李斯特菌感染的巨噬细胞来源的微颗粒在树突状细胞介导的获得性免疫中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]天然免疫和获得性免疫之间的相互作用在选择性清除病原体的过程中发挥着重要的作用。机体感染病原菌后天然免疫细胞首先发挥作用,当天然免疫不能够彻底清除病菌时,获得性免疫随之产生。巨噬细胞和树突状细胞这两种关键的免疫细胞,对于天然免疫向获得性免疫的转化至关重要,然而两者间的作用机制尚不清楚。以李斯特菌感染模型为例,机体产生抗李斯特菌的获得性免疫反应必须需要树突状细胞的参与,单独的巨噬细胞是不能够诱导出抗李斯特菌特异性免疫的。然而树突状细胞摄取李斯特菌的能力较巨噬细胞弱很多,这种对李斯特菌摄取能力的差异提示在细菌抗原加工、提呈并引起T细胞保护性免疫反应的过程中,巨噬细胞和树突状细胞可能承担着不同的职责和作用,了解两者之间的作用途径和机制尤为重要。近年来研究证明,微颗粒在细胞与细胞之间信息传递过程中发挥着重要作用,然而其在获得性免疫过程中的作用尚不清楚。本研究证明了树突状细胞介导的抗李斯特菌特异性免疫过程中巨噬细胞的重要性,进一步验证李斯特菌感染的巨噬细胞来源的微颗粒在树突状细胞介导的T细胞免疫反应中的作用,阐述巨噬细胞与树突状细胞间相互作用的新途径。
     [方法]
     1.检测巨噬细胞在诱导抗李斯特菌获得性免疫中的作用
     (1)清除体内巨噬细胞,检测过继T细胞增殖实验
     选择16g的雌性裸小鼠腹腔注射301μg抗F4/80的清除抗体,0.8mg Clodrolip,或PBS。每组6只,注射体积为200m,注射时间在Lm注射前48h和6h。将Lm感染过或未感染的BABL/c小鼠的脾脏T细胞磁珠分选出来,CFSE染色后通过尾静脉过继接种给处理过的裸小鼠,5×106个T细胞/只。6h后将1×103个活Lm经尾静脉注入裸小鼠体内,60h后取裸小鼠脾脏细胞流式检测过继T细胞的增殖情况。
     (2)体外实验检测巨噬细胞在李斯特菌刺激T细胞增殖过程中的作用
     将BABL/c小鼠骨髓来源的DCs与Lm共培养,加或不加腹腔巨噬细胞,培养时间分别为6h,12h,18h。再与Lm感染小鼠的脾脏T细胞按1:10共培养,72h后加入3H-胸腺嘧啶脱氧核苷,18h后收集细胞,液体闪烁仪计数。
     (3)体外实验检测李斯特菌感染的巨噬细胞上清对T细胞增殖的影响
     用Lm感染的巨噬细胞上清或Lm的培养上清与骨髓来源的DCs共培养,6h后再加入Lm感染小鼠的脾脏T细胞,72h后加入3H-胸腺嘧啶脱氧核苷,18h后收集细胞,液体闪烁仪计数。
     2.李斯特菌感染的巨噬细胞释放的微颗粒的检测
     (1)微颗粒的提取
     巨噬细胞与Lm共培养(补加100μg/ml的庆大霉素),培养12h后将上清液经过多步离心除去细胞、细胞碎片和大部分细菌,再用1.0μn的滤膜将上清液过滤完全除去Lm,最后用14000g离心60min,获得微颗粒沉淀。
     (2)微颗粒的标记
     用经过CFSE染色的Lm感染巨噬细胞,收集上清液中的微颗粒,流式检测。或者是将CFSE染色的Lm与PKH-26染色的巨噬细胞共培养,提取的微颗粒用双光子共聚焦显微镜观察。
     3.李斯特菌感染的巨噬细胞释放的微颗粒的功能检测
     (1)Lm感染的巨噬细胞来源的微颗粒刺激DCs活化的检测
     将DCs分别与Lm感染的巨噬细胞微颗粒,巨噬细胞微颗粒和PBS共培养,24h后分别用抗体CD80、CD86和MHCⅡ的流式抗体染色,流式检测表达情况。分时间段收取与微颗粒共培养的DCs蛋白样品,Western blot检测DCs活化信号ERK和Iκ.B的磷酸化水平。
     (2)Lm感染的巨噬细胞来源的微颗粒刺激T细胞增殖实验
     将不同数量级的Lm与巨噬细胞共培养,提取的微颗粒再与DCs共培养后加入Lm感染小鼠的脾脏T细胞,72h后加入3H-胸腺嘧啶脱氧核苷,18h后收集细胞,液体闪烁仪计数。
     4.动物实验
     选择6-8周龄的BABL/c小鼠,每组6只,用Lm感染的巨噬细胞微颗粒皮下免疫小鼠,对照为正常巨噬细胞微颗粒或Lm培养上清提取物免疫组。连续免疫7天后尾静脉注射1×105活的Lm,连续10天观察小鼠生存情况。
     [结果]
     1.体内实验证明巨噬细胞参与DCs诱导的抗Lm获得性免疫反应
     清除体内巨噬细胞的裸小鼠过继接种Lm感染小鼠的CFSE-T细胞,6h后尾静脉注射活的Lm,60h后检测发现清除了巨噬细胞组的小鼠脾脏中过继T细胞不发生增殖。将Lm感染的巨噬细胞注射到C57BL/6小鼠腹腔,7天后分离出脾脏细胞经过灭活的Lm再刺激,发现接种了感染的巨噬细胞组的脾脏细胞培养上清中IFN-γ和IL-22的表达均显著升高,同样流式检测CD11c+细胞IL-12的表达上调,CD4+细胞IFN-γ表达上调。这些结果说明诱导抗Lm T细胞免疫反应需要巨噬细胞的参与。
     2.体外实验证明Lm感染的巨噬细胞培养上清诱导DCs成熟并提呈抗原
     分别用Lm感染的巨噬细胞培养上清,正常巨噬细胞培养上清和Lm的培养上清来培养DCs,24h后检测DCs表面CD80、CD86和MHCⅡ的表达,发现Lm感染的巨噬细胞组DCs这三者表达均上调,表明DCs被激活。进一步通过T细胞增殖实验证明,Lm感染的巨噬细胞培养上清具有较强的刺激T细胞增殖的能力,提示Lm感染的巨噬细胞培养上清含有某种形式的Lm抗原,树突状细胞可以将其摄取并将抗原提呈给T细胞,诱导获得性免疫反应。
     3.Lm感染的巨噬细胞来源的微颗粒刺激DCs活化
     将Lm感染的巨噬细胞微颗粒提取出来,利用流式和双光子共聚焦显微镜检测,可以发现微颗粒中Lm成分的存在。通过流式检测DCs表面CD80、CD86和MHCⅡ的表达,Western Blot检测ERK和Iκd3的磷酸化水平发现含有Lm成分的微颗粒可以刺激DCs活化并成熟,说明微颗粒将其含有的Lm抗原传递给DCs。
     4.体外实验证明DCs摄取微颗粒并提呈Lm抗原的机制
     将Lm感染的巨噬细胞微颗粒与DCs共培养,检测DCs对微颗粒的摄取发现约有35%的DCs摄取了微颗粒。与正常情况下巨噬细胞释放的微颗粒相比,Lm感染的巨噬细胞释放的微颗粒表面Annexin-V表达更高,这可能是DCs更容易摄取含有Lm成分微颗粒的原因。为了了解DCs是通过何种抗原提呈途径提呈Lm抗原给T细胞的,我们用Lm感染MHC-Ⅰ-/-小鼠巨噬细胞,提取的微颗粒再与DCs和CD8+T细胞共培养,发现T细胞增殖能力减弱,提示DCs摄取微颗粒中的Lm抗原后可以直接将MHC-Ⅰ抗原肽复合物表达在细胞表面,提成给CD8+T细胞。而用MHC-Ⅱ-/-。小鼠的DCs与Lm感染的巨噬细胞微颗粒共培养,检测其对CD4+T细胞增殖的影响。我们发现T细胞增殖能力显著降低,这一结果说明DCs通过摄取微颗粒获得Lm抗原,加工后组合成MHC-Ⅱ-/-/-抗原肽复合物表达在细胞表面,再提成给CD4+T细胞。上述结果说明DCs可以通过多种方式摄取微颗粒,包括DCs与微颗粒间的细胞膜融合方式以及摄取后加工再提呈方式。而进一步利用MyD88-/-小鼠实验证明,DCs摄取Lm-MPs这一过程与TLR信号通路无关。
