碳纤维增强尼龙复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热塑性树脂复合材料具有成型简单、生产周期短和可重复利用等优点,成为复合材料的重要分支。碳纤维增强尼龙复合材料(CFR-PA66)除了具有优异的力学性能外,还具有优良的导电性能、耐摩擦性和自润滑性,可用于耐摩擦材料和电磁屏蔽材料,是应用范围广泛,很有应用前景的一种先进材料。
     本工作首先对碳纤维进行电化学氧化处理,使得碳纤维表面引入-C-OH或-COOH,然后取一部分纤维经过高温氨气处理引入含氮官能团,这样更利于酸性官能团和氨气反应引入酰胺官能团;分别用两种纤维通过造粒和注塑的方法制备成复合材料样条,通过力学性能测试和结构分析,对比说明含氧官能团和含氮官能团对于碳纤维和尼龙复合材料的界面粘结性的影响。电化学氧化法制得和电化学氧化-氨气处理联合方法制得的碳纤维/尼龙复合材料的弯曲强度分别比未表面处理时碳纤维/尼龙复合材料的提高1.26倍和1.12倍。用XPS分析了碳纤维的表面官能团,并通过碳纤维单丝强度和复合材料样品弯曲强度的测试、复合材料断口形貌分析和界面结合力的理论计算,研究了不同的碳纤维表面官能团对复合材料的增强效果。结果表明含氮官能团和尼龙基体的界面结合力大于含氧官能团;通过摩擦性能测试和结构分析,对比说明不同表面处理方法对于碳纤维和尼龙复合材料的磨损性能影响。研究表明:随着碳纤维含量的增加,复合材料的耐磨性能提高;表面处理提高了复合材料耐磨性能,氨气处理的CF/PA66复合材料的耐磨性能优于电化学氧化法处理的CF增强材料。
     CFR-PA66的综合性能不仅与增强相(碳纤维)、基体相(尼龙)有关,更主要依赖于碳纤维和尼龙之间的界面粘结性能。如果界面粘结良好,则可以提高复合材料的综合性能。两相之间界面结合主要靠三种力,即化学键力、范德华力和机械嵌合力;界面性能改善一直是复合材料研究的重点,研究更为有效的表面改性方法来提高碳纤维和树脂基体的界面浸润性和粘结性,对提高碳纤维复合材料的综合性能有非常重要的意义。
Thermoplastic resin composites, as an important branch of composites, can be easily operated, reused and has a short production cycle. In addition to excellent mechanical properties, carbon fiber reinforced nylon composites (CFR-PA66) also have some characters such as excellent conductivity, wear-resistance and self lubrication, which can be used for wear-resistant and electromagnetic shielding materials and it would have a wide range of application.
     In this work, carbon fibers were respectively treated by electrochemical oxidation and electrochemical oxidation combined with ammonia treatment method. Short carbon fiber reinforced nylon composites were prepared by using twin-screw extruder and injection molding. The flexural strengths of electrochemical oxidation carbon fiber/PA composites and electrochemical oxidation-ammonia carbon fiber/PA composites were enhanced respectively by 1.26 times and 1.12 times comparing with the untreated ones. Functional groups on carbon fiber surface were analyzed by XPS. The strengthenning effects of different surface functional groups on carbon fiber composites materials were studied by single carbon fiber strength test, composite flexural strength test, fracture morphology analysis and the theoretical calculation of interfacial bonding strength. It was also found that the combining strength of nitrogen functional groups in nylon-66 matrix is larger than that of oxygen functional groups. Wear resistance of composites was improved as the carbon fiber volume increases. It also showed that the wear resistance of ammonia treated CF / PA 66 composites was superior to electrochemical oxidation-CF reinforced composites.
     Comprehensive performance of CFR-PA66 is decided by not only the reinforcement (carbon fiber), the matrix phase (nylon) but also the interface adhesive properties between carbon fiber and nylon. If the interface adhesive properties are good, the overall performance of the composites can be improved. Interfacial bonding between these two phases mainly depends on three kinds of forces (chemical bonding force, van der Waals force and mechanical interlocking). The improvement of interface performance is the key factor that should be considered during studying the composite materials. It is significant to find a more effective surface modification method in order to improve the interface infiltration and adhesion of carbon fiber Composite materials and the final performance.
