洪、枯季黄河口水沙输运的三维数值模拟及特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先对黄河口海域实际调查资料进行了充分分析和讨论,在此基础上,将EOMSED数值模型应用到黄河口,根据黄河口的实际岸线和地形,建立了一个基于正交曲线网格的三维黄河口水沙输运数值模型。利用该模型成功的模拟了黄河口洪、枯季水沙输运的过程,进而结合实测资料分析了洪、枯季黄河水沙扩散的基本特征。最后针对泥沙输运中所发生特殊沉积动力现象(最大混浊带、异重流),初步探讨了其形态特征和形成机制。通过本文的工作,初步得到以下几点结论:
     ECOMSED模型对潮流作用下的黄河口水沙输运过程的模拟是可信的。本文应用ECOMSED模型模拟了渤海潮流,进而模拟了黄河口地区流场、盐度场和泥沙场,经过验证其模拟结果与实测结果符合较好。
     枯季黄河口水沙以异轻羽状流的形式向海扩散,高潮时盐水楔侵入河道,呈“墙”状分布,阻挡了淡水的向海扩散。洪季黄河口水沙以异轻流和异重流两种形式向海输运,异轻流仍然是水沙扩散的重要形式之一,底部盐水上溯受高浓度泥沙异重流的影响,上溯距离大大缩短。
     最大浑浊带发生在流速较小的涨落潮的交替阶段,形成于向陆的密度流和上游向海的径流在河道低层辐合的滞流点处,此处是泥沙的汇合地,流速很小有利于泥沙的沉降,而由流场辐合产生的上升流又使该处泥沙不易落淤,造成此处水体含沙量明显高于别处,从而形成最大浑浊带。
     泥沙异重流是发生在高含沙量径流入海过程中的泥沙输运现象,并且要求径流含沙量分布是分层的;异重流输沙距离很短,仅在水深6m以浅;落潮时由于潮流变小,异轻流输沙量变大,此时泥沙异重流的含沙量降低。
In this paper, the survey data in the Huanghe estuary area are fully analyzed and discussed. Then the ECOMSED numerical model is applied to the Huanghe estuary. A 3D transportation simulation model with the orthogonal curvilinear grid which is based on the coastal line and terrain of Huanghe estuary is built up. With this model, the transportation processes of the fresh water and sediment in the Huanghe estuary during flood and Drought are successfully simulated. Then the basic dispersing character of the fresh water and sediment during flood and drought is analyzed based on the survey data. There are some particular depositional dynamic phenomena, such us maximum turbidity zone, hyperpycnal flow, which are found during the simulation. The shape character and the dynamic mechanism of these phenomena are discussed in this paper. The following results are obtained throughout the work:The simulation result of ECOMSED model about the transportation process of the fresh water and sediment in the Huanghe estuary with the effect of the tide current is believable. In the paper, the tide current of Bohai and then the current, salinity, sediment concentration in the Huanghe estuary are simulated. The result complies with the survey data after verification.During drought, the fresh water and the sediment disperse into the sea as the hypopycnal flow. The salt water intrudes into the channel like a wall and stops the dispersing of the fresh water at the flow time. During flood, the fresh water and the sediment disperse in the shape
    of both hypopycnal flow and hyperpycnal flow. And the hypopycnal flow is also a important factor of their dispersion. The salt water which traces upward along the sea bottom can only trace a shorter distance because of the impact of the hyperpycnal flow.The estuarine maximum turbidity zone occurs at the time when ebb and flow alternates and the tide speed is relatively low. It is located at the stagnation point on the river bottom where the land-ward density induced current and the river current meet. Both the upstream and downstream currents convey sediments to the stagnation point that induces the convergence of sediments, and the upwelling current here makes sediment difficult to settle down. As a result, the sediment concentration near the stagnation point is larger than the other area, then the maximum turbidity zone occurs.Hyperpycnal flow occurs during the transportation of the high sediment concentration flow into the sea when the sediment concentration of the river flow is layered. Hyperpycnal flow can only carry the sediment to a short distance where the water is not deeper than 6 rn. At the ebb, the sediment concentration of the hyperpycnal flow reduces as more sediment disperses with the hypopycnal flow.
