):157-172.
    [15] Ludwig B, Boiffin J, Chaduf J, et al. Hydrological structure and erosion damage caused by concentrated flow in cultivated catchments. Catena, 1995, 25(1-4): 227-252.
    [16] Zhang G S, Chan K Y, Oates A, et al. Relationship between soil structure and runoff soil loss after 24 years of conservation tillage.Soil and Tillage Research, 2006, 10(3): 180-190.
    [17]穆兴民,巴桑赤烈,Zhang Lu等.黄河河口镇至龙门区间来水来沙变化及其对水利水保措施的响应[J].泥沙研究,2007,2:36-41.
    [18]黄嘉佑,张鐔.黄河流域旱涝与水资源分析[J].大气科学,1996,20(6): 673-678.
    [19]卢金发.黄河中游流域产沙量随降雨变化的区域分异[J].山地学报,2004,22(2):147-153.
    [20]周明衍.晋西入黄河流产沙规律和流域治理效果[J].山西水文,1985(4):31-40.
    [21]顾弼生.关于黄土高原植树造林的认识[R].黄河水资源研究所,1990.
    [22]卫伟,陈利顶,傅伯杰.半干旱黄土丘陵沟壑区降水特征值和下垫面因子影响下的水土流失规律[J].生态学报,2006,11(26):3847-3854.
    [23]唐克丽.中国水土保持[M].北京:科学出版社,2005.
    [24] Zingg, A.W. Degree and length of land slope as it offects soil loss in runoff. Agri Eng., 1940,21(2):59-64.
    [25] Krrkby M.J. Erosion by water on hillslope in Chorley. Water, Earth and man.london,1969.
    [26] Musgrave, G. W. The Quantitative evalution of factors in water.erosion-a first approximation. Journal of soil and water conser. 1947, 2(3):133-138.
    [27] Huang CH. Empirical analysis of slope and runoff for sediment delivery from interrill areas. Soil science society of America journal,1995,59:982-990.
    [28] Dodds WK. Distribution of runoff and rivers related to vegetative characteristics, latitude, and slope: a global perspective. Journal of the North American Benthological Society,1997,16:162-168.
    [29] Ei-hassanin A.S, Labib T.M, Gaber E.I. Effect of vegetation cover and land slope on runoff and soil losses from the watershed of Burundi. Agriculture, Ecosystems and Environment,1993,43:301-308.
    [30] Mingbin Huang, Jacques et al. A modification to the soil conservation service curve number method for steep slopes in the loess plateau of china. Hydrological processes. 2005,19:1-11.
    [31] Wu F-Q, Zhao X-G, Liu B-Z. Analysis of the Effect of rainfall and Infiltration on Runoff in Gently Sloping Farmland. Research of water and soil conservation,2000, 7(1): 12-17.
    [32] Woolhiser D.A, Hanson CL, Kuhman AR. Overland flow on rangeland watershed. Journal of hydrology,1970,9:336-356.
    [33] Philip J.R. Hill slope infiltration: planar slopes. Water resources research, 1991,27:109-117.
    [34] Evett S.R, Dutt G.R. Length and slope effects on runoff from sodium dispersed, compacted earth micro catchments. Soil Science Society of America Journal,1985,49:734-738.
    [35]刘善建.天水水土流失测验与分析[J].科学通报,1953,(12):32-38.
    [36]陈永宗,景可,蔡强国等.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988.
    [37]江忠善,贾志伟,刘志.降雨和地形因素与坡地水土流失关系的研究[J].见:黄土高原小流域综合治理与发展[M].北京:科学技术文献出版社,1992,300-309.
    [38]胡良军,邵明安.区域水土流失研究综述[J].山地学报,2001,19(1):69-74.
    [39] De Jong S.M,Paracchini M.L,BertoloF,et al.Regional assessment of soil erosion using the distributed model SEMMED and remotely sense data[J]. Catena, 1999, 37(3-4):291-308
    [40]刘新华,杨勤科,汤国安.中国地形起伏度的提取及在水土流失定量评价中的应用[J].水土保持学报,2001,21(1):57-62.
    [41]卢金发.黄河中游流域地貌形态对流域产沙量的影响[J].地理研究,2002,21(2):171-187.
    [42]赵文武,傅伯杰,陈利顶.陕北黄土丘陵沟壑区地形因子与水土流失的相关性分析[J].水土保持学报,2003,3(17):66-70.