     5.体外证明含Lm成分微颗粒的产生受到细胞骨架变化的影响
     利用F-actin聚合抑制剂和肌球蛋白Ⅱ的ATP酶抑制剂作用Lm感染的巨噬细胞,发现含有Lm成分的微颗粒产量减少。这一结果提示肌球蛋白Ⅱ的触发和肌动蛋白丝产生的张力的变化都对巨噬细胞释放Lm微颗粒具有重要的作用。
     6.体内实验证明李斯特菌感染的巨噬细胞释放的微颗粒被DCs摄取
     将1×107个CFSE标记的Lm注射到小鼠腹腔,12h后冲洗腹腔收集微颗粒,大约有13%的微颗粒含有Lm成分,而这种Lm-MPs主要是由腹腔巨噬细胞释放的,因为清除了巨噬细胞后,含Lm成分的微颗粒比例下降到0.6%。将腹腔巨噬细胞释放的Lm-MPs再注射到新小鼠腹腔,6h后收集腹腔细胞染色CD11c,流式检测发现约有3%-6%的细胞CDllc+,而这些CDllc+细胞中有40%的细胞摄取了Lm-MPs。此结果说明体内感染Lm后巨噬细胞将其吞噬再以Lm-MPs的形式释放,DCs通过摄取Lm-MPs来获得Lm的抗原。
     7.Lm感染的巨噬细胞来源的微颗粒可以诱导抗Lm获得性免疫反应
     分别用巨噬细胞微颗粒和Lm感染的巨噬细胞微颗粒皮下免疫小鼠,Lm培养上清按提取微颗粒步骤处理后作为对照组,7天后尾静脉注射1×105个活Lm于小鼠体内。观察各组小鼠成活情况,发现Lm感染的巨噬细胞微颗粒免疫的小鼠生存率显著高于巨噬细胞微颗粒免疫小鼠和对照组小鼠。说明李斯特菌感染的巨噬细胞来源的微颗粒可以诱导抗李斯特菌保护性免疫反应。
     [结论]
     本研究证明诱导抗李斯特菌获得性免疫反应需要巨噬细胞的参与。巨噬细胞吞噬李斯特菌后释放出含有李斯特菌成分的微颗粒,树突状细胞主要是通过膜融合和内吞这两种方式摄取这些微颗粒,将抗原肽-MHC Ⅰ复合物直接提呈或加工抗原后再组装成抗原肽-MHC Ⅱ复合物提呈给T细胞使其活化增殖。以含有李斯特菌成分的巨噬细胞微颗粒作为疫苗免疫小鼠,可以使小鼠获得抗李斯特菌的能力。综上所述,李斯特菌感染后巨噬细胞以微颗粒形式将李斯特菌抗原传递给树突状细胞,进而提呈抗原激活T细胞,使机体获得抗李斯特菌特异性免疫。
[Objective] The mutual interaction between innate and adaptive immune responses plays a crucial role in the optimal clearance of invading pathogens. Innate immune cells respond first to infection but are frequently insufficient to overcome the virulence mechanisms of pathogens; thus, the adaptive immune responses are activated. Macrophages and dendritic cells are two key innate immune cell types involved in phagocytosis and presentation of antigen respectively, upon bacterial infection. It is accepted that both macrophages and dendritic cells contribute to the activation of T cells; however, the interplay between these cells in the processing and presentation of bacterial antigens for the goal of activating T cells remains poorly understood. Using a Listeria monocytogenes (Lm) infection model, investigating a cross-talk between these two cell types. DCs play a critical role in priming adaptive immunity against Lm, whereas, macrophages fail to initiate anti-Listeria CTL responses in the absence of DC. However, DCs were not effective at directly capturing Lm, compared with macrophages. Such discrepancies suggest that a mutual interaction might exist between macrophages and dendritic cells in the processing, and presentation of antigens to T cells in the induction of protective immune response. Recent studies show that, microparticles play a important role in cell communications. It is not clear that the effection of microparticles in adaptive immune responses. In the present study, we show that both macrophages and DCs are essential for the induction of Lm-specific T cell responses but with different responsibilities. Macrophages phagocytose and release Lm antigens-containing MPs; which are subsequently captured by DCs leading to priming T cell responses.