引文
[1] HydroQual, Inc. A Primer for ECOMSED(Version 1.3), One Lethbridge Plaza Mahwah, N. J. USA, 2002.
    [2] 李泽刚.黄河口附近海区水文要素基本特征.黄渤海海洋,2000,18(3):20-28.
    [3] 陈俊卿,张建华,崔玉刚,何传光.黄河口孤东及新滩海域流场调查分析.人民黄河,2004,26(12):14-16.
    [4] 庞家珍,姜明星.黄河河口演变(Ⅰ).海洋湖沼通报,2003,3:1-13.
    [5] 鲍献文,万修全,吴德星,郭心顺.2000年夏末和翌年初冬渤海水文特征.海洋学报,2004,26(1):14-24.
    [6] 乐肯堂.黄河口的变迁对黄河冲淡水分布的影响.海洋科学集刊,1995,36:81-92.
    [7] 朱兰部,赵保仁,刘克修.黄河冲淡水转向问题的初步探讨.海洋科学集刊,38:61-67.
    [8] 高会旺,吴德星,白洁,石金辉,李正炎,江文胜.2000年夏季莱州湾生态环境要素的分布特征.青岛海洋大学学报,33(2):185-191.
    [9] 崔毅,陈碧鹃,任胜民,陈聚法,宋云利.渤海水域生物理化环境现状研究.中国水产科学,3(2):1-12.
    [10] 方国洪,王凯,郭丰义,魏泽勋,范文静,张冬生,毕家胜.近30年渤海水文和气象状况的长期变化及其相互关系.海洋与湖沼,2002,33(5):515-525.
    [11] Guangxue Li, Zuosheng Tang, Shuhong Yue, Kelin Zhuang, Helong Wei. Sedimentation in the shear front off the Yellow River mouth. Continental Shelf Research, 2001, 21: 605-625.
    [12] Xiaojun Yang, Michiel C. J. Damen & Robert A. van Zuidam. Satellite remote sensing and GIS for the analysis of channel migration changes in the active Yellow River Delta, China. JAG, 1999, 1 (2): 146-157.
    [13] Guangxue Li, Kelin Zhuang, Helong Wei. Sedimentation in the Yellow River delta. Part Ⅲ. Seabed erosion and diapirism in the abandoned subaqueous delta lobe. Marine Geology, 2000, 168: 129-144.
    [14] Guangxue Li, Helong Wei, Yeshen Han, Yiji Chen. Sedimentation in the Yellow River delta, part Ⅰ: flow and suspended sediment structure in the upper distributary and the estuary. Marine Geology, 1998, 149: 93-111.
    [15] Guangxue Li, Helong Wei, Shuhong Yue, Yiji Cheng, Yeshen Han. Sedimentation in the Yellow River delta, part Ⅱ: suspended sediment dispersal and deposition on the subaqueous delta. Marine Geology, 1998, 149: 113-131.
    [16] Jiongxin Xu. Implication of relationships among suspended sediment size, water discharge and suspended sediment concentration: the Yellow River basin, China. Catena, 2002, 49: 289-307.
    [17] Changxing Shi, David Dian Zhang, Lianyuan You. Sediment budget of the Yellow River delta, China: the importance of dry bulk density and implications to understanding of sediment dispersal. Marine Geology, 199 (2003): 13-25.
    [18] 褚忠信,孙效功,张晶.从遥感影像读出实测点对应像素灰度值的一种算法.电脑开发与应用,2003,16(10):25-26.
    [19] 程义吉,杨晓阳,孙效功.黄河口清水沟流路原河道停水后海岸演变.人民黄河,2003,25(11):29-31.
    [20] 李谊纯,孙效功,李瑞杰,吕丹梅.黄河三角洲洪、枯季泥沙冲淤的数值模拟.青岛海洋大学学报,2003,33(2):281-286.
    [21] 胥可辉,孙效功,刘展,冯兰娣.基于MapObjects组件的海岸带地理信息系统开发最佳技术.青岛海洋大学学报,2002,32(5):770-776.
