基于循环经济的低品位难处理氧化锌矿选冶联合新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是锌金属第一生产大国和消费大国,锌矿资源紧缺问题已日益凸现,每年约有三分之一的锌原料需要进口,资源供应不足已成为制约社会可持续发展的重要因素。然而,我国锌矿资源尤其是低品位高杂质的氧化锌矿由于缺乏高效的加工处理技术而没有得到合理利用。
     云南兰坪铅锌矿具有矿石品位低、结构复杂、泥化严重、碱性脉石含量高等特点,是一种典型的难处理矿石,其氧化锌矿中的锌金属储量约为400万吨,单就氧化锌矿而言,规模居世界第一位。国内有关单位曾多次进行选矿技术攻关,虽然在小型试验和扩大连选试验中取得了良好的技术指标,但未能进行工业化生产。因此,开采出来的难处理矿石只能堆存甚至废弃,目前已经堆存的氧化锌矿石总量就有3000多万吨。主要原因有以下两点:第一,该矿石若采用单一浮选法处理,虽然可取得较高品位的锌精矿,然而回收率太低,不利于氧化锌的回收,另外还有大量的锌金属损失在矿泥中,造成了资源的浪费,与循环经济所倡导的资源综合利用的目的背道而驰;第二,若采用湿法酸浸工艺直接对原矿进行处理,由于碱性脉石含量高,这样不但会造成酸耗急剧上升,还会增加湿法炼锌的能耗,同样违背了循环经济的节能和降耗原则。因此,提高兰坪氧化锌矿的回收率,尽快解决兰坪以及类似氧化锌矿石的高效利用问题,对于我国低品位难处理氧化锌矿资源的开发以及相关产业的发展具有重大意义。
     本论文在发展循环经济的技术背景下,针对兰坪低品位氧化锌矿的处理难点,创新性地提出了一种选冶联合工艺流程,即“浮选脱钙—预富集—湿法炼锌”工艺。通过系统和深入的试验研究,采用新工艺,可获得全流程总锌回收率为86.56%的良好技术指标,而且氧化锌粗精矿(湿法酸浸给料)的耗酸量仅为2.55t/t·Zn,大幅度降低了湿法炼锌的耗酸量。新工艺技术符合循环经济的三大原则,既发挥了浮选脱杂的优势,又发挥了酸浸能够充分回收氧化锌矿物的优势,整体上取得了提高资源利用率与节能、降耗和减排的效果。在废水零排放的苛刻条件下,通过采取有效的解决措施,实现了浮选回水和冶炼废水的循环利用。
     湿法炼锌技术已是成熟工艺,因此,本论文对选矿适度富锌脱钙进行了重点研究。通过浮选工艺的选择及优化、磨矿工艺的改进、药剂的协同作用以及改性捕收剂HHA的使用,最终获得了指标优异的氧化锌粗精矿:品位和回收率分别为18.72%和91.13%。作为后续湿法酸浸的给料,该粗精矿中的氧化钙含量由原矿中的22.23%降到了12.31%,脱除了高达77.28%的氧化钙杂质,实现了保锌脱钙的目标。论文采用响应曲面法对浮选工艺条件进行了优化,选择了合适的泥砂分选工艺条件。大量试验研究结果表明,原生矿泥的预先脱除、改性捕收剂HHA的使用、碳酸钠和硫化钠的联合使用是该浮选工艺成功的关键。
     在浮选机理方面,重点研究了硫化钠与菱锌矿和异极矿之间的硫化反应动力学,推导出了不同pH值(9~11)下硫化钠与菱锌矿和异极矿之间的硫化反应速率方程,速率方程均属于一级反应;发现异极矿在硫化钠高用量条件下才能达到较好的回收率,其原因在于异极矿只能吸附较少的硫化钠参与硫化反应,而且反应速率很慢,表明异极矿较难硫化。用纯矿物实验证实了碳酸钠对异极矿具有活化作用,碳酸钠和硫化钠的联合使用不仅可以提高异极矿的回收率,而且还能有效抑制方解石的上浮。
     本文提出的选冶联合新技术对于提高低品位难处理氧化锌矿的利用水平、缓解锌资源短缺和实现锌产业的可持续发展有重大意义。
China has become the largest country of producing and consuming zinc metal. Zinc resources in China have become more and more shortage as time goes on, and about one third of zinc raw material has to be imported, which has become one of the major factors to constrain sustainable development of society. Zinc resources, however, have not been utilized reasonably in China, especially the low-grade zinc oxide ore with high impurities like calcium and magnesium.
