快速热循环注塑技术及其工艺过程传热分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注塑成型技术具有生产效率高、成本低、产品多样化等特点,是塑料制品的主要成型方法之一。然而,随着家电、通讯、电子、汽车、光电等行业的迅速发展,人们对塑料制品提出了壁厚更薄、结构更复杂、表面更美观、强度更高等方面的要求,传统注塑成型技术已经很难满足这种发展的需求。快速热循环注塑工艺(Rapid Heat Cycle Molding,RHCM)采取动态模温控制方法,在加热阶段加热模具表面到很高的温度,使得熔体可以在高模温下充模,从而提高熔体的充模能力和流动能力;在冷却阶段采用低温冷却介质快速冷却塑件,以缩短成型周期。利用该技术,可在保证生产效率的前提下,生产外观优越的塑料制品,例如:无熔接痕、无流痕、高光泽度等。此外,快速热循环注塑技术还可应用于薄壁件和具有微结构的塑料制件的成型。
     对于快速热循环注塑工艺,模具的加热冷却效率及温度均匀性,直接影响到其成型周期和最终产品的质量。因此,探讨如何提高加热冷却效率,并改善温度均匀性对快速热循环注塑工艺的生产应用具有重要意义。本文主要研究了蒸汽辅助加热和电热式RHCM工艺的关键技术,利用有限元数值模拟方法,分析了RHCM工艺加热、冷却过程的热响应规律,讨论了影响加热冷却效率和温度均匀性的因素,最后通过试验生产验证分析结果的有效性。
     通过与常规注塑工艺对比,研究了RHCM注塑工艺的原理,分析比较了各种动态温度控制方法的优缺点,分别制定了蒸汽辅助加热和电热式RHCM注塑工艺的流程和工艺方案。
     构建了蒸汽辅助加热RHCM模具的有限元分析模型,利用有限元分析软件ANSYS,对加热冷却过程进行了热响应分析,研究了加热/冷却管路尺寸及布局对加热冷却效率和温度均匀性的影响。结果表明,蒸汽辅助加热RHCM工艺的有效加热、冷却时间分别为30s、40s,其对应的平均加热、冷却速率分别可达4.3℃/s和4.9℃/s;利用180℃高温蒸汽加热时,模具表面温度存在一个温升极限,其值约为170℃;通过采用小直径密排的加热/冷却管道布局,可以有效改善RHCM注塑工艺的加热、冷却效率和温度均匀性。
     以液晶电视机面板的蒸汽辅助加热RHCM生产为例,通过构建模具的热响应分析模型,分别对该工艺的加热、冷却过程的热响应进行数值模拟,分析了整个模具系统的热响应过程。分析发现,液晶电视机面板模具的加热时间约为20s,加热结束时模具表面温度可达110℃;其冷却时间约为35s,冷却结束时塑件温度在85℃以下,可以被顶出。最后,通过将模拟数据用于液晶电视机面板的实际注塑生产,验证了分析结果的有效性。
     研究了利用电加热和冷却水冷却的RHCM注塑技术,设计了相应的电加热模具,构建了热响应分析的有限元模型,利用有限元分析软件ANSYS进行了瞬态传热分析。研究结果表明,利用电加热技术,型腔表面的平均升温速率可达7.3℃/s,模具表面可被持续加热故不存在温升极限;冷却过程中,熔体的平均降温速率约为4.1℃/s,冷却过程中熔体的温度均匀性较好。
Due to the high productivity, low cost and the flexibility to wide variety of shapes, injection molding has become one of the most widely used processing technologies in plastic manufacturing industry. However, with the rapid growth of home electronics, communications device, electronics products, automotive, optoelectronics products, people have the requirement of much thinner and more complex parts which should also meet the high demand of the consumer on their appearance and strength and the conventional injection molding has been unable to meet this trend. Rapid Heat Cycle Molding (RHCM) is a new injection molding technology which uses the dynamic mold temperature control method. During the heating stage of RHCM, the mold surface is heated to a high temperature to make the melt fill cavity at this temperature and hence facilitate the filling and flowing of the melt. During the cooling stage of RHCM, the shaped melt is cooled down quickly by coolant to reduce the cycle time. The RHCM technology could produce plastic parts with high surface quality, such as no weld line, no flow mark, high surface gloss, on basis of guaranteeing the productivity. Furthermore, RHCM could be used in producing thin-wall parts and parts with microstructure.
     For RHCM, the heating/cooling efficiency and the temperature uniformity of the mold could affect productivity and the quality of the final part significantly. Therefore, research on how to improve the heating/cooling and the temperature uniformity has great significance in the application of RHCM. This thesis mainly studied the key technology of Steam-assisted heating Rapid Heat Cycle Molding (SRHCM) and Electric-heating Rapid Heat Cycle Molding (ERHCM). The heating and cooling thermal response rule were evaluated. Discussed the factors influenced the temperature uniformity through finite element analysis. Finally, the numerical simulation results were verified through experimental producing.