    [22] 冯兰娣,孙效功,胥可辉.利用海岸带遥感图像提取岸线的小波变换方法.青岛海洋大学学报,2002,32(5):777-781.
    [23] 孙琪,孙效功,李瑞杰.窄缝法在河口区悬沙输运数值计算中的应用.海洋与湖沼,2001,32(3):296-301.
    [24] 虞志英,张国安,金镏,包四林.波流共同作用下废黄河河日水下三角洲地形演变预测模式.海洋与湖沼,2002,33(6):583-590.
    [25] 崔承琦,施建堂,张庆德.古代黄河三角洲海岸的现代特征——黄河三角洲潮滩时空谱系研究.2001,20(1):46-52.
    [26] 刘勇,李广雪,邓声贵,赵东波,温国义.黄河废弃三角洲海底冲淤演变规律研究.海洋地质与第四纪地质,2002,22(3):27-34.
    [27] 李泽刚.黄河口拦门沙的形成和演变.地理学报,1997,52(1):54-62,
    [28] 庞重光,杨作升.黄河口泥沙异重流的数值模拟.青岛海洋大学学报,2001,31(5):762-768.
    [29] 庞重光,杨作升,张军,雷坤.黄河口最大浑浊带特征及其时空演变.黄渤海海洋,2000,18(3):1-6.
    [30] 李广雪.黄河入海泥沙扩散与河海相工作用.海洋地质与第四纪地质,1999,19(3):1-10.
    [31] 李广雪,刘守全,姜玉池,魏合龙,庄克琳,杨于庚,李阳,鹿洪友,徐英霞.黄河三角洲北部海底刺穿初步研究.1999,29(4):379-384.
    [32] 崔承琦,李师汤,孙晓霞,施建堂,范德江.黄河三角洲海岸岸线和潮水沟体系发育及其分维研究——黄河三角洲潮滩海岸时空谱系研究Ⅲ.海洋通报,2001,20(6):60-70.
    [33] 王三,候杰娟.基于遥感技木的黄河三角洲河口土地变迁研究.西南农业大学学报,2002,24(1):86-88.
    [34] 崔承琦,孙晓霞,施建堂,张庆德.近代黄河三角洲海岸发育体系——黄河三角洲潮滩海岸时空谱系研究Ⅱ.海洋通报,2001,20(5):31-39.
    [35] 孙效功,赵海虹,崔承琦.黄河三角洲潮沟潮滩体系的分维特征.海洋与湖沼,2001,32(1):74-80.
    [36] 我国河口最大浑浊带研究的新认识.地球科学进展,1995,10(2):210-212.
    [37] 陈卫民,杨作升.现代长江、黄河河口水下三角洲不稳定性的对比研究.青岛海洋大学学报,2001,31(2):249-255。
    [38] 李广雪,成国栋,魏合龙,潘为刚,任于灿,丁东,周永青,赵杰仁.现代黄河口区流场切变带.科学通报,1994,39(10):928-932.
    [39] 陈彰榕.现工黄河口拦门沙的形态和演化.青岛海洋大学学报,1997,27(4):539-545.
    [40] 张世奇.黄河口及三角洲冲淤演变计算原理及方法.泥沙研究,1997,2:23-26
    [41] 沈焕庭,贺松林,茅志昌,李九发.中国河口最大浑浊带刍议.泥沙研究,2001,1:23-29.
    [42] 张莉莉,李九发,沈焕庭.中国主要河口拦门沙的研究进展.海洋科学,2001,25 (10):33-36.
    [43] 张彩云,杨作升,张勇,黄海挺.Mapinfo在黄河口拦门沙研究中的应用.海岸工程,2002,21(1):1-5.
    [44] 韩景瑞,王世溪.黄河三角洲海库线蚀退原因及对策.石油工程建设,2002,28(4):13-15.
    [45] 王厚杰.黄河口悬浮泥沙输运三维数值模拟.中国海洋大学博士论文.
    [46] 张军.黄河口泥沙异重流的特性、运动及机制.中国海洋大学博士论文.