    [43]牟金泽,孟庆枚.降雨侵蚀土壤流失预报方程的初步研究[J].中国水土保持,1983,(6):23-27.
    [44]江忠善,李秀英.黄土高原土壤流失预报方程中降雨侵蚀力和地形因子的研究[J].中国科学院西北水土保持研究所集刊,1988,(7):40-45.
    [45]甘枝茂.黄土高原侵蚀地貌与水土流失研究[M].西安:陕西人民出版社,1989.
    [46]陈渭南.黄土梁峁地区影响黄土侵蚀的地貌条件分析[J].地理科学, 1988,8(4):34-41.
    [47]华绍祖.黄河中游试验小流域的土壤侵蚀及水土保持效益[D].1982年国际土壤学术讨论会论文,1982.
    [48]白占国.从地貌空间结构特征预测土壤侵蚀的研究-以神府、东胜煤田为例[J].中国水土保持,1993,(12):23-24.
    [49]卢金发.燕山地区流域产沙与流域形态的初步分析[M].黄河粗泥沙来源即侵蚀产沙机理研究文集,气象出版社,1988.
    [50] Ahdrle R,Abranams A D.Fractal techniques and the suiface roughness of talus slope.earth surface processes and landforms, 1989,14(2):191-209.
    [51] Hack J T. Studies of longitudinal profiles in Virginia and Maryland [J]. U.S Geol. Surv Prof Pap,1957,294-298.
    [52]冯平,冯焱.河流形态特征的分维计算方法[J].地理学报,1997,52(4):324-329.
    [53]王协康,方铎.植被措施控制水土流失机理及其效益研究[J].四川大学学报(工程科学版),2000, 32(2):13-16.
    [54]何隆华,赵宏.水系的分形维数及其含义[J].地理科学,1996,16(2):124-128.
    [55]崔灵周.流域降雨侵蚀产沙与地貌形态特征耦合关系研究[D].2002届西北农林科技大学博士学位论文.
    [56]沈慧,姜凤歧.森林水土保持的效益评价综述[J].应用生态学报,1999,10(4):492-496.
    [57]黄明斌,康绍忠,李玉山.黄土高原沟壑区森林和草地小流域水文动态比较[J].自然资源学报,1999,14(3):226-231.
    [58]王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究,1998,11(6):14-23.
    [59]张志强,王礼先等.森林植被影响径流形成机制研究进展[J].自然资源学报,2001,16(1):79-84.
    [60]徐德应.森林调节水的能力[J].世界林业研究,1998,(6):24-28.
    [61] McMinn J W,Hewlett J D. First year water yield increase after forest cutting:an alternative model.J.For.,1975,73:654-655.
    [62] Swank W T, SwiftJ L W, Douglass J E.Streamllow changes associated with forestcutting, species conversions, and natural disturbances.In: Swank W TAnd Crossley D Aeds.Forest Hydrology and Ecologyat Coweeta.Ecol.Stud., 1988, 66:297-312.
    [63] Stednick J D. Monitoring the effects of timber water yield harvest on annual.Journal of Hydrology, 1996, 176:79-95.
    [64] Wang H S, Liu G B.Analyses on vegetation structures and the ircontrolling soil erosion.Journal of AridL and Resources and Environment, 1999, 13(2):62-68.
    [65] Chen Y Z.The source of coarsesilt and mechanism of sediment yield.Beijing: Meteorological Press, 1989.
    [66]穆兴民,徐学选.黄土高原人工林对区域深层土壤水环境的影响[J].土壤学报,2003,2(40):210-217.
    [67]王随继.黄河中游多沙粗沙区侵蚀产沙与植被相互作用的临界现象[J].水土保持学报,2004,4(18):20-24.
    [68] Zhu zh-hui. A model for estimating net productivity of natural vegetation. Chinese science bulletin, 1993, 38(22): 1913-1917.
    [69]郑元润,周广胜.基于NDVI的中国天然森林植被净第一生产力模型[J].植物生态学报,2000,24(1):9-12.
    [70] Zhang L,Dawes W R,Walker G R.Response of mean annual evapotranspiration to vegetation changes at catchment scale.Water Resour Res,2001,37(3):701-708.
    [71] Fu B J,Gulinck H,Masum M Z.Loess erosion in relation to land-use change in the ganspoelcatchment.central Belgium.Land Degradation& Rehabilitation, 1994,5: 261-270.
