黄河口流路改变对三角洲演变影响的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80年代后期,随着黄河口向东延伸摆动,扩散至孤东海域的黄河入海泥沙数量急剧减少,致使孤东海域成为严重的侵蚀区。尽管1996年以后黄河改由清8出汊入海,但由于连年枯水少沙,在孤东垦东五及新滩油田,海岸线发生了大幅度的后退。1999年小浪底水库投入运用,自2002年起黄河进行了六次调水调沙,河口地区水沙特性发生了重大变化。针对小浪底水库运用后黄河来水来沙变异的新情况,科学分析黄河口现行流路泥沙输移、岸滩演变规律,预测黄河口改走北汊后河口区潮流场的时空变化特征,以及对改善孤东油田海堤冲刷现状所起的作用,将具有重要的科学意义。
     本文在分析河口地区风场及海洋动力条件的基础上,利用SMS(Surface-Water Modeling System)进行建模,采用无结构六点元网格,开展黄河河口及其周边大范围海域数值模拟研究,利用实测资料进行校核模型,证明SMS水动力模型能够初步达到复演和预测整个黄河三角洲附近海域潮流场、潮位、入海泥沙扩散规律、泥沙淤积形态和流路延伸发展趋势等方面的要求。
     利用校核后的模型模拟黄河口改走北汊后的潮流场及泥沙的时空变化,通过计算得出以下结论:
     黄河改走北汊河后,由于海洋、地形等条件的变化,泥沙输移将出现新的特点。入海泥沙扩散,沿垂直海岸方向范围小,沿海岸方向范围大,符合往复式潮流椭圆分布特征;同时,由于受柯氏力及潮流的影响,泥沙向河口两侧扩散,衰减距离不对称。黄河改走北汊河,按照近几年的水沙条件及河口位置,在行河初期对东营港不会有淤积影响;同时,按照计算结果推算,随时间的推移,河口在海洋动力以及柯氏力的作用下,除初期向东偏北方向,其后河口逐渐向东南方向延伸发育,口门离东营港的距离越来越远,入海泥沙对东营港的影响将越来越小。
     改走北汊后的流路将从孤东油田南围海堤以南入海,泥沙的扩散将对孤东油田产生直接的影响。孤东海区因地理位置的不同平均年淤积厚度在3-18cm之间,并且随着2002年后调水调沙入海沙量的增加,每年淤积厚度将增大。这将改善孤东油田堤角被淘空的现状,提高孤东大堤的安全性。同时,随着行水年限的增长,河口的推进将淤出大片土地,这将使部分海上石油开采的油田变为陆上开采。
     论文最后给出了建议。即:在做好来水来沙预报、加强河势与海洋动力观测、预报和科学技术研究工作的基础上,应进一步掌握河口演变规律,在不影响规划流路使用和总的行河年限的前提下,兼顾油田的发展和滩区油田的开采,科学地确定改走北汊的时机。
In the late 1980s, the sediment yields diffused to the Gudong sea area decrease drastically with the Yellow River estuary extending to the east, which make the sea area become a serious eroded area. Though the Yellow River changes the estuary to the Qing 8, as a result of low water and few sands in successive years and a lot of oil fields in GuDong, coastal line backs off seriously. In 1999, the Xiaolangdi Reservoir was put into use. The characteristic of water and sediment in the estuary area changes remarkably as a result of 6 times regulating water-sediment from the 2002. According to the characteristics of the incoming water and sediment affected by the Xiaolangdi reservoir, and considering the new case that Yellow River changes its main channel to the Beicha river, this will be important scientific significance for analyzing the sediment transport and the evolvement of the shoal, predicting the tidal current changes with time and space, improving the present erosion status for Gudong bank.
     Based on analyzing wind field in the estuary and the ocean hydrodynamic condition, this paper used the Surfer Water Model System (SMS), set up a two-dimensional triangular (three -corner and three-mid side nodes) elements model for simulating the Yellow River Estuary and the extension sea area around it, and verified the calculating results by actual material, proved the SMS is of capable of simulating and forecasting the flow fields, tide level, and sediment transport and coastal shoal evolvement of Yellow River Delta Area.
     This paper gets the following conclusions by calculating the checked model that has been used to simulate the tidal current and the sediment transport in the case that the Yellow River estuary alter to the Beicha river.
