抗菌剂与抗菌聚合物的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选用了三种抗菌剂:Ce~(4+)/ZnO复合抗菌剂、磷酸盐玻璃载银抗菌剂以及发泡体系专用的液体Biofoam(异丙醇载季铵盐)抗菌剂,其中Ce~(4+)/ZnO复合粉体是通过工艺优化自制而得的抗菌剂。实验研究了三种抗菌剂的抗菌性能,并将这些抗菌剂应用到聚合物中制成了抗菌塑料。
     实验以纳米ZnO为载体,确定了Ce~(4+)/ZnO复合抗菌剂的最佳制备工艺,考察了不同ZnO、Ce~(4+)比例下的掺杂情况,采用抑菌圈实验和最小抑菌浓度实验来检测其抗菌性能,并对其抗菌机理进行了探索研究。实验结果表明,纳米ZnO对稀土Ce~(4+)的吸附率很高,可达100%,且几乎不受ZnO与Ce~(4+)摩尔比的影响。掺杂Ce~(4+)明显提高了纳米ZnO的光催化效果和抗菌性能,Ce~(4+)/ZnO复合抗菌剂对大肠杆菌的最小抑菌浓度为100mg/l,对金黄色葡萄球菌的最小抑菌浓度为150mg/l,达到了较好的抗菌效果。将该复合抗菌剂应用到聚合物中,以PE为基体树脂,通过熔融共混挤出工艺制备了Ce~(4+)/ZnO抗菌聚乙烯塑料,研究结果表明,当抗菌剂粉体的添加量为PE的1%时,PE抗菌塑料的性价比达到最佳,具有优异、长效的抗菌性能,其对大肠杆菌和金黄色葡萄球菌的抗菌率均达到97%以上,并且对大肠杆菌的抗菌效果要优于金黄色葡萄球菌。
     磷酸盐玻璃载银抗菌剂具有极强的抗菌性能,其对大肠杆菌的最小抑菌浓度为50mg/l,对金黄色葡萄球菌的最小抑菌浓度为100mg/l,达到了优异的抗菌效果。实验还对以磷酸盐玻璃载银抗菌剂制备的聚丙烯复合材料进行了性能研究。结果表明,当抗菌剂粉体的添加量为PP的2‰时,抗菌率就能达到99%以上,制备出的抗菌PP塑料具有优异、长效的抗菌性能。
     在捏合法、单螺杆挤出法和双螺杆挤出法三种方法制备抗菌母粒的共混工艺中,实验结果表明采用双螺杆挤出法制备抗菌母粒,再将其添加到PE中制成抗菌塑料的方法最可行,制成的抗菌聚合物抗菌效果最好。添加抗菌母粒制备抗菌塑料的方法能够使抗菌剂集中并均匀的分散在基体树脂的表面,并对基体树脂的力学性能不会产生明显的影响。
     采用磷酸盐玻璃载银抗菌剂和Biofoam发泡专用液体抗菌剂制成了微孔发泡抗菌聚合物,结果表明所制备的微孔发泡抗菌PP既具有优异的抗菌效果又具有长效的抗菌性能。并且微孔发泡与抗菌具有协同作用,微孔发泡抗菌PP与未加抗菌剂的纯发泡样相比,其抗拉强度略有降低,断裂伸长率、弯曲强度和室温冲击强度都有所升高,密度略有增大。加入抗菌剂对发泡制品的发泡率、泡孔的数目和泡孔的分布情况影响不大,而且磷酸盐玻璃载银抗菌剂在发泡体系中还具有细化泡孔的效果。
In this paper, we chose three antimicrobial agents: Ce~(4+)/ZnO composite antimicrobial agent、Ag-carrying phosphate glass antimicrobial agent and Biofoam liquid antimicrobial agent which was used in the foaming system. The Ce~(4+)/ZnO composite antimicrobial agent powder was self-prepared by optimization technology. The experiment studied on the antimicrobial activity of the three antimicrobial agents, and we applied them to the polymer to prepare antimicrobial plastics.