    [72] Erskine W D, Mahmoudzadeh A, Myer C.Land use effects on sediment yields and soil loss rates in small basins of Triassic sandtone near Sydney, NSW, Australia. Catena, 2002,49:271-287.
    [73] Rubiano J. Land use change in tropical hillsides: the influence of pattern on process.Advances in Environmental Monitoring and Modelling,2000, 1:61-79.
    [74]马雪华.岷江上游森林的采伐对河流流量和泥沙悬移质的影响[J].自然资源, 1980(3): 78-87.
    [75]张天曾.从永定河东沟西沟河川特征看森林植被的水文作用[J].自然资源, 1984(4): 90-98.
    [76]刘昌明,于静洁.森林拦蓄洪水的作用-以黄土高原林区为例[A].中国林学会森林水文与流域治理专业委员会.全国森林水文学术讨论会文集[C].北京:测绘出版社, 1989, 84-9O.
    [77]刘世荣,温远光.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996.
    [78] Arnold J G,Srinivasan R.Muttiah R S,et a1.Large area hydrologic modelling and assessment,Part I:model development[J].Journal of the American Water Resources Association,l998,34(1):73-89.
    [79]傅伯杰,陈利顶,邱扬,等.黄土丘陵沟壑区土地利用结构与生态过程[C].北京:商务出版社,2002,1-12.
    [80] Niehoff D, Fritsch U, Bronstert A.Land use impacts on storm runoff generation: scenarios of land use change and implantation of hydrological response in a mesoscale catchment in SW-Germany.Journal of Hydrology,2002,267:80-93.
    [81]傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响-以延安市羊圈沟流域为例[J].地理学报,1999,54(3):241-246.
    [82]孟庆华,尊伯杰,邱扬.黄土丘陵沟壑区不同土地利用方式的径流及磷流失研究[J].自然科学进展,2002, 12(4):393-397.
    [83]黄志霖,傅伯杰,陈利顶.黄土丘陵区不同坡度、土地利用类型与降水变化的水土流失分异[J].中国水土保持科学,2005,3(4):11-18.
    [84] Meyer L.D., Foster G.R. and Romkens M.J.M. Source of soil eroded by water from upland slopes. In: Present and Prospective Technology for Prediction Sediment Yield and Sources, 1975,177-189, Proc. Sediment Yield Workshop, USDA Sedimentation Lab., Oxford, MS. Agric. Res. Service ARS-40.
    [85]吴秀芹,蔡运龙.土地利用/土地覆盖变化与土壤侵蚀关系研究进展[J].地理科学进展,2003,22(6):576-575.
    [86]刘宝元,张科利,谢云.中国土壤侵蚀预报模型[C].北京:中国科学出版社,2000.
    [87]赵文武,傅伯杰,陈利项,等.黄土丘陵沟壑区集水区尺度土地利用格局变化的水土流失效应[J].生态学报,2004,24(7):1358-1354.
    [88] Russell S H,wIlliam w D.Landscape erosion and evolution modeling.Kluwer Academic/Plenum Publishers,2001,117-444.
    [89] Merritt W S,Letcher R A,Jakeman A J.A review of erosion and sediment transport models.Environmental Modelling&Software,2003,l8:761-799.
    [90]郝芳华,陈利群,刘昌明,等.土地利用变化对产流和产沙的影响分析[J].水土保持学报,2004,18(3):5-9.
    [91]陈利顶,傅伯杰,徐建英等.基于“源一汇”生态过程的景观格局识别方法[J].生态学报, 2003,23:2406-2413.
    [92]张志强,王礼先等.森林植被影响径流形成机制研究进展[J].自然资源学报,2001,16(1):79-84.
    [93]倪晋仁,李英奎.基于土地利用结构变化的水土流失动态评估[J].地理学报, 2001,56: 611-621.
    [94]傅伯杰,邱扬,王军,等.黄土丘陵小流域土地利用变化对水土流失的影响[J].地理学报,2002,57(6):717-722.
    [95]陈军锋,李秀彬.土地覆被变化的水文响应模拟研究[J].应用生态学报,2004,15(5): 833-836.
    [96]陈松林.基于GIS的土壤侵蚀与土地利用关系研究[J].福建师范大学学报,2000,1(16): 106-109.
    [97]邹亚荣,张增祥.基于GIS的土壤侵蚀与土地利用关系分析[J].水土保持研究,2002,1(9): 67-69.