     The process principle of RHCM was studied through comparing RHCM with conventional injection molding. The advantages and disadvantages of various dynamic temperature control methods were studied and compared. The processes of Steam-assisted heating Rapid Heat Cycle Molding and Electric- heating Rapid Heat Cycle Molding were designed.
     The finite element analysis model of Steam-assisted heating Rapid Heat Cycle Molding mold was constructed. The thermal response during heating and cooling stage was simulated based on ANSYS. The influence of heating/cooling channels' diameters and arrangements to heating/cooling efficiency and the temperature uniformity was evaluated. The results showed that the effective heating time, cooling time, heating speed, cooling speed of SRHCM are 30s, 40s, 4.3℃/s and 4.9℃/s respectively. When the mold was heated by steam of 180℃, its temperature had an upper limit value and the upper limit temperature was about 170℃. Furthermore, heating/cooling efficiency and the temperature uniformity could be improved by channels with small diameters and tight arrangements.
     The SRHCM technology used in producing liquid crystal display panel was studied as an actual example. The thermal response during heating and cooling stage was simulated respectively through constructing the thermal response analysis model. It could be concluded that the heating time of SRHCM mold is about 20s when the temperature of the mold surface was 110℃. The cooling time of the SRHCM mold is about 35s when the melt was cooled to 85℃. Finally, the simulation results were applied to practical SRHCM producing to verify its veracity.
     The Electric-heating Rapid Heat Cycle Molding with electric heating and cold water cooling was studied. The ERHCM mold was designed and the finite element analysis model was constructed. The transient thermal transfer was studied based on ANSYS. The simulation results showed that, when the mold was heated with electric, the average heating speed could reach 7.3℃/s and the mold surface could be heated with no upper limit temperature. During the cooling stage, the average cooling speed of the melt was about 4.1℃/s and the melt had good temperature uniformity.
引文
[1]申长雨,李海梅等.注射成型技术发展概况[J].工程塑料应用,2003,31(3):53-57
    [2]Rhee B O,Kim C S,Lee K.Evaluation of momentary-mold-surface heating (MMSH) process[C].Annual Technical Conference-ANTEC,Conference Proceedings,Boston,MA,United states,2005:35-38
    [3]Kim D H,Kan M H,Chun Y H.Wonder injection molding with momentary mold surface heating process(MMSH Process)[C].Annual Technical Conference-ANTEC,Conference Proceedings,Boston,MA,United states,2000:3841-3844