    [47] 孙效功,杨作升.利用输沙量预测现代黄河三角洲的面积增长.海洋与湖沼,1995,26(1):76-82
    [48] 孙效功,杨作升,陈樟榕.现行黄河口海域泥沙冲淤的定量计算及其规律探讨.海洋学报,1993,15(1):129-136
    [49] 孙效功,杨作升,陈樟榕.黄河三角洲埕北海区泥沙冲淤分析.青岛海洋大学学报,青年教师海洋地质论文专集.1993,23(1):37-44.
    [50] 陈红,李大鸣.三维潮流泥沙运动的一种数值模拟.天津大学学报,1999,32(5):574-579.
    [51] 朱志夏,韩其为,丁平兴.海岸悬沙运移数学模型.海洋学报,2002,24(1):101-107.
    [52] 孙文心,冯士笮,秦曾灏.超浅海风暴潮的数值模拟.海洋学报,1979,1(2):193-211.
    [53] 陈国祥,陈界仁,沙捞·巴里.三维泥沙数学模型的研究进展.水利水电科技进展,1998,18(1):13-18.
    [54] 李东风,张红武,许雨新,张俊华.黄河下游平面二维水沙运动模拟的有限元方法.泥沙研究,1999,4:59-63.
    [55] 李东风,张红武,钟德钰,吕志咏.黄河河口水沙运动的二维数学模型.水利学报,2004,6:1-6.
    [56] 李东风,张红武,钟德钰,吕志咏.黄河河口潮流和泥沙淤积过程数值分析研究.水利学报,2004,11:74-80.
    [57] 曹文洪,何少苓,方春明.黄河河口海岸二维非恒定水流泥沙数学模型.水利学报,2001,1:42-48.
    [58] 江文胜,孙文心.渤海悬浮颗粒物三维输运模式的研究Ⅱ.模拟结果.海洋与湖沼,2001,32(1):94-100.
    [59] Jiang We shen. A STUDY ON THE TRANSPORT OF SUSPENDED PART ICULA TE MATTER FROM THE YELLOW RIVER BY USING A 3D PART ICL E MODEL. JOURANL OF OCEAN UNIVERSITY OF QINGDAO. 1997, 27 (4): 439-444.
    [60] 师长兴,章典,尤联元,李炳元.黄河口泥沙淤积估算问题和方法—以钓口河亚三角洲为例.地理研究,22(1):49-59.
    [61] 胡春宏,吉祖稳,王涛.黄河口海洋动力特性与泥沙的输移扩散.泥沙研究,1996,4:1-10.
    [62] LI Guangxue,YUE Shuhong,ZHAO Dongbo,SUN Yingtao.RAPID DEPOSITION AND DYNAMIC PROCESSES IN THE MODERN YELLOW RIVER MOUTH.海洋地质与第四纪地质,2004,24(3):29-35.
    [63] 胡春宏,曹文洪.黄河口水沙变异与调控Ⅰ—黄河口水沙运动与演变基本规律.泥沙研究,2003,5:1-7.
    [64] 庞重光,杨作升,张军.黄河口汛期泥沙分布特征及其对水流结构的影响.泥沙研究,2001,4:47-52.
    [65] 庞家珍,刘浩泰,王勇,韩慧卿,姜明星.黄河口拦门沙与盐水楔特征及其演变.海洋湖沼通报,1997,3:1-10.
    [66] 谷国传,胡方西,胡辉,李兴华,韩明宝.长江口外高盐水入侵分析.东海海洋,1994,12(3):1-11.
    [67] 史峰岩,孙文心.极坐标变换变边界模型及其应用.海洋与湖沼,1995,26(4):369-376.
    [68] 时钟,陈伟民.长江口北槽最大浑浊带泥沙过程.泥沙研究,2000,1:29-38.
    [69] 朱建荣,丁平兴,胡敦欣.2000年8月长江口外海区冲淡水和羽状锋的观测.海洋与湖沼,2003,34(3):249-255.
    [70] 龚政,张长宽,张东生,金勇.长江口正压、斜压诊断及斜压预报模式——三维流场数值模拟.海洋工程,2004,22(2):39-45.