    [98] Tamlin C, Olson, Wischmeier W H. Soil erodibility evaluations for soils on the runoff and erosion stations [J]. Soil science society American proceedings, 1963, 27(5): 590-592.
    [100]Wischmeier W H, Mannering J V. Relation of soil properties to its erodibility[J]. Soil science society American proceedings, 1969, 33(1): 131-137.
    [101]Wischmeier W H, Johnson C B, Cross B V. A soil erodibility nomograph for farmland and construction cites [J]. Journal of soil and water conservation, 1971, 26(5): 189-193.
    [102]卜兆宏,李全英.土壤可蚀性K值图编制方法的初步研究[J].遥感技术与应用,1994,9(4): 22-27.
    [103]张科利,彭文英,杨红丽.中国土壤可蚀性值及其估算[J].土壤学报,2007,1(44):7-13.
    [104]尹国康,陈钦峦.黄土高原小流域特征性指标与产沙统计模式[J].地理学报,1989,44(1): 32-44.
    [105]王治华,杜明亮,姚宁等.下垫面与侵蚀强度及其产沙量-黄土高原产沙模型研究之二[J].中国科学,B辑,1992,(10):1094-1100.
    [106]卢金发.黄河中游流域特性对产沙量与降雨关系影响[J].地理学报,2000,55(6):737- 743.
    [107]包卫锋,黄介生,孔详元.多时间尺度的流域水沙演化分析[J].武汉大学学报(工学版)2006,39(3):26-31.
    [108]穆兴民.黄土高原土壤水分与水土保持措施相互作用[J].农业工程学报,2000,2(16):41-45.
    [109]王飞,穆兴民,焦菊英等.基于含沙量分段的人类活动对延河水沙变化的影响分析[J].泥沙研究,2008,4: 8-13.
    [110]穆兴民,李靖,王飞等.基于水土保持的流域降水-径流统计模型及其应用[J].水利学报,2004,5:122-128.
    [111]Langbein L.B, Schumm A.Yield of sediment in relation to mean annual precipitation.Trans Am, Geophys, 1958, 39:1076-1084.
    [112]穆兴民.试论黄土区旱地土壤水资源的地带性与非地带性[J].土壤学报,1999,2(36):237-244.
    [113]黄秉维.编制黄河中游流域土壤侵蚀分区图的经验教训[J].科学通报,1955,(12):15-21.
    [114]许炯心.我国流域侵蚀产沙的地带性特征[J].科学通报,1994,11(39):1019-1022.
    [115]卢金发.黄河中游流域产沙量随降雨变化的区域分异[J].水土保持学报,2001,15(3): 27-31.
    [116]焦菊英,马祥华,王飞,等.渭河流域侵蚀产沙强度的区域分异特征[J].水土保持究,2004, 11(4):60-64.
    [117]Rosso R.An introduction to spatially distributed modeling of basin response[A].In:Rosso R.Advances in Distributed Hydrology[C].Bergamo: Water Resources Publication, 1992,3-30.
    [118]芮孝芳.流域水文模型研究中的若干问题[J].水科学进展,1997,8(1):94-98.
    [119]Schl G.B and M. Sivapalan. Scale Issues in Hydrological Modeling: A Review. In J.D. Kalma and M. Sivapalan. Scale Sons, BafinsLane, Chichester. 1995,Issues in Hydrological Modeling,39-48.
    [120]谢树楠,王向东,张仁.皇甫川降雨产流产沙模型及水沙变化原因分析[J].地理学报, 1995,8:15-19.
    [121]Saburo Komura. A Method for Predicting Sediment Yields from watershed. Natural Disaster, 1984,6(1):22-31.
    [122]Foster, et al. A Model to Estimate Sediment Yields from Field Sized Areas: Development of Model inCREAMS-A Field Scale Model for Chemicals. Runoff and Erosion From Agriculture Management System, 1990, 26(1):156-168.
    [123]Duan J, Miller N L. A generalized power function for the subsurface transmissivity profile in TOPMODEL [M],1997.
    [124]赵人俊.流域水文模拟—新安江模型与陕北模型[C].北京:水利电力出版社, 1984,106-130.
    [125]Simons. Engineering analysis of fluvia.Inc,1982.
    [126]谢树楠,王孟楼,张仁.黄河中游黄土沟壑区暴雨产沙模型的研究[R].北京:清华大学, 1990年.