    [4]Chen Ming,Yao Donggang,Kim Byung.Eliminating flow induced birefringence and minimizing thermally induced residual stresses in injection molding part[J].Polymer-plastic technology and engineering,2001,40(9):491-503
    [5]CHEN S C,CHANG Y,CHANG T H et al.Influence of using pulsed cooling for mold temperature control on microgroove duplication accuracy and warpage of the Blu-ra-Y Disc[J].International journal of heat and mass transfer,2004,31(7):971-980
    [6]Tsai Ching-Chih,Hsieh Shih-Min,Kao Huai-En.Mechatronic design and injection speed control of an ultra high-speed plastic injection molding machine[J].Mechatronics,2009,19(2):147 - 155
    [7]Umemura Toshikazu.Takashima Susumu,Mizoguchi Machiko,Hamada,Hiroyuki.Effects of PC-oligomer addition on the mechanical properties of ultra-high speed injection-molded PC/ABS blends[C].Technical Papers,Regional Technical Conference - Society of Plastics Engineers,Milwaukee,WI,United states,2008,3:1812-1814
    [8]Baba Satoko,Takashima Susumu,Leong Yew Wei,Hamada Hiroyuki,Mizoguchi Machiko,Kuriyama Takashi.Mechanical properties of PC/ABS ultra high-speed injection moldings[C].Annual Technical Conference-ANTEC,Conference Proceedings,Chicago,IL.,United states,2004,2:1917-1921
    [9]Mizoguchi Machiko,Kuriyama Takashi,Takashima Susumu,Baba Satoko,Hamada Hiroyuki.Structure and mechanical properties of glass fiber reinforced PC/ABS fabricated by ultra high speed injection molding[C].Annual Technical Conference-ANTEC,Conference Proceedings,Chicago,IL.,United states,2004,3:2869-2873
    [10]Okumura Hiroaki,Mizoguchi Machiko,Takashima Susumu,Baba,Satokol,Nagata,Shigeyuki,Hamada,Hiroyuki.Mechanical properties of ultra high speed injection molded parts[C].Annual Technical Conference-ANTEC,Conference Proceedings,Chicago,IL.,United states,2004,1:728-731
    [11]李倩,陈静波,刘春太,申长雨.塑料注射成型技术及其进展[J].中国塑料,2001,15(10):7-13
    [12]YANG S Y,LIOU S J.Development of moldability diagrams for gas-assisted injection molding[J].Advances in Polymer Technology,1995,14(3):197-205
    [13]Guo-Qiang Zheng,Wei Yang,Li Huang etc.The role of gas penetration on morphological formation of polycarbonate/polyethylene blend molded by gas-assisted injection molding[J].Journal of Material Science,2007,42(17):7275-7285
    [14]Seong-Yeol Han,Jin-Kwan Kwag,Cheol-Ju Kim,Tae-Won Park,Yeong-Deug Jeong.A new process of gas-assisted injection molding for faster cooling[J].Journal of Materials Processing Technology,2004,155-156(1-3):1201-1206
    [15]A.Polynkin,J.F.T.Pittman,J.Sienz.Gas Assisted Injection Molding of a Handle:Three-Dimensional Simulation and Experimental Verification[J].Polymer Engineering and Science,2005,45(8):1049-1058
    [16]钟世云.水辅注塑技术进展[J].中国塑料,2002,16(12):18-22
    [17]Han-Xiong Huang,Zhi-Wu Deng.Effects and Optimization of Processing Parameters in Water-Assisted Injection Molding[J].Journal of Applied Polymer Science,2008,108(1):228-235
    [18] Shin-Jung Liu, Shin-Po Lin. Factors Affecting the Formation of Fingering in Water-Assisted Injection-Molded Thermoplastics [J]. Advances in Polymer Technology, 2006, 25(2): 98-108
    