引文
[1]陈绍杰,申屠年,先进复合材料的近期发展趋势[J].高科技纤维与应用,2004,29(1):1-7.
    [2]贺福,王茂章.碳纤维及其复合材料.北京:科学出版社,1995,1-32.
    [3]贺建芸,刘亚康.SF-TPU复合材料线热膨胀性能研究[J].北京化工大学学报,2000,27(4):59-62.
    [4]咸贵军,益小苏,潘颐.热塑性树脂熔融浸渍连续纤维装置,塑料工业,2000,28(51:15-17.
    [5]Hou M,F riedrich K."Thermor of High Performance Composite with Thermoplastic Matrices",AVK Conference,1991,86.
    [6]Cuippa G,Davo L P,Goula C."Nylon gears for engine timing drives and experimental tests",26th International symposium on Automotive Technology and Automation 1993,599.
    [7]Jones B F,Duncan R G.Carbon Fiber and it's Properties[J].Journal of Materials Science,1971,(6):289.
    [8]郑安呐,卢红,林永谓.特种纤维的表面处理及发展趋势[J].合成纤维工业,1992,15(30):30-38.
    [9]贺福,王茂章.碳纤维表面处理的新方法[J].高科技纤维与应用,2000,25(5):30-33.
    [10]许嘉敏.碳纤维表面改性及其表征的研究[J].高分子材料科学与工程,1990,(1):66.
    [11]李润民,贺福.碳纤维的表面处理研究-碳纤维表面自由能及其退化浅析[J].纤维复合材料,1993,(1):17-20.
    [12]房宽俊.电流密度对电化学氧化后碳纤维表面基团数量的影响[J].合成纤维,1998,27(6):11-14.
    [13]余木火,赵世平,藤翠青等.碳纤维表面氨基化处理提高复合材料的界面性能[J].纤维复合材料,1999,(4):20-22.
    [14]Slivka A,Michael C,Chu C.Fiber-matrix interface studies on absorbable composite materials for internal fixation of bone fractures[J].Journal of Biomedical Materials Research,1997,37(3):353-362.
    [15]Ju C P,Chert K I,Lin J H.Process,microstructure and properties of squeeze cast short carbon fibre reinforced aluminium-matrix composites[J].Journal of Materials Science,1994,29:5127-5134.
    [16]郭金贵译.煤焦油沥青对炭/炭复合材料成型和性能的影响[J].新型碳材料,1997.12:45-46.
    [17]韩杰才,赵枫,顾震隆.碳毡/碳复合材料的组织与高温退火[J].宇航材料工艺,1991,(2):36-40.
    [18]苏君明.整体毡C/C复合材料的研制与应用[J].新型碳料,1997,12(4):46-49.
    [19]赵东宇,李滨耀,余赋生.短碳纤维增强聚芳醚酮断面形态的研究[J].高等学校化学学报,1998,19(3):494-495.
    [20]林光明,曾汉民,章明秋,等.短碳纤维增强热塑性树脂的断裂性能[J].材料科学进展,1992,6(2):175-179.
    [21]张立群,伍社毛,耿海萍,等.导热天然橡胶的研究[J].合成橡胶1998,21(4):207-211.
    [22]贺林,朱均.短碳纤维增强锡基巴氏合金摩擦学特性[J].中国有色金属学报,1998,8(2):223-227.
    [23]朱桂明,武英.碳纤维增强TiC复合材料的制备与高温强度[J].材料工程,2001,(9):3-6.
    [24]王德生,任重远,陈新华.短切碳纤维/尼龙复合材料的研制[J].纤维复合材料,1993(1):21-22.
    [25]安正植,于文学,应一可.短切碳纤维/ABS塑料复合材料[J].吉林大学自然科学学报,1996(3):67-69.
    [26]卫建军,宋进仁,刘郎.碳纤维表面处理对短炭纤维增强炭基复合材料强度的影响[J].炭素技术,1999(2):24-27.