     [Methods]
     1. To investigate the role of macrophages in eliciting the adaptive immunity against Lm infection.
     (1) To detect the the proliferation of adoptively transferred T cells in depleting macrophages mice in vivo.
     BALB/c nude mice (n=6) were i.p. injected with clodrolip or anti-F4/80depleting mAb for macrophage depletion. Then mice were adoptively transferred with CFSE-labeled T cells isolated from the spleens of Lm-infected mice or naive mice (control), and1.0×103viable Lm were injected into these mice after6h.60h later, the proliferation of adoptively transferred T cells in the spleen was determined by flow cytometry.
     (2) To investigate the role of macrophages in the proliferation of anti-Lm T cells in vitro.
     Bone marrow-derived DCs (BALB/c background) were incubated with viable Lm (100μg/ml gentamycin added) in the presence or absence of peritoneal macrophages for various time intervals (6,12, and18h).1×105splenic T cells, isolated from the spleens of Lm-infected BALB/c mice, were co-cultured with those DCs (1×104) or Lm-infected macrophages.[3H] thymidine was added after cuturing72h, then T cell proliferation was measured by liquid scintillation analyser18h later.
     (3) Supernatants from Lm-infected macrophage cell cultures stimulated the proliferation of T cells.
     T cells, isolated from the spleens of Lm-infected BALB/c mice, were incubated with DCs that had been treated with the supernatants of Lm-infected macrophages, Lm-infected DCs, or untreated DCs.[3H] thymidine was added after cuturing72h, then T cell proliferation was measured by liquid scintillation analyser18h later.
     2. To detect MPs from Lm-infected macrophage cell
     (1) Isolation of microparticles
     Supernatants of cultured macrophages were used to isolate MPs as described before.16Briefly, supernatants were centrifuged at300gx5min,500gx5min,1500gx5min and5000gx5min to remove of cells and debris. The supernatant was passed through a1.2μm filter in order to remove bacteria, and then further centrifuged for60min at14000g to pellet MPs.
     (2) Labelling of microparticles
     Bacteria were stained with CFSE and used to infect macrophages. MPs isolated from macrophages were labeled with a red-fluorescent cell linker (PKH26, Sigma) according to the manufacturer's protocol. Such fluorescent MPs were observed under two-photon fluorescent microscopy or analyzed by flow cytometr.
     3. Functions of microparticles
     (1) MPs drived from Lm-infected macrophage stimulated DCs activation.
     DCs were incubated with PBS, MPs from Lm infected or control macrophages for24h and were stained with CD80, CD86or MHC class Ⅱ mAb. and analyzed by flow cytometry. Bone marrow-derived DCs were stimulated with MPs from Lm-infected or control macrophages for various time intervals (0-60min). Western blot was performed for analysis of MAPK ERK and IkB phosphorylation.
     (2) MPs drived from Lm-infected macrophage stimulated Tcell proliferation.
     Macrophages were treated with different MOIs, and the isolated MPs were used to treat DCs for T-cell proliferation.
     4. In vivo Listeria monocytogenes protection assay
     5×106macrophages in2ml culture media were treated with PBS or5x107viable Lm (100μg/ml gentamycin added30min later) for48h. Additionally,5×107viable Lm were incubated in2ml culture media alone with gentamycin. Each2ml supernatants were used for MP isolation and the quantity was used for one mouse injection. Mice were immunized subcutaneously with MPs mixed with rehydragel adjuvants for7days and challenged by i.v. injection of1×105viable Lm. Survival was monitored for10days. Six mice were used per group.
     [Results]
     1. Macrophages are required for DC-elicited anti-Lm T cell response in vivo
     Splenic macrophages, but not DCs, were depleted in mice by i.p. injecting liposomal clodronate or anti-F4/80antibody. Under such condition, BALB/c nude mice were adoptively transferred with T cells isolated from the spleens of Lm-infected mice. We found that the depletion of macrophages abrogated the in vivo proliferative response of adoptively transferred T cells60h after the i.v. injection of1.0×103viable Lm. To confirm these results, we transferred the Lm-infected macrophages into naive C57BL/6mice for7days and the spleen cells were cultured with killed bacteria for measurement of cytokine production by ELISA assay. As expected, the inoculation of Lm-infected macrophages into C57BL/6mice strongly induced the production of IFN-y and IL-22, two potent mediators of cellular inflammatory responses against bacterial pathogens. In addition, IFN-y-producing CD4+T cells were analyzed by FACS. These findings suggested that the initial infection of macrophages by Lm is required for the generation of protective immune responses. Thus, although macrophages do not directly present Lm peptides, they seem to participate in the induction of Lm specific T cell responses.
     2. Supernatants from Lm-infected macrophage cell cultures confer DC maturation and presentation of Lm antigens
     Macrophages were infected with viable Lm (gentamycin was added30min later) for24h and supernatants were harvested by centrifugation and filtration. And then the supernatants were incubated with DCs for24h. The expression of CD80, CD86, and MHC class II on DCs was upregulated by the supernatants from Lm-infected macrophages compared to cells incubated with supernatants from uninfected macrophages. Such DC activation was not ascribed to the bacterial contamination, since the supernatant from the above Lm alone did not affect DC maturation. Moreover, we found that DCs treated with supernatants of Lm-infected macrophages effectively induced T cell proliferation. These findings suggested that factors released from Lm-infected macrophages are capable of eliciting the maturation and conferring the immunogenicity of DCs against Lm infection.