    [19] Chen S C, Jong W R, Chang J A. Dynamic mold surface temperature control using induction heating and its effects on the surface appearance of weld line [J]. Journal of Applied Polymer Science, 2006,101(2): 1174-1180.
    
    [20] Theilade U A, Hansen H N. Surface microstructure replication in injection molding [J]. International Journal of Advanced Manufacturing Technology, 2006, 33(1-2): 157-166.
    
    [21] JANSEN K M B. Heat transfer in injection moulding systems with insulation la-Yers and heating elements [J]. International journal of heat and mass transfer, 1995,38(2): 309-316.
    
    [22] YAO Donggang, KIM B. Increasing flow length in thin wall injection molding using a rapidly heating mold[J]. Polymer-Plastic Technology and Engineering, 2002 , 41(5): 819-832.
    
    [23] S. C. Chen, H. S. Peng, J. A. Chang, W. R. Jong. Simulations and verifications of induction heating on a mold plate [J]. International Communications in Heat and Mass Transfer, 2004, 31(7): 971-980
    
    [24] Donggang Yao, Thomas E. Kimerling, Byung Kim. High-frequency proximity heating for injection molding applications [J]. Polymer Engineering and Science, 2006,46(7): 938-945.
    
    [25] Yasuo Kurosaki. A new concept of active temperature control for an injection molding process using infrared radiation heating [J]. Journal of materials processing technology, 2008,42(12): 2418-2429.
    
    [26] Ming-Ching Yu, Wen-Bin Young, Pe-Ming Hsu. Micro-injection molding with the infrared assisted mold heating system [J]. Materials Science and Engineering: A, 2007,460-461:288-295
    