     Being a typical refractory ore in Yunnan province, Lanping lead-zinc ore has the characteristics of low grade, complex mineral textures, heavy sliming and high-content alkaline gangues. The zinc metal reserve of zinc oxide ore in the said area reaches about 4-million tons, which ranks the largest one in the world. The domestic research institutes have investigated it for many years, good flotation performance has been achieved in laboratory and pilot test, but the processing technology has not been put into commercial operation. Therefore, the run-of-mine ore has to be piled up or discarded, which has a capacity of 30-million tons up to now. There are two main reasons:first, if the ore is treated just by flotation, the high-grade zinc concentrate can be obtained, but its recovery is very low due to the poor processing efficiency of zinc oxide. In this case, the massive zinc metal are lost in the slime, resulting in waste of resources, which conflicts with the comprehensive utilization of resources advocated by circular economy. Second, the raw ore is directly processed by hydrometallurgy, not only will high-content alkaline gangues consume a large amount of acid, but also increase the energy consumption of zinc hydrometallurgical process. Therefore, it is necessary to improve the recovery of low-grade refractory zinc oxide ore and realize better utilization of the said ore as soon as possible, which has profound significance on utilizing the low-grade refractory ore and related industry in China.
     Under the technical background of circular economy, the new dressing-metallurgy combination process has been put forward, namely "calcium removal by flotation-preconcentration-zinc hydrometallurgy". The experimental results of studies on new dressing-metallurgy combination process signify that 86.56% recovery of total zinc for whole flowsheet that is the very good technical index. The acid consumption of rough zinc oxide concentrate is only 2.55t/t·Zn that is very low, which reduces significantly the acid consumption of zinc hydrometallurgy process. According with the three principles of circular economy, the new technology that can give full play advantage of flotation removing calcium as well as sulfuric acid leaching to recover zinc oxide minerals, and the goal of energy saving, emission reduction, comprehensive utilization of resources will be achieved. The recycling of wastewater produced in the dressing-metallurgy combination process has come true by using effective measures ultimately.
     The technology of zinc hydrometallurgy is a mature process, therefore, calcium removal by flotation and zinc preconcentration are researched mainly by the paper. The experimental results of studies on flotation process show that good performance can be obtained by using the separation process between slime and ore sand in the way of desliming prior to grinding. On the conditions of optimizing flotation process and adopting the efficient collector—HHA, good flotation index of rough zinc oxide concentrate can be gained:grade and recovery are 18.72% and 91.13% respectively, while the contents of calcium oxide in rough zinc oxide concentrate have declined from 22.23% to 12.31%. In this case,77.28% calcium oxide impurities in the ore have been removed. The process conditions of flotation are optimized by adopting response surface methodology, which provide the theoretical basis for choosing appropriate process conditions of slime and ore sand separation. A large number of experimental results show that pre-removing primary slime, using the modified collector—HHA, combined use of sodium carbonate and sodium sulfide are the key factors of success for the flotation process.
     The kinetics of sodium sulfide reacting with smithsonite and hemimorphite are studied by the paper in the flotation mechanism, and the sulfidation reaction rate equations on the condition of pH=9,10,11 respectively belong to the first-order reaction. It can be found that good recovery is achieved in high dosages of sodium sulfide for hemimorphite as a result of less adsorption and slow reaction rate on sodium sulfide. So it can be confirmed that more sodium sulfide are consumed due to high-content zinc silicate in the zinc oxide ore. The pure minerals experiments approve that recovery of hemimorphite can be enhanced by joint use of sodium carbonate and sodium sulfide, while calcite can be restricted strongly.