     The calculating data show new characteristics for sediment transportation as a result of changing ocean dynamic condition and terrain in condition that Yellow River estuary changes to the Beicha river. The range of the sediment transported into sea become narrow in vertical seacoast and widen along the seacoast which is consistent of the reciprocating tidal current ellipse character. At the same time, the sediment will accumulate to both sides of the estuary and the attenuation isn’t symmetry affected by Criolis’force and tidal current.
     According to the water and sediment condition and estuary position in recent years, the Dongying harbor will be not filled up in the early stage. Because new estuary is affected by the ocean hydrodynamic condition and the Criolis’force with the passage of time, it will extend to ENE in the early stage and then turn to southeast, this mouth will be away from the harbor and the effects aroused by the sand will be getting smaller.
     The route changed into Beicha river will flow into sea from the south of the Gudong sea wall; sediment diffuseness will affect the oil field directly. Averagely, the Gudong bay will be filled up between 3-18cm per year, and it will be strengthened with the sand quantity increase after the 2002. It will improve the sea wall scouring status, increasing the security of the Gudong bank. At the same time, the estuary will push out and creating a large area of land in near future which can make the oil exploits on land instead of in the sea.
     Some suggestions are obtained in the end of this paper. That is said it is necessary to master the rule of the estuary evolvement based on improving the forecast of flow and sediment, strengthening the observation of estuary channel process and ocean dynamic and research scientifically, First of all, it should make sure that changing the estuary does not affect an influence on the route and fixed number of year of channel. Also, the time of changing the estuary route scientifically must consider both the oil field development and its exploitation in beach area.
引文
[1]诸裕良,严以新,等.一维河网非恒定流及悬沙数学模型的节点控制方法.水动力学研究与进展,2001,16(4):503~510
    [2]林秉南,黄菊卿,李新春.钱塘江河口潮流输沙数学模型.泥沙研究,1981,(2):16~27
    [3] Mead,C.. An investigation of the suitability of two-dimensional mathematical models for predicting sand deposition in dredged trenches across estuaries. Journal of Hydraulic Research, 1999,37(4):444~464
    [4]叶锦培,何焯霞,周志德.珠江河口潮流输沙数学模型.人民珠江,1986,(6):7~15
    [5]严以新,童朝锋.洪奇沥水道航道整治工程可行性研究报.2004
    [6]窦希萍,李缇来,窦国仁.长江口全沙数学模型研究.明水利水运科学研究,1999(2):32~41
    [7]张东生,蒋勤.江苏北部灌河口悬沙输送数学模型.海洋学报,1991,13(1):125~136
    [8]舒良华,姜太良,方正.悬移质潮扩散的数值预测.海洋学报,1993,15(5):69~78
    [9]曹祖德,王桂芳,等.波浪掀沙潮流输沙的数值模拟.海洋学报,1993,15(l):107~110
    [10]曹祖德,王运洪.水动力泥沙数值模拟.天津:天津大学出版社,1994
    [11]朱志夏,韩其为,丁平兴.海岸悬沙运移数学模.海洋学报,2002,24(1):101~107
    [12] van Rjn,L.C . Mathematical modeling of morphological processes in the case of suspended sediment transport, Delft Hydraulics Communication, 1987
    [13] van Rjn,L.C. Field verification of 2-D and3-D suspended sediment models. Journal of Hydraulic Engineering,ASCE,1990, 116(10):1270~1288
    [14] O’Conno,B.A.&Nicholso,J.. A three-dimensional model of suspended particulate sediment transport, Coastal Engineering. 1988,12:157~174
    [15] Cancino. L. & Neves. R.. Hydrodynamic and sediment suspension modeling in estuarine systems: part l: Description of the numerical models. Journal of Marine systems,1999,22(2):105~116
    [16]陈虹,李大鸣.三维潮流泥沙运动的一种数值模拟.天津大学学报,1999,5(3):573~579
    [17]李蓓,唐士芳.河口海区开挖航道后三维潮流盐度泥沙数值模拟.水道港口,2000,(4):36~41
    [18]李孟国.河口海岸泥沙数值模型研究进展.海洋工程,2006,24(1):139~154.