    [27]高积强,黄清伟,仵亚红,等.短碳纤维增强玻璃陶瓷氧化行为的研究[J].西安交通大学学报,1998,32(12):77-80.
    [28]Wang G,Zeng P.Electrical conductivity of polyvinyl chloride plastisol-short carbon fiber composite[J].Polymer Engineering and Science,1997,37(1):96-100.
    [29]葛世荣,张德坤,朱华,等.碳纤维增强尼龙1010的力学性能及其对摩擦磨损的影响[J].复合材料学报,2004,21(2):99-104.
    [30]王秀峰,王永兰,金志浩.碳纤维增强水泥复合材料的制备及性能[J].西安交通大学学报,1997,31(3):108-113.
    [31]满华元,张岩,王鉴,等.碳纤维阳极表面处理对CF/MDF水泥复合材料性能影响研究[J].复合材料学报,1995,12(2):47-51.
    [32]扬元霞,毛起诏.碳纤维水泥基复合材料中纤维分散性的研究[J].建筑材料学报,2001,4(1):84-88.
    [33]冯志荣,黄启忠,邹志强.俄罗斯航空刹车用C/C复合材料的研究现状[J].炭素技术,1999(5):37-39.
    [34]郑开宏,高积强,王永兰,等.短切碳纤维增强LAS玻璃-陶瓷的研究[J].硅 酸盐学报,1997(5):25-28.
    [35]王军祥,顾明元.碳纤维增强尼龙1010复合材料的摩擦磨损性能及磨损机理研究[J].机械工程材料,2003,27(7):13-16.
    [36]赵素合,张丽叶,毛立新.聚合物加工工程.北京:中国轻工业出版社.2001,219.
    [37]赵秋艳,复合材料成型工艺的发展.航天返回与遥感,1999,20(1)41-46.
    [38]吴庆,陈惠芳,潘鼎.碳纤维的表面处理[J].化工新型料,1999,28(3):11-14.
    [39]乌云其其格.碳纤维表面处理[J].高科技纤维与应用,2001,26(5):24-28.
    [40]杨永岗,贺福,王茂章,等.XPS对瞬时高温空气氧化法和气液双效法表面处理碳纤维的分析[J].炭素,1999,(1):15-20.
    [41]殷永霞,沃西源.碳纤维表面改性研究进展.航天返回与遥感.2004,25(1):51-54
    [42]王玉果,王玉林,万怡灶,等.纤维表面处理对三维编织碳纤维/环氧复合材料力学性能的影响[J].兵器材料科学与工程,2001,24(2):41-43.
    [43]贺福,杨永岗,王润娥,等.碳纤维表面处理对层间剪切断裂形貌的影响[J].高科技纤维与应用,2002,27(4):27-30.
    [44]冀克俭,邓卫华,陈刚,等.臭氧处理对碳纤维表面及其复合材料性能的影响[J].工程塑料应用,2003,31(5):34-36
    [45]Figueiredo J L.Surface treatments of vapor-grown carbon fibers produced on a substrate[J].Carbon,1998,36(12):1791-1799.
    [46]万怡灶,王玉林,周福刚,等.碳纤维表面处理对C/PLA复合材料界面粘结强度的影响(Ⅱ)[J].材料工程,2000,(7):17-23
    [47]黄玉东.聚合物表面与界面技术fM].北京:化学工业出版社,2003.7
    [48]杨小平,袁承军,吕亚非.通用级沥青基炭纤维的表面处理及增强ABS复合材料力学性能的研究[J].新型炭材料,1999,14(4):34-40.
    [49]庄毅,梁节英,刘杰.PAN基碳纤维阳极电解氧化表面处理的研究[J].合成纤维工业,2003,26(3):5-8.
    [50]Park S J,Donnet J B.Anodic surface treatment on carbon fibers:determinatation of acid base interaction parameter between two unidentical solid surfaces in a composite system[J].Journal of Colloidand Interface Science,1998,206:29-32.
    [51]黄玉东,冯志海,刘立洵,等.碳纤维预成型立体织物纤维表面处理及效果评价[J].材料工程,1999,(8):15-17.