     With nano- ZnO as carrier, the Ce~(4+)/ZnO composite antimicrobial agent was prepared by the best technology. The influences of different proportion of ZnO and Ce~(4+) on doping ratio were investigated. The antimicrobial activity was examined through the experiment of antibacterium-circle and MIC (Minimal inhibitory concentration), and the antibacterial mechanism of the compound antimicrobial agent was also studied. The results showed that the adsorption rate of the nano- ZnO for Ce~(4+) was 100%, and the ratio of ZnO to Ce~(4+) had little effect. Furthermore, the antimicrobial activity and photocatalytic activity of the nano- ZnO had been evidently improved through doping rare earth cerium. The MIC of Ce~(4+)/ZnO composite antimicrobial agent against Escherichia. Coli was 100mg/l, and Staphylococcus. Aureus was 150mg/l, it had good antimicrobial effect. We applied it to the polymer with PE as the matrix resin to prepare Ce~(4+)/ZnO antimicrobial polyethylene plastics by the extrusive technology of melting blend. The results showed that, PE antimicrobial plastics showed high rate of properties to prices by adding 1% antimicrobial agents, and had excellent and long-acting antibacterial activities. Their antibacterial rates were all above 97% against Escherichia.Coli and Staphylococcus. Aureus, also the antibacterial effect against Escherichia.Coli was better than that of Staphylococcus. Aureus.
     Ag-carrying phosphate glass antimicrobial agent had excellent antimicrobial activity, its MIC against Escherichia. Coli was 50mg/l, and Staphylococcus. Aureus was 100mg/l. We also studied on the properties of antibacterial polypropylene compound material with Ag-carrying phosphate glass antimicrobial agent. The experiment results showed that the antibacterial efficiency of PP was above 99% by adding 2‰antimicrobial agents, and the PP antimicrobial plastic had excellent and long-acting antibacterial activities.
     We chose three methods to prepare antimicrobial masterbatches: mediate method、single screw extrusive method and twin screw extrusive method. The results showed that the best way was adopted twin screw extrusive method to prepare antimicrobial masterbatches, then applied the antimicrobial masterbatches to polyethylene to prepare antimicrobial plastics. The antimicrobial plastics had the best antimicrobial effect by this way. The method of preparing antibacterial plastic by adding antibacterial masterbatches could bring antimicrobial agent concentrated and symmetrical to the surface of matrix resin, and the mechanical property of matrix resin was not affected.
     We prepared microcellular foamed antimicrobial polymer with Ag-carrying phosphate glass antimicrobial agent and Biofoam liquid antimicrobial agent which was used in the foaming system. The results showed that the microcellular foamed antimicrobial PP had excellent antibacterial effect and long-acting antibacterial activities. Microcellular foam worked in coordination with antimicrobial effect. Compared the microcellular foamed antimicrobial PP with the foamed PP samples without antimicrobial agent, its Tensile Strength was lower, but the Elongation at Break、Flexure Strength、Impact Strength at room temperature and the Density were higher. Antimicrobial agent had little affected about the foaming rate、cell amounts and the cell distribution. Also Ag-carrying phosphate glass antimicrobial agent had the effect of reducing in the cell size of the foaming system.
引文
[1] 章结兵,葛岭梅,周安宁.抗菌塑料研究进展[J].塑料科技,2004,(2):58~61.
    [2] 李毕忠.抗菌产业发展新动向[C].中国抗菌材料及制品行业协会秘书处,第三届中国抗菌产业发展大会技术文集.广州,2003,87~89.
    [3] Clark J H, Butterworth A J, Tavener S J, etal. Chemically-modified mesoporous solid catalysts[J].J Chem Tech Biotechnol, 1996,88:367~376.
    [4] Sakamoto, Takeo, Watanake, eta1. Antibalterial Zeolite Causing Little Discoloration and Method Of the Production thereof[J].US oatent:6071542,2000,06.
    [5] Yumei Zhang, Jianming Jiang, Yanmo Chen. Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts[J]. Polymer, 1999,40:6189.
    [6] 赵崇立.国外塑料抗菌剂新产品介绍[J].化工新型材料,1999,27(8):35~36.
    [7] 《国外塑料》编辑部.全球塑料助剂市场最新发展状况[J].国外塑料,2003,21(3):10~12.
    [8] 何继辉,谭绍早,马文石等.聚丙烯/无机抗菌粒子复合材料的性能研究[J].塑料工业,2003,31(11):42.
    [9] 金宗哲.无机抗菌材料及应用[M].北京:化学工业出版社,2004.
    [10] 季君晖,史维明.抗菌材料[M].北京:化学工业出版社,2003.
    [11] 戴晋明,魏丽乔,侯文生等.纳米沸石载Ag/Zn复合抗菌剂的分散性[J].材料热处理学报,2005,26(3):22~24.
    [12] 吕国玉,李玉宝,魏杰等.载银羟基磷灰石抗菌织物的研究[J].功能材料,2005,36(6):888~891.
    [13] 王维清,冯启明,袁昌来.一种新型无机抗菌剂载体—麦饭石[J].中国矿业,2005,14(1):42~44.
    [14] 田树霖.家电用抗菌剂分类及其原理分析[J].家电科技,2003(1):41~42.