     All in all, the new process has great significance for increasing the utilization of low-grade refractory zinc oxide ore, releasing the shortage of zinc resources and realizing the sustainable development of zinc industry.
引文
[1]K.Salazar, M.K.Mcnutt. Mineral Commodity Summaries 2010[M].Washington:United States Government Printing Office,2010,184-185
    [2]奚甡.世界铅锌资源开发现状及其利用[J].中国金属通报,2009(37):32-33
    [3]International Lead and Zinc Study Group. Lead and Zinc Statistics[EB/OL].http://www.ilzsg.org
    [4]刘荣荣,文书明.氧化锌矿浮选现状与前景[J].国外金属矿选矿,2002(7):17-19
    [5]段秀梅,罗琳.氧化锌矿浮选研究现状评述[J].矿冶,2000(12):47-51
    [6]毛素荣,杨晓军,何剑等.氧化锌矿浮选现状及研究进展[J].国外金属矿选矿,2007,(4):4-6
    [7]谭欣,李长根.国内外氧化铅锌矿浮选研究进展(Ⅰ)[J].国外金属矿选矿,2000(3):7-11
    [8]Y. Wei, R.F.Sandenbergh. Effects of grinding environment on the flotation of Rosh Pinah complex Pb/Zn ore[J]. Minerals Engineering,2007(20):264-272
    [9]A.M.Marabini, V.G.Alesse, G.Belardi, etal. Effect of depressing agents on the flotation of oxidized zinc minerals[J]. Minerals and Metallurgical Processing,1994,11 (2):97-104
    [10]石道民,杨敖.氧化铅锌矿的浮选[M].昆明:云南科技出版社,1996,50-53
    [11]李勇,王吉坤,魏昶等.氧化锌矿处理的研究现状[J].矿冶,2009,18(2):57-63
    [12]谭欣,李长根.国内外氧化铅锌矿浮选研究进展(Ⅱ)[J].国外金属矿选矿,2000,37(4):2-6
    [13]陈爱良,赵中伟,贾希俊等.氧化锌矿综合利用现状与展望[J].矿冶工程,2008,28(6):62-66
    [14]王凤琴.国内外氧化锌矿的处理方法[J].有色矿冶,1994(1):31-35
    [15]舒毓章.氧化锌矿处理技术的进展[J].中国铅锌锡锑,2006(12):33-35
    [16]M. Rey, P.Raffinot. The flotation of oxidized zinc ore[J].MM,1953,511-579
    [17]张锎.浮选药剂的组合使用[M].北京:冶金工业出版社,1994,106-107
    [18]Fa Keqing, J.D.Miller, Jiang Tao, et al. Sulphidization flotation for recovery of lead and zinc from oxide-sulfide ores[J].Transactions of Nonferrous Metals Society of China,2005,15(5):1138-1144
    [19]A.H.N.Kashani, F.Rashchi. Reagents in zinc reeovery from Pb-flotation tailings of Dandy mineral proeessing plant[J].Joumal of Faculty of Engineering,2008,41(8):1103-1110
    [20]王淑秋,罗琳,张心平等.难选氧化铅锌矿浮选工艺研究[J].有色金属(选矿部分),199 (3):17-20
    [21]丁玉仙.兰坪铅锌矿南厂灰岩氧化矿选矿工艺研究[J].云南冶金:科学技术版,1990,19(3):25-27
    [22]G.onal, G.Bulut, A.Gul, et al. Flotation of Aladag oxide lead-zinc ores[J]. Minerals Engineering, 2005(18):279-282
    [23]陈晔.阳离子胺类捕收剂浮选异极矿氧化锌及其作用机理研究:[硕士学位论文].南宁:广西大学,2006
    [24]刘军.氧化铅锌矿的浮选[J].矿业快报,2006(10):26-29
    [25]S.H.Hosseini, Eric Forssberg. Physicochemical studies of smithsonite flotation using mixed anionic/cationic collector[J]. Minerals Engineering,2007,20(6):621-624
    [26]徐晓军,周廷熙.有色金属矿产资源的开发及加工技术[M].昆明:云南科技出版社,2000,50-51