    [52]熊杰,萧庆亮,唐菊,等.纤维表面处理对FRP-水泥砂浆抗弯性能的影响[J].建筑材料学报,2004,7(3):274-280.
    [53]于祺,陈平,陆春.纤维增强复合材料的界面研究进展[J].绝缘材料,2005, (2):50-56.
    [54]Gylyas J,Foldes E.Electrochemical oxidation of carbon fibers:surface chemistry and adhesion[J].Composites,2001,(32):353-360.
    [55]Ryu S K,Park B J,Park S J.XPS analysis of carbon fiber surfaces anodized and interfacial effects in fiber-epoxy composites[J].Journal Colloid and Interface Science.1999:169-215.
    [56]刘杰,郭云霞,梁节英.碳纤维表面电化学氧化的研究.化工进展[J].2004,23(3):282-285.
    [57]胡培贤,温月芳,杨永港,等.氨气处理碳纤维第Ⅰ报表面组成和反应机理[J].合成纤维,2008,37(6):8-12.
    Hu Peixian,Wen Yuefang,Yang Yonggang,et al.Effect of free ammonia treatment on the surface composites of carbon fiber and reactions mechanism[J].Synthetic Fibers,2008,37(6):8-12.
    [58]Ulku Y,Murat C,Effects of Processing Conditionson the Fiber Length Distribution and Mechanical Properties of Glass Fiber Reinforced Nylon-6,Polymer Composites,2002,23:61-71.
    [59]赵素合,张丽叶,毛立新.聚合物加工工程,北京:中国轻工业出版社.2001:157-163.
    [60]詹森L.P.B.M.双螺杆挤出,北京:轻工业出版社.1987:113-119.
    [61]Z·塔德莫尔C·G·戈戈斯.聚合物加工原理.北京:化学工业出版社.1990:439-449.
    [62]吴培熙,张留城.聚合物共混改性.中国轻工业出版社.1996:156-159.
    [63]成都科技大学主编.注塑成型工艺,北京:轻工业出版社.1983:116-121.
    [64]郭广思.注塑成型技术,机械工业出版社.2002:50-779.
    [65]成都科技大学主编.注塑成型工艺.北京:轻工业出版社.1983:142-152.
    [66]赵素合,张丽叶,毛立新.聚合物加工工程,北京:中国轻工业出版社.2001:268-270
    [67]广惠章利.注塑成型加工技术,本吉正信出版,1989:85-117.
    [68]肖翠蓉,唐羽章.复合材料工艺学,国防科技大学出版社,1991:313-335.
    [69]刘惠理,热塑性增强塑料,北京:轻工业出版社,1984:91-119.
    [70]章学平.热塑性增强塑料.轻工业出版社,1984:95.
    [71]Lee W H,Lee J G,Reucroft P J.XPS study of carbon fiber surfaces treated by thermal oxidation in a gas mixture of O_2/(O_2+N_2).Appl Surf Sci[J],2001,(171):136-142.
    [72]Folk M J.Short fiber reinforced thermoplastics[M].England:John Wiley & Sons Ltd,1982:35.
    [73]唐志玉,徐佩弦.塑料制品设计师指南.北京:化学工业出版社,2004:56-57.
    [74]贺福,王茂章.碳纤维及其复合材料.北京:科学出版社.1997:196-197.
    [75]Folkes M J.short Fiber Reinforced Thermoplastics,England:John Wiley & Sons 1td,1982,39.
    [76]Broutman L J.Polym.E.Sci.,1974,14(8):581.
    [77]Thomason J L.The influence of fibre properties on the properties of glass-fibre-reinforced polyamide 66,Journal of Composite Materials,2000,34(2):158-172.
    [78]Lancaster J K.The effect of carbon fiber reinforcement on the friction and wear of polymers.J.Appl,1968,1:549.
    [79]Lancaster J K.Lubrication of carbon fiber-reinforced polymers part Ⅰ:water and aqueous solutions wear.1972,2:315.
    [80]曾汉民,孔柏岭.水润滑条件下沥青基碳纤维及其混杂纤维增强尼龙1010复合材料摩擦磨损性能的研究.高分子材料科学与工程,1988,(6):68.