     3. Microparticles shed by Lm-infected macrophages are the source for DC immunogenicity
     Macrophages were infected with CFSE-labeled Lm and the released MPs were isolated from the supernatants. The fluorescence was observed in MPs via both flow cytometry (27.4%CFSE positive MPs) and under the microscope, indicating the presence of Lm-derived bacterial components in MPs. Consistently, Lm component-containing MPs stimulated DC maturation and resulted in T cell proliferation. Here, we also used Lm with different multiplicity of infection (MOI) to treat macrophages and assayed the effect of isolated MPs on T cell proliferation. We found that even low numbers of Lm could result in T cell proliferationvia DC antigen presentation and that increased numbers of Lm further promoted T cell proliferation. To further analyze the effect of MPs on DCs, we examined the activation of MAP kinases and NF-κB, two critical signaling pathways involved in DC activation. DCs were stimulated with MPs from Lm-infected or control macrophages for various time intervals (10,30,60min). The activation of MAP kinase and NF-κB by MPs from Lm-infected macrophages was confirmed by the induction of ERK and IκB phosphorylation.
     4. Macrophages/microparticles/DCs form an axis to transfer Lm antigenicity
     Next, we wondered how MPs by Lm-infected macrophages transferred Lm antigenicity to DCs. By using PKH26membrane dye to stain MPs, we found that35%DCs presented red fluorescence. DCs are known to have the capacity to take up apoptotic cells. Here, we also found that phosphatidylserine was translocated to the outer layer of the membrane of MPs, the marker of apoptosis. In addition, we wanted to clarify DCs acquiring antigens pathway. MHC class I-deficient macrophages were infected with Lm to generate MHC class I-deficient MPs. These MPs significantly reduced the presentation of Lm antigen by DCs to CD8+T cells. We also found that MyD88deficiency in macrophages did not affect the activation of T cells, but MHC class II deficiency in DCs significantly reduced the presentation of MP-derived Lm antigen by DCs to CD4+T cells. These data also suggested that DCs may capture MPs through different pathways, including the membrane fusion between DCs and MPs and DC uptake and processing.
     5. Actin filament is required for the generation of microparticles containing Lm components by macrophages
     In this regard, we wondered whether cytoskeleton was required for the production of Lm-induced MPs by macrophages. Thus, we treated macrophages with cytochalasin D, an inhibitor of F-actin polymerization, and found that the impairment of actin filament formation resulted in the decreased of MP release by Lm-treated macrophages. We then further treated macrophages with blebbistatin, an inhibitor of myosin II ATPase activity. Similarly, the inhibition of actin filament motility also led to the decreased MP release. Consistently, it was found that after the cytochalasin D or blebbistatin treatment MPs attenuated the effect of Lm components on DCs eliciting T cell proliferation. Therefore, these findings suggest that myosin Ⅱ-triggered, actin filament-generated tension might mediate the production of Lm component-containing MPs by macrophages.
     6. Generation of microparticles containing Lm components by macrophages and uptake by DCs in vivo
     Next, we validated the in vivo generation of MPs by macrophages under the condition of Lm infection. Using a peritoneal infection model, we i.p. injected1x107CFU CFSE-labeled Lm to mice.12h later, the peritoneal lavage was applied to isolate the MPs. As expected, we found that13%MPs contained Lm components by flow cytometry. However, if we previously depleted peritoneal macrophages we found that Lm infection only resulted in0.6%CFSE positive MPs, suggesting that MPs containing Lm components are mainly generated by macrophages after peritoneal Lm infection. To clarify DCs taking up these MPs, MPs were isolated from peritoneal lavage12h after CFSE-labeled Lm peritoneal infection, and then i.p. injected into naive mice.6hours later, We harvested peritoneal cells and found that3~6%of peritoneal cells were CD11c+DCs and~40%of these cells were CFSE positive. Consistently, the result of confocal microscopy also showed that DCs took up Lm components. These findings suggested that during Lm infection in vivo, macrophages phagocytose Lm and release Lm component-packaging MPs, leading to the subsequent uptake of the released MPs by DCs.
     7. Microparticles from Lm-infected macrophages elicit protective immunity
     Finally, we wondered whether the Lm antigenicity of MPs is able to elicit protective immune response in vivo. To verify this, Mice were immunized subcutaneously with MPs from Lm-infected macrophages mixed with rehydragel adjuvant, for7days followed by challenge by i.v. injection of1×105CFU viable Lm. The results showed that most mice immunized with MPs from Lm-infected macrophages survived, as opposed to the mice immunized with control MPs. However, such protective immunity could not be ascribed to the contamination of Lm in MPs, since after the filtration of the supernatants of single Lm incubation, the centrifugated pellets had no protective effect against Lm challenge. Furthermore, in these in vivo experiments, we also used gentamicin to treat mice concomitant with MP injection. Together, these data suggested that MPs containing Lm components elicit protective immune responses.
     [Conclusions] In the present study, we demonstrated that DCs require the participation of macrophages to generate protective immune responses against Lm infection. MPs were released from Lm-infected macrophages, might contain Lm components. DCs may capture Lm-MPs through different pathways, including the membrane fusion between DCs and MPs and DC uptake and processing. DCs directly present MHC class Ⅰ-peptide complexes derived from Lm-MPs or process Lm antigens and assemble MHC class Ⅱ-peptidecomplexes to T cells.In conclusion, Microparticles released by Listeria Monocytogenes infected macrophages are required for dendritic cell-elicited protective immunity.
引文
1. Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature2006; 440:808-812.
    2. Pamer EG. Immune responses to Listeria monocytogenes. Nat Rev Immunol2004; 4:812-823.
    3. Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia Aet al.Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 2004; 5:1260-1265.
    4. Underhill DM, Ozinsky A. Phagocytosis of microbes:complexity in action. Annu Rev Immunol 2002; 20:825-852.
    5. Jutras I, Desjardins M. Phagocytosis:at the crossroads of innate and adaptive immunity. Annu Rev Cell Dev Biol 2005; 21:511-527.
    6. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJet al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18:767-811.
    7. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392:245-252.
    8. Pozzi LA,Maciaszek JW,Rock KL.Both dendritic cells and macrophages can stimulate naive CD8 T cells in vivo to proliferate, develop effectorfunction,andd ifferentiateinto memory cells. J Immunol 2005; 175:2071-2081.
    9. Olazabal IM, Martin-Cofreces NB, Mittelbrunn M, Martinez del Hoyo G, Alarc6n B, Sanchez-Madrid F.Activation Outcomes Induced in Naive CD 8 T-Cells by Macrophages Primed via Phagocyticand Nonphagocytic Pathways. Mol Biol Cell2008; 19:701-710.