    [71] 郑金海,诸裕良.长江河口盐淡水混合的数值模拟计算.海洋通报,2001,20(4):1-10.
    [72] 朱建荣,傅德健,吴辉,戚定满.河口最大浑浊带形成的动力模式和数值试验.海洋工程,2004,22(1):67-73.
    [73] 朱建荣,胡松.河口形状对河口环流和盐水入侵的影响.华东师范大学学报,2003,2:68-73.
    [74] 朱建荣,胡松,傅得健,吴辉.河口环流和盐水入侵Ⅰ——模式及控制数值试验.青岛海洋大学学报,2003,33(2):180-184.
    [75] 胡松,朱建荣,傅得健,吴辉.河口环流和盐水入侵Ⅱ——径流量和海平面上升的影响.青岛海洋大学学报,2003,33(3):337-342,
    [76] 史峰岩,朱首贤,朱建荣,丁平兴.杭州湾、长江口余流及其物质输运作用的模拟研究Ⅰ.杭州湾、长江口三维联合模型.海洋学报,2000,22(5):1-12.
    [77] 朱首贤,丁平兴,史峰岩,朱建荣.杭州湾、长江口余流及其物质输运作用的模拟研究Ⅱ.冬季余流及其对物质底输运作用.海洋学报,2000,22(6):1-12.
    [78] 朱建荣,朱首贤.ECOM模式的改进及在长江河口、杭州湾及邻近海区的应用.海洋与湖沼,2003,34(4):364-374.
    [79] 赵保仁,曹德明.渤海冬季环流形成机制动力学分析及数值研究.海洋与湖沼,1998,29(1):87-96.
    [80] Schubel J R. Turbidity maximum of the Northern Chesapeake Bay. Science, 1968, 161: 1013-1015.
    [81] Festa J F, Hansen D V. Turbidity maximum minpartially mixed estuaries: a two dimensional numerical model. Estuarial and Coastal Marine Science, 1978, 7: 347-359.
    [82] Officer C B. Discussion of the turbidity maximum minpartially mixed estuaries. Estuarine and Coastal Marine Science, 1980, 10: 239-246.
    [83] Erie Wolanski, Brian King, Suncan Galloway. Dynamics of the turbidity maximum in the Fly River Esturary. Papuatuaries, 1993, 16: 1113-1125.
    [84] Uncle R J, Stephens J A. Nature of the turbidity maximum in the Tamar Estuary. U. K. Estuarine Coastal and shelf Science, 1993, 36: 413-431.
    [85] 陈吉余,沈焕庭.长江河口最大浑浊带和河口锋研究论文选集.华东师范大学学报 (增刊),1995:1-15.
    [86] 窦希萍,李裎来,窦国仁.长江口全沙数学模型研究.水利水运科学研究,1996,2:136-145.
    [87] 沈焕庭,郭成涛,朱慧芳等.长江河口最大浑浊带的变化规律及成因的探讨.长江河口动力过程和地貌演变,上海.上海科学技术出版社,1988,216-228.
    [88] 孙志林.中国强混合河口最大浑浊带成因研究.海洋学报,1993,15(3):63-72.
    [89] 刘卓,郭冬建,朱江等.长江口自适应网格的构造与水流和泥沙冲淤的数值模拟的初步研究.海洋学报,1999,21(4):96-105.
    [90] Parker G, Garcia M. Experiments on turbidity currents over an erodabl ebed. Jhydraul Res, 1987, 25: 123-147
    [91] Dade WB. A box model for non-entraining, suspension-driven gravity currents. Sedimentology, 1995, 42(2): 453-471
    [92] 冯士笮,孙文心.物理海洋数值计算,长沙:河南科学技术出版社,1992.
    [93] 国家科委“九.五”科技攻关项目子课题:黄河口冲淤灾害预测技术研究(96-922-03-02-02)成果汇编,青岛:青岛海洋大学河口海岸带研究所,国家海洋局第二海洋研究所,国家海洋局海洋动力过程与卫星海洋学重点实验室,2000。
    [94] 季仲贞.计算地球流体力学(讲义),北京:中国科学院研究生院地学部教学部,1999.