    [15] 师敏,张晖,赵文权.无机纳米抗菌饮水桶的研制[J].食品工业,2005(2):52~53.
    [16] 金宗哲.无机抗菌材料的发展及其抗菌机理[C].中国抗菌产业发展大会,中国抗菌材料及制品行业协会.广州,2003,47.
    [17] 罗文彬.新型多孔载银抗菌剂的研制和灭菌性能评价[D].四川:四川大学,2003:5.
    [18] 张鹏,张向东,高敬群等.抗菌沸石在塑料PP中的应用[J].辽宁化工,2003,31(7):305~307.
    [19] 付国柱,于运花,许瑞芬等.纳米TiO2 改性聚乙烯膜抗菌性能的研究[J].工程塑料应用,2003,4(31):37~39.
    [20] 陈传志,周祚万,胡书春等.纳米ZnO/HDPE复合材料的制备与研究[J].塑料工业,2003,31(10):18~19.
    [21] Ka mat P V. Chem. Rev, 1993,93:267.
    [22] Linsebigler A L. chem. Rev. 1995,95:735.
    [23] Bickley R. J. Solid State chem. 1991,92:178.
    [24] Yogi G D ASME-JSES-JSME International Solar Energy Conferenc, New York, 1995, part1(of 2):421.
    [25] Guangji Li, Jiarui Shen, Yinlan Zhu. Study of pyridiniu m-type functional polymers: Antibacterial activity of soluble pyridiniu m-typer plymers[J].J Appl Polym sci, 1998,67:1761~1768.
    [26] Nayef S Al-Muaikel, Sale m S Al-Diab, Ali A Al-Salamah, etal. Synthesis and characterization of novel organotin monomers and copolymers and their antibacterial activity[5].J Appl Poly m Sci, 1994,53:1245~1249.
    [27] Ebi N, Imazato S, Noiri Y, Ebisu S. Dental Materials, 2001,17(6): 485~491.
    [28] Seckin I, Onal Y, Yesilada O, Gultek A. J Mater Sci, 1997,32(22): 5993~5999.
    [29] Syaliuddin T, Hisamitsu H, Toko T, Igarashi T, Goto N, Fujishima A, Myazaki T. Biomaterials, 1997,18(15):1051~1057.
    [30] Yoshida K, Tanagawa M, Atsuta M. J Biomed Materi Res, 1999,47:516~522.
    [31] Imazato S, Ebi N N, Tarumi H, Russell R R B, Kaneko T, Ebisu S. Biomaterials, 1999,20:899~903.
    [32] Kawabata N. Prog polym Sci, 1992,17:1~34.
    [33] Kanazawa A, Ikeda T, Endo T. J Appl Polym Sci, 1994,52:641~647.
    [34] Li G, Shen J, Zhu Y. J Appl Polym Sci, 2000,78:641~647.
    [35] Kawabata N, Nishiguchi M. Antibacterial activity of soluble pyridinium-type polymers[J]. Appl Environ Microbiol, 1998, 54(10):2532~2535.
    [36] T. E. Cloete. Resistance mechanisms of bacteria to antimicrobial compounds. International Biodeterioration &Biodegradation, 2003, 51:277~282.
    [37] Franklin T J, Snow G A. Biochemistry of Antimicrobial Action[M]. London: Chapman and Hall, 1981.
    [38] Viktor Majtan, Lubica Majtanova. The effect of new disinfectant substances on the metabolism of Enterobacter cloacae. International Journal of Antimicrobial Agents, 1999,11:59~64.
    [39] Akihiko Kanazawa, Tomiki Ikeda, Takeshi Endo. Polymeric phosphonium saltsas a novel class of cationic biocides Ⅷ:Synergistic effect on antibacterial activity of polymeric phosphonium and ammonium salts[J]. J Appl Polym Sci, 1994,53:1245~1249.
    [40] 潘碌亭,肖锦.天然高分子改性多功能水处理剂FIO-C的制备及应用[J].工业水处理,2001,21(1):13~16.
    [41] 常青春.季铵盐型阳离子表面活性剂的发展及应用[J].佳木斯大学学报(自然科学版),2003,21(4):503~506.
    [42] 朱文杰,张谨.改性季铵盐抗菌剂的制备及性能研究[J].功能材料,2005,36(12):1872~1878.
    [43] 郑安呐,管涌,周强等.分子组装型(PPNH)系列抗菌母粒及其应用[J].塑料包装,2002,12(2):32~34.
    [44] 季君晖.抗菌塑料的研制、工程化及应用:[博士后研究工作报告][D].中国科学院化学研究所,北京,1999.
    [45] 王兴天.注塑成型技术[M].北京:化学工业出版社,1993.