    [127]汤立群.流域产沙动力学模型[M].全国泥沙基本理论研究学术讨论会论文集,北京:建材工业出版社,1992年.
    [128]汤立群,陈国祥.小流域产流产沙动力学模型[J].水动力学研究与进展,1997,2(12): 164-174.
    [129]Da wen YANG, Srikantha Herath Katumi Musiake.Spatial resolution sensitivity of catchment geomorphologic properties and the effect on hydrological simulation [J]. Hydrological Processes,2001,11:2085-2099.
    [130]王中根,刘昌明.基于DEM的分布式水文模型构建方法[J].地理科学进展,2002,5(21): 430-440.
    [131]Abbott M B,Bathurst J C,Cunge J A,et al.An introduction to the European Hydrologic System Hydrologic European,“SHE”1:History and philosophy of physically based distributed modeling system[J].Journal of Hydrology, 1986, 87:45-49.
    [132]Garrote L,Bras R L.A distributed model for realtime flood forecasting using digital elevation models[J].Journal of Hydrol,1995,167:279-306.
    [133]沈晓东,王腊春,谢顺平.基于栅格数据的流域降雨径流模型[J].地理学报,1995,3(50): 254-259.
    [134]郭生练.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,2000,33(6): 1-5.
    [135]Donald J R.Snowcover depletion curves and satellite snowcover estimates for snowmell runoff modeling Phd. Thesis [M]. University of Waterloo,Waterloo, Ontano,Canada.1992.
    [136]Neitseh S L,Arnold J G,Wiliams J R.Soil and Water Assessment Tool Users Manual (version 2000) [R].2001.
    [137]王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究[J].地理科学进展,2003, 22(1):79-87.
    [138]Wood E F.Sivapalan M, et al.Effects of spatial variability and scale with implications to hydrologic modeling. Journal of hydrol,1998,(2):29-47.
    [139]任立良.流域空间离散化及其对径流过程模拟的影响研究[J].地球信息科学,2000,6(2): 11-16.
    [140]Wood E F,Sivapalan M,Beven K.Similarity and scale in catchment storm response [J].Rev. Geophys,1990,28(1):1-18.
    [141]Bloschl G, Sivapalan M.Scale issues in hydrological modeling:a review, hydrol. proc.,1995, 9:1-4.
    [142]Reggiani P, Rientjes T.H.M. Flux parameterization in the representative elementary areasApproach: application to a natural basin [J]. Water Resour. Res., 2005, 41:1-18.
    [143]Zhang G. P, Savenije H. H. G. Rainfall-runoff modeling in a catchment with a complexGround water flow system: application of the Representative Elementary areas (REA) approach[J].Hydrol.Earth Syst.Sci. 2005, 9:243-261.
    [144]Kouwen N,Soulis E D,Pietroniro A etal Grouped response unit for distributed hydrological modeling [J].Wat.Resour.Plan Manag,ASCE,1993,1:289-395.
    [145]Kite G.W.The SLURP model [A].In Singh V P(ed) Computer models of watershed hydrology [C].Water Resource Publications, Highlands Ranch,CO,1995,521-561.
    [146]Becker, A.Criteria for a hydrologically sound structuring of large scale land surface process models. In: Kane, J.P. (Ed.), Advances in Theoretical Hydrology. Elsevier, Amsterdam, 1992, 97-111.
    [147]Schultz G.A. Hydrological modeling based on remote sensing information. Advances in Space Research,1993,13:149-166.
    [148] Becker, A, Abranams A D.Fractal techniques and the suiface roughness of talus slope.earth surface processes and landforms, 1989,14(2):191-209.
    [149]Becker, A., Klocking, B., Lahmer, W., Pfuzner, B.The hydrological modeling system ARC/ EGMO. In: Singh, V.P., Frevert, D.K. (Eds.), Mathematical Models of Large Watershed Hydrology. Water Resources Publications, LLC, Highlands Ranch, Colorado. 2002.
    [150]Beven, K.J., Kirkby, M.J.A physically based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 1979, 24(1):43-69.
    [151]赵海伟,夏达忠.传统新安江模型在流域分布式水文模拟中的解决方案.中国科技论文在线,http:www.paper.edu.cn.
    [152]王万忠,焦菊英.黄土高原水土保持减沙效益预测[M].郑州:黄河水利出版社,2002,7-52.