    [95] 成国栋.黄河三角洲现代沉积作用及模式,北京:地质出版社,1991.
    [96] 黄胜.中国河口治理,北京:海洋出版社,1992.
    [97] 李心铭.流体动力学,青岛:青岛海洋大学出版社,1996.
    [98] 钱宁,万兆惠.泥沙运动力学,北京:科学出版社,1991.
    [99] 王宝灿,黄仰松.海岸动力地貌,上海:华东师范大学出版社,1989.
    [100] 赵今声,赵子丹等.海岸河口动力学,北京:海洋出版社,1993.
    [101] 胡健伟,汤怀民.微分方程数值方法,北京:科学出版社,2000.
    [102] 叶安乐,李凤歧.物理海洋学,青岛:青岛海洋大学出版社,1992.
    [103] 孙文心、江文胜、李磊.近海环境流体动力学数值模型,北京:科学出版社,2004.
    [104] 张瑞瑾.河流泥沙动力学(第二版),北京:中国水利电力出版社,1998.
    [105] 曹祖德,王运洪.水动力泥沙数值模拟,天津:天津大学出版社,1994.
    [106] 黄胜.中国河口治理,北京:海洋出版社,1992.
    [107] 臧启运.黄河三角洲近岸泥沙,北京:海洋出版社,1996.
    [108] 蔡明理,王颖.黄河三角洲发育演变及对渤、黄海的影响,南京:河海大学出版社,1999.
    [109] 李平,朱大奎.波浪在黄河三角洲形成中的作用.海洋地质与第四纪地质,1997,17(2):39-46.
    [110] 冯秀丽,沈渭铨,杨荣民,杨中卿.现代黄河口区沉积环境与沉积物工程性质的关系.青岛海洋大学学报,1994:21-28.
    [111] 杨作升,陈卫民,陈彰榕,吴光华,曹立华,沈谓铨.黄河口水下滑坡体系.海洋与湖沼.25(6):573-581.
    [112] 常瑞芳,崔青,欧素英.黄河口水下三角洲海底冲蚀沟发育的动力机制探讨.海洋学报,1999,21(3):90-97.
    [113] 山东省情资料网—海洋部分.
    [114] BLUMBERGAF, MELLOR GL. A description of a three-dimensional coastal ocean circulation model[J]. Heaps N, ed. Three-dimensional Coastal Models [M], Vol. 4. Washington D C: Amer Geophys Union, 1987: 208-238.
    [115] MELLOR G L, YAMADA T. Development of a turbulence closure model for geophysical fluid problem. Rev Geophys Space Phys, 1982, 20: 851-875.
    [116] SMAGORINSKY J. General circulation experiments with the primitive equations I. The basic experiments. Mon Weather Rev, 1963, 91: 99-164.
    [117] 中国水利学会泥沙专业委员会主编.泥沙手册,北京:中国环境科学出版社,1992.
    [118] 黄河水利委员会.黄河泥沙公报(2002).黄河水文网.
    [119] 时钟.河口海岸底部边界层和细颗粒泥沙过程.海洋科学,2000,4(11):26-29.
    [120] QIN Zenghao, LI Yongping, YUAN Yaochu, YU Runling. A three-dimensional model study on ocean dynamic response to traveling cyclone over the Huanghai Sea. Acta Oceanologica Sinica, 2005, 24(1): 60-75.
    [121] Zhu Shouxian, Shi Fengyan, Zhu J ianrong, Ding Pingxing. Numerical study on residual current and its impact on mass transport in the Hangzhou Bay and the Changjiang Estuary I. A 3-D joint model of the Hangzhou Bay and the Changjiang Estuary. Acta Oceanologica Sinica, 2001, 20 (1): 1-13.
    [122] S. Sankaranarayanan, N. J. Shankar&H. F. Cheong. Three-Dimensional Finite Difference Model For Transport Of Conservative Pollutants. Ocean engrg. 1998, 25(6): 425-442
    [123] Wright L. D., Yang Z S. Sediment transport and deposition at Huanghe mouth. Continetal shelf Research, 1990, 10 (2): 36-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700