    [46] 刘志军,肖勇,马骐,李志芳.抗菌材料的应用及发展展望[J].江西化工,2002,(4):35~37.
    [47] 吉向飞,李玉平,杨柳青等.抗菌剂及抗菌材料的发展和应用[J].太原理工大学学报,2003,34(1):11~15.
    [48] 李炜罡,吕维平,王海滨,霍冀川.抗菌材料进展[J].化工新型料,2003,31(3):7~10.
    [49] 丁浩.塑料应用技术[M].北京:化学工业出版社,1999.
    [50] 李毕忠.我国抗菌母粒的发展和应用现状[J].家电科技,2003,(1):36~37.
    [51] 祖庸,吴金龙.新型无机抗菌剂—超微细氧化锌[J].化工时刊,1999,13(1):7~9.
    [52] 张小丽,毛健,王龙等.Ce/TiO_2纳米复合粉体的制备及其性能评价[J].功能材料与器件学报,2005,11(3):363~366.
    [53] Liu Yuehui(刘粤惠),Liu Pingan(刘平安).Analysis Theory and Appl ication of X-Ray Diffraction(射线衍射分析原理与应用)[M].Beijing:Chemical Industry Press,2003:211.
    [54] 薛涛,曾舒,毛健等.稀土铈掺杂纳米氧化锌的结构及光催化性能研究[J].功能材料,2006,37(增刊):27~30.
    [55] 川本隆一.日本抗菌市场的发展及抗菌相关标准的制定[C].中国抗菌产业发展大会,中国抗菌材料及制品行业协会.北京,2002.
    [56] Wang Ronghua(汪荣华),Liu Hongfang(刘宏芳),Xu Liming(许立铭)et al.Journal of Central China Normal University(华中师范大学学报)[J],2003,37(4):510.
    [57] Shannon R D. Acta Crystallogr, 1976, A32:751.
    [58] Toshihide Tsugi, Yasuhisa Yamaura, Noriyuki Nakajima. Thermochimica Acta, 2004,416(1-2):93.
    [59] Noriyuki Nakajima, Yasuhisa Yamaura, Toshihide Tsugi. Solid State Communications, 2003,128(5):193.
    [60] 季君晖,史维明.抗菌材料[M].北京:化学工业出版社,2003,19.
    [61] 韩世同,习海玲,史瑞雪等.半导体光催化研究进展与展望[J].化学物理学报,2003,16(5):339~347.
    [62] Micheal R Hoffmsnn, Scot T Martin, Wonyong Choi, et al. Environmental applications of semiconductor photocatalysis. Chemical Review, 1995,95(1):69~96.
    [63] Kiridena WCB, Pubchihewa S, Photodegradation of visiblelight-absorbing organic compounds in the presence of semiconductors catalysts, J Photochem Photobiol, 1992, V68:389.
    [64] 唐慧安,王流芳,杨汝栋.稀土茜素配合物的合成、表征及抗菌活性[J].稀土,2001,22(3):16~17.
    [65] 黄丽芳.稀土的生物功能[J].华夏医学,2002,15(5):693.
    [66] 杨玲,毛健,侯廷红,张小丽,王彬,涂铭旌.稀土铈掺杂纳米ZnO抗菌复合材料研究[J].化工新型材料,2005,33(2):17.
    [67] 丁学杰,方岩雄.塑料助剂生产技术和应用[M].广州:广东科技出版社,1983.
    [68] 梁中华,王津,傅政等.纳米氧化锌/PP复合材料抗菌性能的研究[J].塑料科技,2005,165(1):28~30.
    [69] 谭绍早.聚丙烯抗菌塑料的制备及性能研究[J].中国塑料,2005,19(2):41~44.
    [70] 罗筑,薛涛,何苇苇等.高密度聚乙烯/纳米氧化锌共混材料性能研究[J].现代机械,2002,(3):84~85.
    [71] 张环.抗菌塑料与抗菌母料的制备及性能研究[D].天津:天津轻工业学院,2001.
    [72] 张玉龙,李长德,张银生等.纳米技术与纳米塑料[M].北京:中国轻工业出版社,2002.
    [73] Seeler K A, and Kumar V, J Reinf Plas Comp, 1993,12:39.
    [74] Collias D 1, Baird D G, Borggreve R J M, Polymer, 1994,35 (18) :3978.
    [75] Park C B, Baldwin D F, Suh N P, Polym. Eng Sci, 1995,35(5):432.
    [76] John D G, Plastics Tech, 1993:63~65.
    [77] 吴唯,钱琦,浦伟光等.纳米SiO_2改性PP的结晶结构与特性研究[J].中国塑料,2002,16(1):23~27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700