    [27]W.Janusz, M.Szymula, J.Szczypa. Flotation of synthetic zinc carbonate using potassium ethylxanthate[J]. International Journal of Mineral Processing,1983,11(2):79-88
    [28]张覃.氧化锌矿石活化浮选行为的观察[J].贵州工业大学学报:自然科学版,1998,27(3):89-91
    [29]张俊辉.浅谈氧化铅锌矿的浮选现状[J].四川有色金属,2004(4):13-17,22
    [30]S.H.Hosseini, Eric Forssberg. Adsorption studies of smithsonite flotation using dodecylamine and oleic acid[J]. Minerals and Metallurgical Processing,2006,23 (2):87-96
    [31]A.M.Gaudin, Flotation, Second Edition, McGraw-Hill, New York,1957
    [32]朱龙华,薛玉兰,朱建光.氧化铅锌矿浮选研究进展[J].江西有色金属,1997,11(4):19-22
    [33]Zygmunt Sadowski, Izabela Polowczyk. Agglomerate flotation of fine oxide particles[J]. International Journal of Mineral Processing,2004,74(1-4):85-90
    [34]蒲雪丽.云南某低品位氧化锌矿浮选试验研究:[硕士学位论文].昆明:昆明理工大学,2008
    [35]S.Quaresima, K.Sivadasanb, A.M.Marabini, et al. Behavior of colloidal suspensions of zinc carbonate in the presence of copolymers designed for selective flocculation[J].Journal of Colloid and Interface Science,1991,6(1):159-164
    [36]V.Bertini, M.Poccia, A.M.Marabini, et al.3,4-(Methylenedioxy)benzyl acrylate/acrylic as selective pH-controlled flocculants for finely divided titanium minerals[J].Colloids and Surfaces, 1991,11(60):413-421
    [37]杨敖,石道民,朱从杰.兰坪水锌矿的选择性絮凝研究[J].云南冶金:科学技术版,1991,20(5):16-22
    [38]杨敖,石道民,兰培林.兰坪氧化锌矿—脉石体系分散与选择性絮凝研究[J].昆明工学院学报,1992,17(1):30-38
    [39]D.Mauriee, J.A.hawk. Ferric chloride leaching of mechanically activated chalco pyrite[J]. Hydrometallulgy,1998(49):103-123
    [40]P.Massacci, Recinella, Pigal. Factorial experiments for selective leaching of zinc sulphide inferric sulphate media[J]. International journal of mineral processing,1998, (5):213-225
    [41]M.K.Jha, V. Kumara, R.J. Singh. Review of hydrometallurgical recovery of zinc from industrial wastes[J].Resources,Conservation and Recycling,2001(33):1-22
    [42]M.G.Bodas. Hydrometallurgical Treatment of Zinc Silicate Ore from Thailand[J]. Hydrometallurgy,1996(40):37-49
    [43]Nathalie Leclerc, Eric Meux, Jeanarle Lecuire. Hydrometallurgical Extraction of Zinc from Zinc Ferrites[J].Hydrometallurgy,2003(70):175-183
    [44]覃文庆,唐双华,厉超.高硅低品位氧化锌矿的酸浸动力学[J].矿业工程,2008,28(1):62-66
    [45]李存兄,魏昶,樊刚等.高硅低品位氧化锌矿氧压酸浸研究[J].矿冶,2009,18(2):45-49
    [46]蓝卓越,胡岳华,黎维中.低品位氧化锌矿硫酸浸出工艺研究[J].矿冶工程,2002,22(3):63-65
    [47]杨大锦,谢刚,贾云芝等.低品位氧化锌矿堆浸实验研究[J].过程工程学报,2006,6(1):59-62
    [48]R.K.Jana, B.D.Pandey, Premchand. Ammoniacal leaching of roast reduced deep-sea manganese nodules[J].Hydrometallurgy,1999,53(1):45-56