    10. Beauregard KE, Lee KD, Collier RJ, Swanson JA. pH-dependent perforationof macrophage phagosomes by listeriolysin O from Listeri a monocytogenes JExp Med1997; 186:1159-1163.
    11. Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, Brumell JH.Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature2008; 451:350-354.
    12. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 2002; 17:211-220.
    13. Kolb-Maurer A, Pilgrim S, Kampgen E, McLellan AD, Brocker EB, Goebel Wet al. Antibodies against listerial protein 60 act as an opsonin for phagocytosis of Listeria monocytogenes by human dendritic cells. Infect Immun2001; 69: 3100-3109.
    14. Steinman RM, Idoyaga J. Features of the dendritic cell lineage. Immunol Rev 2010; 234:5-17.
    15. Lopez-Bravo M, Ardavin C.In Vivo Induction of Immune Responses to Pathogens by Conventional Dendritic Cells. Immunity 2008; 29:343-351.
    16. Villadangos JA, Schnorrer P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 2007; 7:543-555.
    17. Zielinski CE, Corti D, Mele F, Pinto D, Lanzavecchia A. Dissecting the human immunologic memory for pathogens. Immunol Rev 2011; 240:40-51.
    18. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A. The Orphan Nuclear Receptor RORyt Directs the Differentiation Program of Proinflammatory IL-17+ T Helper Cells. Cell 2006; 126:1121-1133.
    19. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM. Development of Thl CD41 T cells through IL-12 produced by Listeria-induced macrophages. Science 1993;260:547-549.
    20. MeeksD,SieveAN,KollsJK,GhilardiN,BergRE. IL-23 is required for protection against systemic infection with Listeria monocyt ogenes. J Immunol 2009; 183:8026-8034.
    21. Edelson BT, Bradstreet TR, Hildner K, Carrero JA, Frederick KE, KC Wet al. CD8alpha(+) dendritic cells are an obligate cellular entry point for productive infection by Listeria monocytogenes. Immunity 2011; 35:236-248.
    22. Bode AP, Sandberg H, Dombrose FA, Lentz BR. Association of factor Ⅴ activity with membranous vesicles released from human platelets:requirement for platelet stimulation. Thromb Res 1985; 39:49-61.
    23. Jurk K, Kehrel BE. Platelets:physiology and biochemistry. Semin Thromb Hemost2005; 31:381-392.
    24. VanWijk MJ, VanBavel E, Sturk A, Nieuwland R. Microparticles in cardiovascular diseases. Cardiovasc Res 2003; 59:277-287.
    25. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles:important and underappreciated mediators of cell-to-cell communication. Leukemia 2006;20:1487-1495.
    26. Wolf P. The nature and significance of platelet products in human plasma. Br JHaematol1967; 13:269-288.
    27. VanWijk MJ, VanBavel E, Sturk A, Nieuwland R.Microparticles in cardiovascular disea.ses.Cardiovasc Res2003; 59:277-287.
    28. Shantsila E, Kamphuisen PW, Lip GY. Circulating microparticles in cardiovascular disease:implications for atherogenesis and atherothrombosis. J Thromb Haemost.2010 Nov;8(11):2358-68.
    29. Lazarus AH, Ellis J, Semple JW, Mody M, Crow AR, Freedman J.Comparison of platelet immunity in patients with SLE and with ITP.Transfus Sci2000; 22:19-27.
    30. Joseph JE, Harrison P, Mackie IJ, Isenberg DA, Machin SJ.Increasedcirculating platelet-leucocyte complexes andplatelet activation in patients withantiphospholipid syndrome, systemic lupuserythematosus and rheumatoid arthritis. BrJHaematol2001; 115:451-459.
    31. Morel O, Morel N, Jesel L, Freyssinet JM, Toti F.Microparticles:a critical component in the nexus between inflammation, immunity, and thrombosis.Semin Immunopathol2011; 33:469-486.
    32. McVey M, Tabuchi A, Kuebler WM.Microparticles and acute lung injury Am J Physiol Lung Cell Mol Physiol 2012; 303:364-381.
    33. Rak J.Microparticles in cancer.Semin Thromb Hemost2010; 36:888-906.
    34. ChenGY, NunezG. Sterile inflammation:sensingand reacting to damage. NatRev Immunol 2010; 10:826-837.
    35. MesriM, AltieriDC. Leukocyte microparticlesstimulate endothelial cell cytokine release and tissue factorinduction in a JNK1 signaling pathway. JBiol Chem1999; 274:23111-23118.
    36. Scanu A, MolnarfiN, BrandtK J, Gruaz L, DayerJM, BurgerD. Stimulated T cells generate microparticles,which mimic cellular contact activation of human monocytes:differential regulation of pro- and anti-inflammatory cytokineproduction by high-density lipoproteins. J Leukocyte Biol2008;83: 921-927.
    37. Cerri C, Chimenti D, Conti I, Neri T, PaggiaroP, Celi A.Monocyte/macrophage-derived microparticlesup-regulate inflammatory mediator synthesis by human airwayepithelial cells. JImmunol 2006; 177:1975-1980.
    38. NeriT, Armani C, Pegoli A, Cordazzo C, Carmazzi Y, Brunelleschi S et al. Role of NF-κB and PPAR-y in lung inflammationinduced by monocyte-derived microparticles. EurRespir J 2011; 37:1494-1502.
    39. Wang JG, Williams JC, Davis BK, Jacobson K, Doerschuk CM, Ting JP et al. Monocytic microparticles activate endothelial cells in an IL-1β-dependent manner. Blood 2011; 118:2366-2374.
    1. Boulanger CM. Microparticles, vascular function and hypertension. Curr Opin Nephrol Hypertens 2010; 19:177-180.
    2. Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler. Thromb Vasc Biol 2011; 31:27-33.
    3. Morel O, Jesel L, Freyssinet JM, Toti F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vase Biol 2011; 31: 15-26.
    4. Rautou PE, Vion AC, Amabile N, Chironi G, Simon A, Tedgui A et al. Microparticles, vascular function, and atherothrombosis. Circ Res 2011; 109: 593-606.