    [81]Kurokawa M,Uchiyama Y,Nagai S.Performance of plastic gear made of carbon fiber reinforced poly-ether-ether ketone:Part 2[J].Tribology International,2000,33(10):715-721.
    [82]Reinicke R,Hoffmann J,Friedrich K.Combination of mechanical prOperties and wear performance of short fiber reinforced polyamide-46[J].Tribologie and Schmierung stechnik,2000,47(5):51-57.
    [83]Zorowski C F,Murayama T,Proclstintconf on mechanical behavior of materials soc mat sci.,Kyoto,Japan,1972:5-28.
    [84]Chua P S,Dynamic mechanical analysis studies of the interphase,Polymer Composites,1987,8(5):308-313.
    [85]Kubat J,Rigdahl M,Welander M.Characterization of interracial interactions in high density polyethylene filled with glass spheres using dynamic-mechanical analysis,Journal of Applied Polymer Science,1990,39(7):1527-1539.
    [86]Boluk M Y,Schreiber H P.Interracial interactions and the properties of filled polymers:Dynamic-Mechanical Responses,Polymer composites,1986,7(5):295-300.
    [87]Ashida M,Noguchi T,Mashimo S.Dynamic moduli for short fiber-CR composites,Journal of Applied Polymer Science,1984,29(2):661-667.
    [88]过梅丽.高聚物与复合材料的动态力学热分析,北京:化学工业出版社,2002,211.
    [89]Drzal L T,Rich M J,Lioyd P E.Adhesion of graphite fibers to epoxy matrices:The role of fiber surface treatment,Journal of Adhesion,1983,16(1):1-30.
    [90]Herrera Franco P J,Drzal L T.Comparision of methods for the measurement of fiber/matrix adhesion in composites,Composites,1992,23(1):2-27.
    [91]Kardos J L.The role of the interface in polymer composites some myths, methanisms and modifications,In Polymer Science and Technology Molecular characterization of composite interface,eds.H Ishida and G Kumar,New York,1985:1-11.
    [92]黄玉东.聚合物表面与界面技术,北京:化学工业出版社,2003:281-282.
    [93]张志谦,龙军.玻璃纤维增强聚丙烯复合材料界面改性研究,宇航材料工艺,2002,32(4):28-31.
    [94]徐涛,王建华.玻纤增强聚氨酯泡沫塑料界面形成特性及对其力学性能的影响,功能材料,2002,10(2):84-87.
    [95]王国庆,程祥荣.玻璃纤维增强复合树脂结合界面的研究,口腔颌面修复学杂志,2002,3(3):143-145.
    [96]Noda K,Takahara A,Kajiyama T.Fatigue failure mechanisms of short glass-fiber reinforced nylon 66 based on nonlinear dynamic viscoelastic measurement,Polymer,2001,42(13):5803-5811.
    [97]Zebarjad S M,Lazzeri A,Bagheri R,et al.Role of the Interface on the Deformation Mechanism of Glass Fiber/polypropylene Composites,Journal of Materials Science Letters;2002,21(13):1007-1011.
    [98]Helen C Y,Caroline A B.Studies of microstructural and mechanical properties of nylon/glass composite,Journal of Materials Science,1999,34(20):5099-5126.
    [99]曾汉民,孔柏岭.碳纤维-尼龙1010界面形态的研究[J].高分子学报,1989(1):75-80.
    [100]刘民英,赵清香.碳纤维/PF尼龙复合材料性能及界面研究[J].高分子材料科学与工程,1994,10(2):42-47.
    [101]郑睿,赵耀明,严玉荣,等.玻纤增强PTT复合材料流变性能研究[J].塑料工业,2006,34(12):19-22.
    [102]钱芝龙,林生兵,陈国刚.玻纤增强PTT及其性能研究[J].工程塑料应用,2004,32(8):9-11.
    [103]吕通建,常怀春,尹玉霞,等.玻纤增强PTT工程塑料的研制及应用[J].工程塑料应用,2007,35(9):45-48.
    [104]陆家,陈长彦.表面分析技术[M],电子工业出版社,1984:213-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700