    [49]Hwa Young Lee, Sung Gyu Kim, Jong Kee Oh. Electrochemical leach of nickel from low-grade laterites[J]. Hydrometallurgy,2005,77(3-4):263-268
    [50]张保平,唐谟堂.NH4Cl-NH3-H2O体系浸出氧化锌矿[J].中南工业大学学报,2001,32(5):483-486
    [51]刘三军,欧乐明,冯其明等.氧化锌矿的碱法浸出研究[J].矿产保护与利用,2004(4):39- 44
    [52]李志华,薛怀生,姚耀春.兰坪难选氧化锌矿氨浸动力学[J].云南冶金,2003,23(4):21-23
    [53]朱云,胡汉,苏云生等.难选氧化锌矿氨浸动力学[J].过程工程学报,2002,2(1):81-85
    [54]Wang Ruixiang, Tang Motang, et al. Leaching kinetics of low grade zinc oxide ore in NH3-NH4CI-H2O system[J]. Journal of central south university of technology,2008,15(5): 679-683
    [55]姚耀春,朱云,王平.难选氧化锌矿氨浸过程热力学分选[J].有色金属,2004,56(3):49-51
    [56]杨声海,李英念,巨少华等.用NH4Cl溶液浸出氧化锌矿石[J].湿法冶金,2006,25(4):179-182
    [57]冯林永,沈庆峰,谢克强等.块状低品位氧化锌矿浸出新技术研究[J].矿冶工程,2008,28(4):69-71,76
    [58]张玉梅,李洁,陈启元等.超声波辐射对低品位氧化锌矿氨浸行为的影响[J].中国有色金属学报,2009,19(5):960-966
    [59]张保平,唐谟堂,杨声海.氨法处理氧化锌矿制取电锌[J].中南工业大学学报(自然科学版),2003,34(6):619-623
    [60]A.M.Marabini, M.Ciriachi, P.Plescia, et al. Chelating reagents for flotation[J]. Journal of Minerals Engineering,2007,20(10):1014-1025
    [61]谭欣,李长根.CF药剂浮选氧化铅锌矿的作用机理研究Ⅰ—吸附量、ζ-电位和红外光谱研究[J].矿冶,2004,13(3):23-29
    [62]T.Kiersznicki, J.Majewski, J.Mzyk.5-alkylsalicylaldoximes as collectors in flotation of spalerite, smithsonite and dolomite in a Hallimond Tube[J]. International Journal of Mineral Processing, 1981(1):311-319
    [63]H.Bustamante, H.L.Shergold. Surface chemistry and flotation of zinc oxide mineral:flotation with chelating reagents[J]. International Journal of Mineral Processing,1983,10(12):78-86
    [64]E.Kusaka, Y.Nakahiro, T.Wakamatsu. The role of zeta potentials of oil droplets and quartz particles during collectorless liquid-liquid extraction[J]. International Journal of Mineral Processing,1994,41 (3-4):257-269
    [65]M.P.Barbaro, L.Piga. Comparision of Pb-Zn selective collectors using statistical method[J]. Minerals Engineering,1999,12(4):356-366
    [66]朱玉霜,朱建光.浮选药剂的化学原理[M].长沙:中南工业大学出版社,1996,136-140,325
    [67]朱建光,朱玉霞.同分异构原理在合成浮选药剂中的应用[J].矿产综合利用,1995(1):45-48
    [68]刘开宇,张平民,唐有根.CSFA对锌氧化矿物的捕收性能及其机理研究[J].矿冶,2001,10(1):31-35
    [69]杨晓玲,林强,王淀佐.二烷基硫代磷酸铵的捕收性能[J].山东冶金,1997,19(4):32-34
    [70]饶天龙.云南铅锌资源基本特性及超大型铅锌矿床找矿前景[J].中国矿业,2008,17(3):107-110
    [71]曾令熙,张志成,黄亚琴.金顶氧化锌矿工艺矿物学特征及对工艺利用的影响[J].矿产综合利用,2009(4):23-26
    [72]周廷熙.兰坪氧化铅锌矿的处理工艺探讨[J].国外金属矿选矿,2004,41(4):10-13,18
    [73]谭欣,何发钰,吴卫国.某砂岩型低品位氧化铅锌矿选矿工艺[J].有色金属,2010,62(4):115-122