    [153]刘高焕,刘俊卫,朱会义.基于GIS的小流域地块单元划分与汇流网络计算[J].地理科学进展,2002, 2(21):139-145.
    [154]陈加兵,励惠国.基于DEM的福建省小流域划分研究[J].地球信息科学,2007,2(9): 76-77.
    [155]王中根,刘昌明,吴险峰.基于DEM的分布式水文模型研究综述[J].自然资源学报,2003,18 (2):1-6.
    [156]马勇,秦百顺,王宏等.渭河水沙变化及其影响因素分析[J].中国水土保持,2002,8:18-21.
    [157]陈发中,戴明英,吴卿.渭河水沙变化及特性分析[J].人民黄河,1999,21(8):16-19.
    [158]王宏,熊维新.渭河流域降雨产流产沙经验公式初探[J].中国水土保持,1994,8:16-19.
    [159]王国庆,王云璋.渭河流域产流产沙模型及径流泥沙变化原因分析[J].水土保持学报,2000,14(4):22-25.
    [160]王飞,李锐,穆兴民等.渭河流域水利水保措施减沙水代价分异特征与水沙调节模拟[J].中国水土保持科学,2004,2(2):12-17.
    [161]王万中,焦菊英.黄土高原水土保持减沙效益预测[M].郑州:黄河水利出版社,2002.
    [162]Knisel WG.CREAMS: A field-scale model for chemical. Runoff and erosion from agricultural management systems. Conservation research report No. 26, south east area, US Department of Agriculture, Washington, DC.1980.
    [163]Sharpley A N, Williams JR. Epic-erosion/productivity impact calculator: I model documentation. US Department of agriculture technical bulletin No. 1786. Us government printing office: Washington, DC.1990.
    [164]Yong RA, Onstad CA, Bosch DD, Anderson WP, AGNAPS: A No point source model for evaluating Agricultural watershed. Journal of soil and water conservation,1989,44:168-173.
    [165]SCS national engineering handbook.“Section 4: hydrology, chapter 4.”Soil conservation service, USDA, Washington, D.C.1985.
    [166]Victor M.Ponce, Richard H. Hawkins. Runoff curve number: Has it reached maturity? Journal of hydrologic engineering,1996,1(1): 11-18.
    [167]Bhuyan SJ, Mankin KR, Koelliker JK. watershed-scal AMC selection for hydrologic modeling. Transactions of ASAE,2003, 46: 237-244.
    [168]Cazier, D. J., and Hawkins, R. H. Regional application of the curve number method. water todayand tomorrow, proc., ASCE Irrig. And drain. Div. spec. conf., ASCE, New York.1984.
    [169]Bosznay, M. Generalization of SCS curve number method. J. Irrig. And drain. Engineer, ASCE,1989,115(1), 139-144.
    [170]穆宏强.SCS模型在石桥铺流域的应用研究[J].水利学报, 1992,10:79-85.
    [171]张秀英,孟飞,丁宁. SCS模型在干旱半干旱区小流域径流估算中的应用[J].水土保持研究,2003, 10(4):172-174.
    [172]罗利芳,张科利,付素华.径流曲线数法在黄土高原地表径流量计算中的应用[J].水土保持通报,2002,22(3):58-68.
    [173]魏文秋,谢淑琴.遥感资料在SCS模型产流计算中的应用[J].环境遥感,1992,4(7):243-251.
    [174]Mingbin Huang, Jacques et al. A modification to the soil conservation service curve number method for steep slopes in the loess plateau of china. Hydrological processes. 2005,19:1-11.
    [175]Ei-hassanin AS, Labib TM, Gaber EI. Effect of vegetation cover and land slope on runoff and soil losses from the watershed of Burundi. Agriculture, Ecosystems and Environment,1993,43:301-308.
    [176]Dodds W K.Distribution of runoff and rivers related to vegetative characteristics, latitude, and slope: a global perspective. Journal of the North American Benthological society,1997,16:162-168.
    [177]Huang CH.Empirical analysis of slope and runoff for sediment delivery from interrill areas. Soil science society of America journal,1995,59:982-990.
    [178]Philip JR. Hill slope infiltration: planar slopes. Water resources research,1991,27:109-117.
    [179]Evett SR, Dutt gr. Length and slope effects on runoff from sodium dispersed, compacted earth micro catchments. Soil science society of America journal,1985,49:734-738.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700