    5. Tissot JD, Rubin O, Canellini G. Analysis and clinical relevance of microparticles from red blood cells. Curr Opin Hematol 2010; 17:571-577.
    6. Zahra S, Anderson JA, Stirling D, Ludlam CA. Microparticles, malignancy and thrombosis. Br J Haematol 2011;152:688-700.
    7. Mathivanan S, Ji H, Simpson RJ. Exosomes:extracellular organelles important in intercellular communication. JProteomics 2010; 73:1907-1920.
    8. Stoorvogel W, Kleijmeer MJ., Geuze HJ, Raposo G. The biogenesis and functions of exosomes. Traffic 2002:3:321-330.
    9. Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes:current perspectives. Proteomics 2008; 8:4083-4099.
    10. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B et al. Membrane vesicles, current state-of-the-art:emerging role of extracellular vesicles. Cell Mol Life Sci 2011; 68:2667-2688.
    11. Elmore S. Apoptosis:a review of programmed cell death. Toxicol Pathol 2007; 35:495-516.
    12. Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9:581-593.
    13. Shcherbina A, Remold-O'Donnell E. Role of caspase in a subset of human platelet activation responses. Blood 1999; 93:4222-4242.
    14. Dachary-Prigent J, Pasquet JM, Freyssinet JM, Nurden AT. Calcium involvement in aminophospholipid exposure and microparticle formation during platelet activation:a study using Ca2+-ATPase inhibitor. Biochemistry 1995; 34: 11625-11634.
    15. Flaumenhaft R, Dilks JR, Richardson J, Alden E, Patel-Hett SR, Battinelli et al. Megakaryocyte-derived microparticles:direct visualization and distinction from platelet-derived microparticles.Blood 2009; 113:1112-1121.
    16. Bevers EM, Comfurius P, Dekkers DW, Zwaal RF. Lipid translocation across the plasma membrane of mammalian cells. Biochim Biophys Acta 1999; 1439: 317-330.
    17. Suzuki J, Umeda M, Sims PJ, Nagata S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 2010; 468:834-838.
    18. Toti F, Satta N, Fressinaud E, Meyer D, Freyssinet JM. Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited disorder. Blood 1996; 87:1409-1415.
    19. Castoldi E, Collins PW, Williamson PL, Bevers EM. Compound heterozygosity for 2 novel TMEM16F mutations in a patient with Scott syndrome. Blood 2011; 117:4399-4400.
    20. Albrecht C, McVey JH, Elliott JI, Sardini A, Kasza I, Mumford AD et al. A novel missense mutation in ABCA1 results in altered protein trafficking and reduced phosphatidylserine translocation in a patient with Scott syndrome. Blood 2005; 106:542-549.
    21. Dachary-Prigent J, Pasquet JM, Fressinaud E, Toti F, Freyssinet JM, Nurden AT. Aminophospholipid exposure, microvesiculation and abnormal protein tyrosine phosphorylation in the platelets of a patient with Scott syndrome:a study using physiologic agonists and local anaesthetics. Br J Haematol 1997:99:959-967.
    22. Leroyer AS, Ebrahimian TG, Cochain C, Recalde A, Blanc-Brude O, Mees B ea al. Microparticles from ischemic muscle promotes postnatal vasculogenesis. Circulation 2009; 119:2808-2817.
    23. Combes V, Coltel N, Alibert M, van Eck M, Raymond C, Juhan-Vague Ⅰ et al. ABCA1 gene deletion protects against cerebral malaria:potential pathogenic role of microparticles in neuropathology. Am JPathol 166:295-302.
    24. Connor DE, Exner T, Ma DD, Joseph JE. The majority of circulating platelet-derived microparticles fail to bind annexin Ⅴ, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb Haemostasis 2010; 103:1044-1052.
    25. Biro E, Akkerman JW, Hoek FJ, Gorter G, Pronk LM, Sturk A et al. The phospholipid composition and cholesterol content of platelet-derived microparticles:a comparison with platelet membrane fractions. J Thromb Haemostasis 2005; 3:2754-2763.
    26. Liu ML, Reilly MP, Casasanto P, McKenzie SE, Williams KJ. Cholesterol enrichment of human monocyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor-positive microvesicles. Arterioscler. Thromb Vasc Biol 2007; 27:430-435.
    27. Burger D, Montezano AC, Nishigaki N, He Y, Carter A, Touyz RM. Endothelial microparticle formation by angiotensin Ⅱ is mediated via Ang Ⅱ receptor type I/NADPH oxidase/Rho kinase pathways targeted to lipid rafts. Arterioscler Thromb VascBiol 2001; 31:1898-1907.
    28. Banz Y, Beldi G, Wu Y, Atkinson B, Usheva A, Robson, SC. CD39 is incorporated into plasma microparticles where it maintains functional properties and impacts endothelial activation. Br J Haematol 2008; 142:627-637.
    29. Terrisse AD, Puech N, Allart S, Gourdy P, Xuereb JM, Payrastre B et al. Internalization of microparticles by endothelial cells promotes platelet/endothelial cell interaction under flow. J Thromb Haemostasis 2010; 8: 2810-2819.
    30. Takano K, Asazuma N, Satoh K, Yatomi Y, Ozaki Y. Collagen-induced generation of platelet-derived microparticles in whole blood is dependent on ADP released from red blood cells and calcium ions. Platelets 2004; 15: 223-229.
    31. Chung AW, Radomski A, Alonso-Escolano D, Jurasz, P, Stewart MW, Malinski T et al. Platelet-leukocyte aggregation induced by PAR agonists:regulation by nitric oxide and matrix metalloproteinases. Br J Pharmacol 2004; 143:845-855.
    32. Nomura S, Nakamura T, Cone J, Tandon NN, Kambayashi J. Cytometric analysis of high shear-induced platelet microparticles and effect of cytokines on microparticle generation. Cytometry 2000; 40:173-181.
    33. Tschuor C, Asmis LM, Lenzlinger PM, Tanner M, Harter L, Keel M et al. In vitro norepinephrine significantly activates isolated platelets from healthy volunteers and critically ill patients following severe traumatic brain injury. Crit Care 2008; 12:R80.