    [19] Leendertse, J..A three-dimensional model for estuaries and coastal seas.The Rand Corporation, 1973
    [20] Kim, C., Lee, J.. A three-dimensional PC-based hydrodynamic model using an ADI scheme. Coastal Engineering, 1994, (23):271~287
    [21] Philips, N. A.. A coordinate system having some special advantages for numerical forecasting. Journal of Meteorology, 1957, (14):184~185
    [22] Mellor, G. L., Yamada, T.. A hierarchy of turbulence closure models for planetary boundary layers. Journal of Atmosphere Science, 1974,(31):1791~1806
    [23]林秉南,韩曾萃,等.潮汐水流泥沙输移与河床变形的二维数学模型.泥沙研究,1988(2):1~8
    [24]张东生,蒋勤.江苏北部灌河口悬沙输送数学模型.海洋学报,1991,13(1):125~136。
    [25] Lu Yongjun, Li Haolin, Dong Zhuang, Lu Jianyu and Hao Jialing. Two-dimensional mathematical model of tidal current and sediment for Oujiang estuary and Wenzhou bay. China Ocean Engineering, 2002, (16):107~122
    [26]丁平兴,胡克林,孔亚珍,朱首贤.长江河口波-流共同作用下的全沙数值模拟.海洋学报,2003,25(5):113~124
    [27]胡克林,丁平兴,朱首贤,孔亚珍.长江口附近海域台风浪的数值模拟-以鹿沙台风和森拉克台风为例.海洋学报(中文版) , 2004,5(26):23~33
    [28]易家豪,叶雪祥.长江口南港航道三维水流数值模型.第二次河流泥沙国际学术讨论会方集,1983
    [29]赵士清.长江口三维潮流数值模拟.水利水运研究,1985,(1):8~20
    [30] Leendertse, J.. A three-dimensional model for estuaries and coastal seas. The Rand Corporation, 1973
    [31]韩国其,汪德,许协庆.天然水流三维数值模拟的进展.河海大学科技情报, 1989,9 (1):13~22
    [32]刘桦,何友声.河口三维流动数学模型研究进展.海洋工程,2000,18(2):87~93
    [33]叶锦培,何焯霞,周志德.珠江河口潮流输沙数学模型.人民珠江,1986,(6):7~15
    [34]包芸,任杰.采用改进的盐度场数值格式模拟珠江口盐度分层现象.热带海洋学报, 2001,(04):28~34
    [35]时钟,陈伟民.长江口北槽最大浑浊带泥沙过程.泥沙研究,2000,1:29~38
    [36]郑金海,诸裕良.长江河口盐淡水混合的数值模拟计算.海洋通报,2001,20(4)
    [37]朱首贤,丁平兴,史峰岩,朱建荣.杭州湾、长江口余流及其物质输运作用的模拟研究Ⅱ-冬季余流及其对物质底输运作用.海洋学报,2000,22(6):1~12
    [38]史峰岩,朱首贤,朱建荣,丁平兴.杭州湾、长江口余流及其物质输运作用的模拟研究I-杭州湾、长江口三维联合模型.海洋学报,2000, 22(5):1~12
    [39]朱建荣,胡松.河口形状对河口环流和盐水入侵的影响.华东师范大学学报,2003,2: 68~73
    [40]朱建荣,胡松,傅得健,吴辉.河口环流和盐水入侵Ⅰ—模式及控制数值试验.青岛海洋大学学报,2003,33(2):180~184
    [41]胡松,朱建荣,傅得健,吴辉.河口环流和盐水入侵Ⅱ—径流量和海平面上升的影响.青岛海洋大学学报,2003,33 (3):337~342
    [42]李瑞杰,等.虎门太平水道航道整治工程潮流数模计算.水运工程,2003,350(3):38~42
    [43]李瑞杰,严以新,等.太平水道悬移质输运数学模型.泥沙研究,2003,(4):46~51
    [44]李瑞杰,等.珠江口崖门出海航道回淤分析.中国港湾建设,2005,135(2):5~7
    [45]丁平兴,等.波、流共同作用下的三维悬沙输运数学模型.自然科学进展,2001,11(2):147~152
    [46] Milliman, J.D., Meade, R.H.. World-wide delivery of river sediment to the oceans. Journal of Geology, 1983, (91): 1~21
    [47] Guangxue Li,Zuosheng Tang, Shuhong Yue, Kelin Zhuang, Helong Wei. Sedimentation in the shear front off the Yellow River mouth. Continental Shelf Research, 2001,(21):605~625.
    [48] LI Guangxue,YUE Shuhong,ZHAO Dongbo,SUN Yingtao. RAPID DEPOSITION AND DYNAMIC PROCESSES IN THE MODERN YELLOW RIVER MOUTH.海洋地质与第四纪地质,2004,24(3):29~35
    [49]庞重光,杨作升,张军,雷坤.黄河口最大浑浊带特征及其时空演变.黄渤海海洋,2000, 18(3):1~6
    [50]黄胜,卢启苗,河口动力学.北京:水利电力出版社,1995,176~177.