    [74]汪兆龙.兰坪铅锌矿灰岩氧化矿石重选工艺研究的进展[J].有色金属(选矿部分),1997(4):6-11
    [75]张心平,周秀英,王淑秋等.兰坪氧化铅锌矿浮选新工艺研究[J].矿冶,1995,4(3):38-43,107
    [76]李学清.兰坪难选氧化铅锌矿碎磨工艺实践与探讨[J].云南冶金,2003,32(5):14-16
    [77]李绍云.兰坪铅锌矿选矿工艺流程的设计[J].云南冶金,2001,30(5):14-20
    [78]张心平.氧化铅锌矿石浮选新药剂的应用研究[J].矿冶,1996,5(3):40-45
    [79]马拉.,张心平.抑制剂对氧化锌矿物浮选的影响[J].国外金属矿选矿,1995,32(8):16-24
    [80]张心平,邵广全,吴沛然等.氧化铅锌矿石低温浮选工艺研究[J].矿冶,2003,12(1):21-25
    [81]李学清.兰坪难选氧化铅锌矿选矿试验研究[J].有色金属(选矿部分),2003,(1):1-2,13
    [82]汪兆龙,严小陵.兰坪铅锌矿选矿扩大试验[J].云南冶金,2003,32(B10):70-74
    [83]蒋明华,杨世中,杨建宇等.兰坪铅锌矿氧化矿选矿工业试验研究[J].有色金属(选矿部分),2007(3):5-7
    [84]陈世明,瞿开流.兰坪氧化锌矿石处理方法探讨[J].云南冶金,1998,27(5):31-35
    [85]邵广全,李颖,张心平等.低品位复杂难处理氧化铅锌矿选矿工艺研究[J].矿冶,2006,15(3):21-26
    [86]张曙光,李晓阳,张杰.兰坪难选氧化铅锌矿浮选工艺研究[J].云南冶金,2005,34(5):11-13
    [87]中南大学承担的“973”课题——“低品位氧化锌矿原浆浮选技术”取得重要突破[J].中国贵金属,2010(5):18
    [88]低品位氧化锌矿原浆浮选技术获突破[J].中国矿山工程,2010(3):60-61
    [89]和段琪.循环经济与云南产业发展[M].昆明:云南民族出版社,2006,73-76
    [90]彭容秋.锌冶金[M].长沙:中南大学出版社,2005,62-64
    [91]陈喜峰,彭润民.中国铅锌矿资源形势及可持续发展对策[J].有色金属,2008,60(3):129-132
    [92]S.G.Malghan. Role of sodium sulfide in the flotation of oxidized copper, lead and zinc ores[J]. Minerals and Metallurgical Processing,1986,3 (3):158-163
    [93]M.J.G.Salum, A.C.de Araujo, A.E.C.Peres. The role of sodium sulphide in amine flotation of silicate zinc minerals[J]. Minerals Engineering,1992,5 (3-5):411-419
    [94]A.E.C.Peres, A.M.Borges, R.Galery. The effect of dispersion degree on the floatability of an oxidized zinc ore[J]. Minerals Engineering,1994,7 (11):1435-1439
    [95]S.J. Neethling, J.J.Cilliers. The entrainment of gangue into a flotation froth[J]. International Journal of Mineral Processing,2002,64 (2-3):123-134
    [96]F.Melo, J.S.Laskowski. Fundamental properties of flotation frothers and their effect on flotation[J]. Minerals Engineering,2006,19 (6-8):766-773
    [97]V.M.Kirjavainen. Review and analysis of factors controlling the mechanical flotation of gangue minerals[J]. International Journal of Mineral Processing,1996,46 (1-2):21-34
    [98]L.Huynh, A.Feiler, A.Michelmore, et al. Control of slime coatings by the use of anionic phosphate: A fundamental study[J]. Minerals Engineering,2000,13 (10-11):1059-1069
    [99]M.E.Holuszko, J.P.Franzidis, E.V.Manlapig, et al. The effect of surface treatment and slime coatings on ZnS hydrophobicity[J]. Minerals Engineering,2008,21 (12-14):958-966
    [100]马忠臣,孟宪瑜,吕辉.矿泥对某氧化铅锌矿石浮选的影响及采取的技术措施[J].有色矿冶,1999,(6):14-18