    34. Lhermusier T, van Rottem J, Garcia C, Xuereb JM, Ragab A, Martin V et al. The Syk-kinase inhibitor R406 impairs platelet activation and monocyte tissue factor expression triggered by heparin-PF4 complex directed antibodies. J Thromb Haemostasis 2011; 9:2067-2076.
    35. Tamburrelli C, Crescente M, Izzi B, Barisciano M, Donati MB, de Gaetano G, Cerletti C. Epoprostenol inhibits human platelet-leukocyte mixed conjugate and platelet microparticle formation in whole blood. Thromb Res 2011; 128: 446-451.
    36. Brown MD, Feairheller DL, Thakkar S, Veerabhadrappa P, Park JY. Racial differences in tumor necrosi factor-a-induced endothelial microparticles and interleukin-6 production. Vasc Health Risk Manag 2011; 7:541-550.
    37. Wang JM, Wang Y, Huang JY, Yang Z, Chen L, Wang LC, et al. C-Reactive protein-induced endothelial microparticle generation in HUVECs is related to BH4-dependent NO formation. J Vasc Res 2007; 44:241-248.
    38. Simoncini S, Njock MS, Robert S, Camoin-Jau L, Sampol J, Harle JR et al. TRAIL/Apo2L mediates the release of procoagulant endothelial microparticles induced by thrombin in vitro:a potential mechanism linking inflammation and coagulation. Circ Res 2009; 104:943-951.
    39. Brodsky SV, Malinowski K, Golightly M, Jesty J, Goligorsky MS. Plasminogen activator inhibitor-1 promotes formation of endothelial microparticles with procoagulant potential. Circulation 2002; 106:2372-2378.
    40. Faure V, Dou L, Sabatier F, Cerini C, Sampol J, Berland Y et al. Elevation of circulating endothelial microparticles in patients with chronic renal failure. J. Thromb. Haemostasis 2006; 4:566-573.
    41. Meijers BK, Van Kerckhoven S, Verbeke K, Dehaen W, Vanrenterghem Y, Hoylaerts MF et al. The uremic retention solute p-cresyl sulfate and markers of endothelial damage. Am J Kidney Dis 2009; 54:891-901.
    42. Sekula M, Janawa G, Stankiewicz E, Stepien E. Endothelial microparticle formation in moderate concentrations of homocysteine and methionine in vitro. Cell Mol Biol Lett 2011; 16:69-78.
    43. Simak J, Holada K, Vostal JG. Release of annexin V-binding membrane microparticles from cultured human umbilical vein endothelial cells after treatment with camptothecin. BMC Cell Biol 2002; 3:11.
    44. Szotowski B, Antoniak S, Goldin-Lang P, Tran QV, Pels K, Rosenthal P et al. Antioxidative treatment inhibits the release of thrombogenic tissue factor from irradiation- and cytokine-induced endothelial cells. Cardiovasc Res 2007; 73: 806-812.
    45. Devaraj S, Kumaresan PR, Jialal I. C-reactive protein induces release of both endothelial microparticles and circulating endothelial cells in vitro and in vivo: further evidence of endothelial dysfunction. Clin Chem 2011; 57:1757-1761.
    46. Tramontano AF, O'Leary J, Black AD, Muniyappa R, Cutaia MV, El-Sherif N. Statin decreases endothelial microparticle release from human coronary artery endothelial cells:implication for the Rho-kinase pathway. Biochem Biophys Res Commun 2004; 320:34-38.
    47. Distler JH, Huber LC, Hueber AJ, Reich III CF, Gay S, Distler O et al. The release of microparticles by apoptotic cells and their effects on macrophages. Apoptosis 2005; 10:731-741
    48. Ullal AJ, Pisetsky DS. The release of microparticles by Jurkat leukemia T cells treated with staurosporine and related kinase inhibitors to induce apoptosis. Apoptosis 2010; 15:586-596.
    49. Scanu A, Molnarfi N, Brandt KJ, Gruaz L, Dayer JM, Burger D. Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes:differential regulation of pro- and anti-inflammatory cytokine production by high-density lipoproteins. J Leukocyte Biol 2008; 83:921-927.
    50. Shefler I, Salamon P, Reshef T, Mor A, Mekori YA. T cell-induced mast cell activation:a role for microparticles released from activated T cells. J Immunol 2010; 185:4206-4212.
    51. Martin S, Tesse A, Hugel B, Martinez MC, Morel O, Freyssinet JM et al. Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression. Circulation 2004; 109:1653-1659.
    52. Eyre J, Burton JO, Saleem MA, Mathieson PW, Topham PS, Brunskill NJ. Monocyte- and endothelial-derived microparticles induce an inflammatory phenotype in human podocytes. Nephron Exp Nephrol 2011; 119:58-66.
    53. Mastronardi ML, Mostefai HA, Soleti R, Agouni A, Martinez MC, Andriantsitohaina R. Microparticles from apoptotic monocytes enhance nitrosative stress in human endothelial cells. Fundam Clin Pharmacol 2011; 25: 653-660.
    54. Ben-Hadj-Khalifa-Kechiche S, Hezard N, Poitevin S, Remy MG, Florent B, Mahjoub T et al. Differential inhibitory effect of fondaparinux on the procoagulant potential of intact monocytes and monocyte-derived microparticles. J. Thromb Thrombolysis 2010; 30:412-418.
    55. Cerri C, Chimenti D, Conti I, Neri T, Paggiaro P, Celi A. Monocyte/macrophage-derived microparticles up-regulate inflammatory mediator synthesis by human airway epithelial cells. J Immunol 2006; 177: 1975-1980.
    56. Hong Y, Eleftheriou D, Hussain AA, Price-Kuehne FE, Savage CO, Jayne D et al. Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles. J Am Soc Nephrol 2012; 23:49-62.
    57. Gonzalez-Cano P, Mondragon-Flores R, Sanchez-Torres LE, Gonzalez-Pozos S, Silva-Miranda M, Monroy-Ostria A et al. Mycobacterium tuberculosis H37Rv induces ectosome release in human polymorphonuclear neutrophils. Tuberculosis 2010;90:125-134.