    [51]王恺忱,董年虎,王开荣.黄河入海泥沙对大口河海区影响分析.黄科院科学研究论文集第三集,河南:河南科学技术出版社,1992,4
    [52]张燕青,胡春宏.黄河口输沙能力关系的探讨.泥沙研究,1997,6(2)
    [53]李殿魁,杨玉珍,等.延长黄河口清水沟流路行水年限的研究.黄河水利出版社,2002.3
    [54]李泽刚.黄河口外流场及其变化.人民黄河,1990,4:31~36
    [55]叶青超.流域环境演变与水沙运行规律研究.山东科学技术出版社,1994,10
    [56]孙文心,冯士笮,秦曾灏.超浅海风暴潮的数值模拟.海洋学报,1979,1(2):193~211
    [57]张士奇.一、二维连接的河口冲淤数模.水利水电技术,1997,28(7):14~18
    [58]庞重光,杨作升.黄河口泥沙异重流的数值模拟.青岛海洋大学学报,2001,31(5): 762~768
    [59]王厚杰.黄河口悬浮泥沙输运三维数值模拟:[博士学位论文].青岛:中国海洋大学
    [60] Wright L. D.,Yang Z S. Sediment transport and deposition at Huanghe mouth. Continetal shelf Research, 1990, 10(2):36~44
    [61]张军.黄河口泥沙异重流的特性、运动及机制:[博士学位论文].青岛:中国海洋大学
    [62]李东风,张红武,许雨新,张俊华.黄河下游平面二维水沙运动模拟的有限元方法.泥沙研究,1999,4:59~63
    [63]李东风,张红武,钟德钮,吕志咏.黄河河口水沙运动的二维数学模型.水利学报, 2004,6:1~6
    [64]李东风,张红武,钟德钮,吕志咏.黄河河口潮流和泥沙淤积过程数值分析研究.水利学报,2004,11:74~80
    [65]曹文洪,何少荃,方春明.黄河河口海岸二维非恒定水流泥沙数学模型.水利学报, 2001,1:42~48
    [66]李谊纯,孙效功,李瑞杰,吕丹梅.黄河三角洲洪、枯季泥沙冲淤的数值模拟.青岛海洋大学学报,2003,33(2):281~286
    [67]孙琪,孙效功,李瑞杰.窄缝法在河口区悬沙输运数值计算中的应用.海洋与湖沼, 2001,32(3):296~301.
    [68]江文胜,孙文心.渤海悬浮颗粒物的三维输运模式Ⅰ模式.海洋与湖沼,2001, 31(6):682~688
    [69]江文胜,孙文心.渤海悬浮颗粒物的三维输运模式Ⅱ模拟结果.海洋与湖沼,2001,32(6):94~100
    [70]尹学良.黄河口的河床演变.北京:中国铁道出版社,1997
    [71]庞重光,等.黄河口汛期泥沙分配及其对水流结构的影响.泥沙研究,2001(4):47~52
    [72]黄世光,王志豪.近代黄河三角洲海域泥沙的冲淤特征.泥沙研究,1990,(2):13~220
    [73]成国栋,等.黄河三角洲现代沉积作用及模式.北京:地质出版社,1991
    [74]席家治,等.黄河入海流路规划报告.黄委会勘测规划设计研究院,1989,8
    [75]李泽刚.黄河口拦门沙的形成和演变.地理学报,1997,1:54~62
    [76]胡春宏,张治昊.水沙过程变异条件下黄河口拦门沙的演变响应与调控.水利学报, 2006,(5):511~521
    [77]张治昊,胡春宏.黄河口水沙过程变异及其对河口海岸造陆的影响,水科学进展,2007,(05):337~341
    [78]韦直林,赵连军,谈广鸣,余新明.小浪底水库运用初期黄河下游河道冲刷模拟计算.四川大学学报(工程科学版),2005,(2):10~15
    [79]黄祖珂,黄磊.潮汐原理与计算.中国海洋大学出版社,2005
    [80]王厚杰,杨作升,毕乃双.黄河口泥沙输运三维数值模拟Ⅰ-黄河口切变锋.泥沙研究,2006,4:1~9
    [81] Wang, H., Yang, Z., Guo, Z., Sun, X. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe(Yellow River) mouth. Continental Shelf Research, 2005
    [82]李殿魁,等.巧用海动力输沙建设黄河口双导堤工程技术研究.黄河水利出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700