    [27] Donggang Yao, Byung Kim. Development of rapid heating and cooling systems for injection molding application [J]. Polymer Engineering and Science, 2002, 42(12):2471-2481
    [28]冯良为,岑运福,杨军.充模过程熔接缝形成的数值模拟[J].模具工业,2001.29(5):19-21
    [29]S.C.Malguarnera,A.I.Manisali,D.C.Riggs.Weld Line Structure and Properties in Injection Molded Polypropylene[J].Polymer Engineering and Science,1981,21(17):1149-1155.
    [30]刘春太,申长雨.利用TAGUCHI方法优化纤维增强PA66注塑熔接线拉伸性能[J].复合材料学报,2004,21(5):68-72
    [31]陆昶,文力,郭少云.尼龙6/聚苯乙烯共混物融合缝的形态及其对力学性能的影响[J].高分子材料科学与工程,2005,21(1):172-175
    [32]ShaoYun Guo,A.AIT-KADI.A Study on weld line morphology and mechanical strength of injection molded Polystyrene/Poly(methylmethacrylate) blends [J].Journal of Applied Polymer Science,2002,84(10):1856-1865
    [33]R.SELDEN.Effect of processing on weld line strength in five thermoplastics [J].Polymer Engineering and Science,1997,37(1):205-218
    [34]钟昭东,邓益民.基于遗传算法的注塑成型熔接痕长度和位置的优化[J].塑料工业,2006,34(11):27-32
    [35]芦亚萍.熔接痕的形成机理及控制方法[J].模具工业,2006,32(12):61-64
    [36]杨扬,董斌斌,刘春太.成型温度对纤维增强注塑熔接线拉伸性能的影响[J].郑州大学学报(工学版),2004,25(1):102-108
    [37]申长雨,刘娜.张滟.纳米尼龙6注塑熔接线拉伸性能的研究[J].郑州大学学报(工学版),2007,28(2):1-4
    [38]Shih-Jung Liu,Jun-Yu Wu,Jer-Haur Chang,Shiu-Wan Hung.Experimental Matrix Design to Optimize the Weldline Strength in Injection Molded Parts[J].Polymer Engineering and Science,2000,40(5):1256-1262.
    [39]Babur Ozcelik,Ibrahim Sonat.Warpage and structural analysis of thin shell plastic in the plastic injection molding[J].Materials & Design,2009,30(2):367-375.
    [40]Z.Y.Guo,X.Y.Ruan,Y.H.Peng,D.Q.Li.Warpage of injection-molded thermoplastics parts:numerical simulation and experimental validation[J].Journal of Materials Engineering and Performance,2002,11(2):138-144
    [41]B.H.Lee,B.H.Kim,Optimization of part wall thicknesses to reduce warpage of injection-molded parts based on the modified complex method[J].Polymer-Plastic Technology and Engineering,1995,34(5):793-811
    [42]H.Kurtaran,B.Ozcelik and T.Erzurumlu,Warpage optimization of a bus ceiling lamp base using neural network model and genetic algorithm[J].Journal of Material Proccessing Technology,2005,169(2):314-319
    [43]H.Kikuchi,K.Koyama,Warpage anisotropy and part thickness[J].Polymer Engineering and Science,1996 36(10):1326-1335
    [44]K.T.Chiang.The optimal process conditions of an injection-molded thermoplastic part with a thin shell feature using grey-fuzzy logic:a case study on machining the PC/ABS cell phone shell[J].Materials & Design,2007,28(6):1851-1860.
    [45]M.C.Huang,C.C.Tai.The effective factors in the warpage problem of an injection-molded part with a thin shell feature[J].Journal of Materials Proccessing Technology,2001,110(1):1-9.
    [46]陈宇宏,袁渊,张宜生,李曦,詹茂盛.注射成型大尺寸透明平板的应力、翘曲及收缩分析[J].工程塑料应用,2008,36(9):30-33
    [47]陈宇宏.大尺寸透明件注射成型技术的研究进展[J].工程塑料应用,2007,35(9):72-75
    [48]骆志高,王祥,李举,杨虎振.基于CAE的塑件翘曲变形分析与工艺参数优化[J].模具工业,2007,34(12):7-11
    [49]M.Grujicic,V.Sellappan,B.Pandurangan,G.Li,A.Vahidi,Norbert Seyr,Marc Erdmann,Jochen Holzleitner.Computational analysis of injection-molding residual-stress development in direct-adhesion polymer-to-metal hybrid body-in-white components[J],Journal of materials processing technology,2008,203(1-3):19-36
    [50]Rakesh Sahu,Donggang Yao,Byung Kim.Optimal mold design methodology to minimize warpage in injection molded parts[C].Annual Technical Conference-ANTEC,Conference Proceedings,Toronto,Canada,1997,3:3308-3312.
    [51]黄娜斌,江波,张志莲,李翱.Taguchi DOE实验设计法注射成型工艺参数优化[J].工程塑料应用,2007,35(6):28-32
    [52]周应国,申长雨,陈静波,董斌斌.工艺参数对注塑制品翘曲影响的CAE 分析[J].工程塑料应用,2006,34(11):28-31
    [53]高月华,王希诚.注塑制品的翘曲优化及影响因素分析[J].化工学报,2007,58(6):1575-1580
    [54]申树义,高济.塑料模具设计[M].北京:机械工业出版社,1999
    [55]熊小平,张增红.塑料注射成型[M].北京:化学工业出版社,2005
    [56]黄锐,曾邦禄.塑料成型工艺学[M].北京:中国轻工业出版社,2005
    [57]李海梅,申长雨.注塑成型及模具设计[M].北京:化学工业出版社,2002
    [58]杨占尧.塑料注塑模结构与设计[M].北京:清华大学出版社,2004
    [59]钱滨江,伍贻文,常家芳,丁一鸣.简明传热手册[M].北京:高等教育出版社,1984
    [60]谭建国.使用ANSYS 6.0进行有限元分析[M].北京:北京大学出版社,2002
    [61]宋勇,艾宴清,梁波.精通ANSYS7.0有限元分析[M].北京:清华大学出版社,2004
    [62]商跃进.有限元原理与ANSYS应用指南[M].北京:清华大学出版社,2005
    [63]张乐乐,谭南林,焦风川.ANSYS辅助分析应用基础教程[M].北京:清华大学出版社,北京交通大学出版社.2006
    [64]杨世铭.传热学[M].北京:人民教育出版社,1980.
    [65]Rohsenow M.Warren.传热学手册[M].李荫亭,译.北京:科学出版社,1987
    [66]KA-YS William,Crawford Michael.Convective Heat and Mass Transfer[M].New York:McGraw-Hill,1980
    [67]蒋炳炎,沈龙江,彭华健.微注射成型中变温控制技术[J].中国塑料,2006,20(3):99-102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700