    [101]陈锦全,周德炎,魏宗武等.高铁泥化氧化铅锌矿的浮选试验研究[J].矿业研究与开发,2007,27(5):50-52
    [102]朱从杰.矿泥对氧化锌矿物浮选行为的影响[J].矿产综合利用,2005(1):7-11
    [103]R.Herrera Urbina, F.J.Sotillo, D.W.Fuerstenau. Effect of sodium sulfide additions on the pulp potential and amyl xanthate flotation of cerussite and galena[J]. International Journal of Mineral Processing,1999,55 (3):157-170
    [104]M.Irannajad, M.Ejtemaei, M.Gharabaghi. The effect of reagents on selective flotation of smithsonite-calcite-quartz[J]. Minerals Engineering,2009,22(9-10):766-771
    [105]M.O.Silvestre, C.A.Pereira, R.Galery, et al. Dispersion effect on a lead-zinc sulphide ore flotation [J]. Minerals Engineering,2009(9-10):752-758
    [106]Fernanda Andreola, Elena Castellini, Tiziano Manfredini. The role of sodium hexametaphosphate in the dissolution process of kaolinite and kaolin[J]. Journal of the European Ceramic Society,2004,24(7):2113-2124
    [107]A.H.Navidi Kashani, F.Rashchi. Separation of oxidized zinc minerals from tailings:Influence of flotation reagents[J]. Minerals Engineering,2008,21(12-14):967-972
    [108]S.Quaresima, K.Sivadasan, A.Marabini, et al. Behaviour of colloidal suspensions of zinc carbonate in the presence of copolymers designed for selective flocculation[J]. Journal of Colloid and Interface Science,1991,144 (1):159-164
    [109]C.A.Pereira, A.E.C.Peres. Reagents in calamine zinc ores flotation[J]. Minerals Engineering, 2005,18(2):275-277
    [110]A.Sayilgan, A.I.Arol. Effect of carbonate alkalinity on flotation behavior of quartz[J]. International Journal of Mineral Processing,2004,74(1-4):233-238
    [111]D.C. Montgomery,汪仁光.实验设计与分析(第三版)[M].北京:中国统计出版社,1998,589-592
    [112]J.A.迪安.兰氏化学手册[M].北京:科学出版社,2003,6.107-6.144,8.6-8.18
    [113]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1998,19-24
    [114]S.H.霍塞尼等.用十二胺和油酸浮选菱锌矿的吸附研究[J].国外金属矿选矿,2006, 43(12):27-32
    [115]胡岳华,邱冠周,袁诚.孔雀石/菱锌矿浮选溶液化学研究[J].有色金属,1995(5):40-44
    [116]邱显扬,李松平,邓海波等.菱锌矿加温硫化浮选药剂作用机理的研究[J].广东有色金属学报,2006,12(4):8-10
    [117]段秀梅.微细粒氧化锌矿物与含钙、镁矿物分散、凝聚及分选分离行为的研究:[硕士学位论文].北京:北京矿冶研究总院,2001
    [118]龚明光.泡沫浮选[M].北京:冶金工业出版社,2007,30,144-145
    [119]A. M. Vieira, A.E.C. Peres. The effect of amine type, pH, and size range in the flotation of quartz[J]. Minerals Engineering,2007,20(10):1008-1013
    [120]卢寿慈.矿物浮选原理[M].北京:冶金工业出版社,1988,118-119
    [121]胡岳华,徐竞,罗超奇等.菱锌矿/方解石胺浮选溶液化学研究[J].中南工业大学学报,1995,26(3):589-593
    [122]王淀佐.矿物浮选和浮选剂[M].长沙:中南大学出版社,1986,349-350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700