    58. Antoniak S, Boltzen U, Eisenreich A, Stellbaum C, Poller W, Schultheiss HP et al. Regulation of cardiomyocyte full-length tissue factor expression and microparticle release under inflammatory conditions in vitro. J Thromb Haemostasis 2009; 7:871-878.
    59. Ettelaie C, Su S, Li C, Collier ME. Tissue factor-containing microparticles released from mesangial cells in response to high glucose and AGE induce tube formation in microvascular cells. Microvasc Res 2008; 76:152-160.
    60. Brisset AC, Terrisse AD, Dupouy D, Tellier L, Pech S, Navarro C et al. Shedding of active tissue factor by aortic smooth muscle cells (SMCs) undergoing apoptosis. Thromb Haemostasis 2003; 90:511-518.
    61. Willekens FL, Werre JM, Kruijt JK, Roerdinkholder-Stoelwinder B, Groenen-Dopp YA, van den Bos AG et al. Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors. Blood 2005; 105:2141-2145.
    62. Litvack ML, Post M, Palaniyar N. IgM promotes the clearance of small particles and apoptotic microparticles by macrophages. PLoS ONE 2011; 6:17223.
    63. Bilyy RO, Shkandina T, Tomin A, Munoz LE, Franz S, Antonyuk V et al. Macrophages discriminate glycosylation patterns of apoptotic cell-derived microparticles. JBiol Chem 2012; 287:496-503.
    64. Faille D, El-Assaad F, Mitchell AJ, Alessi MC, Chimini G, Fusai T et al. Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells. J Cell Mol Med 2011; 16:1731-1738.
    65. Dasgupta SK, Le A, Chavakis T, Rumbaut RE, Thiagarajan P. Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium. Circulation 2012; 125:1664-1672.
    66. Atkinson AJ, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, Hoth D et al. Biomarkers and surrogate endpoints:preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69:89-95.
    67. Al-Ismaili Z, Palijan A, Zappitelli M. Biomarkers of acute kidney injury in children:discovery, evaluation, and clinical application. Pediatr Nephrol.2011; 26:29-40.
    68. Smalley DM, Sheman NE, Nelson K, Theodorescu D. Isolation and identification of potential urinary microparticle biomarkers of bladder cancer. J Proteome Res 2008; 7:2088-2096.
    69. Mutschler DK, Larsson AO, Basu S, Nordgren A, Eriksson MB. Effects of mechanical ventilation on platelet microparticles in bronchoalveolar lavage fluid. Thromb Res 2002; 108:215-220.
    70. Porro C, Lepore S, Trotta T, Castellani S, Ratclif L, Battaglino A et al. Isolation and characterization of microparticles in sputum from cystic fibrosis patients. Respir Res 2010; 11:94.
    71. Berckmans RJ, Nieuwland R, Tak PP, Boing AN, Romijn FP, Kraan MC et al. Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor Ⅶ-dependent mechanism. Arthritis Rheum 2002; 46:2857-2866.
    72. Press JZ, Reyes M, Pitteri SJ, Pennil C, Garcia R, Goff BA et al. Microparticles from ovarian carcinomas are shed into ascites and promote cell migration. Int J Gynecol Cancer 2012; 22:546-552.
    73. Berckmans RJ, Sturk A, van Tienen LM, Schaap MC, Nieuwland R. Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood 2011; 117:3172-3180.
    74. Leroyer AS, Isobe H, Leseche G, Castier Y, Wassef M, Mallat Z et al. Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J Am Coll Cardiol 2007; 49:772-777.
    75. Lacroix R, Robert S, Poncelet P, Dignat-George F. Overcoming limitations of microparticle measurement by flow cytometry. Semin. Thromb. Hemostasis 2010; 36:807-818.
    76. Shet AS, Aras O, Gupta K, Hass MJ, Rausch DJ, Saba N et al. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 2003; 102:2678-2683.
    77. Simak J, Gelderman MP, Yu H, Wright V, Baird AE. Circulating endothelial microparticles in acute ischemic stroke:a link to severity, lesion volume and outcome. J Thromb Haemostasis 2006; 4:1296-1302.
    78. Osumi K, Ozeki Y, Saito S, Nagamura Y, Ito H, Kimura Y et al. Development and assessment of enzyme immunoassay for platelet-derived microparticles. ThrombHaemostasis 2001; 85:326-330.
    79. Perez-Casal M, Downey C, Fukudome K, Marx G, Toh CH. Activated protein C induces the release of microparticle-associated endothelial protein C receptor. Blood 2005; 105:1515-1522.
    80. Hugel B, Zobairi F, Freyssinet JM. Measuring circulating cell-derived microparticles. J Thromb Haemostasis 2004; 2:1846-1847.
    81. Al-Massarani G, Vacher-Coponat H, Paul P, Arnaud L, Loundou A, Robert S et al. Kidney transplantation decreases the level and procoagulant activity of circulating microparticles. Am J Transplant 2009; 9:550-557.
    82. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 2011; 7:780-788.
    83. Lacroix R, Judicone C, Poncelet P, Robert S, Arnaud L, Sampol, J et al. Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. JThromb Haemostasis 2012; 10:437-446.
    84. Jayachandran M, Miller VM, Heit JA, Owen WG. Methodology for isolation, identification and characterization of microvesicles in peripheral blood. J Immunol Methods 2012; 375:207-214.
    85. Feng B, Chen Y, Luo Y, Chen M, Li X, Ni Y. Circulating level of microparticles and their correlation with arterial elasticity and endothelium-dependent dilation in patients with type 2 diabetes mellitus. Atherosclerosis 2010; 208:264-269.
    86. Koga H, Sugiyama S, Kugiyama K, Watanabe K, Fukushima H, Tanaka T et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol 2005; 45:1622-1630.
    87. Tramontano AF, Lyubarova R, Tsiakos J, Palaia T, Deleon JR, Ragolia L. Circulating endothelial microparticles in diabetes mellitus. Mediators Inflamm 2010; 2010:250476.
    88. Omoto S, Nomura S, Shouzu A, Hayakawa T, Shimizu H, Miyake Y et al. Significance of platelet-derived microparticles and activated platelets in diabetic nephropathy. Nephron 1999; 81:271-277.
    89. Omoto S, Nomur, S, Shouzu A, Nishikawa, M, Fukuhara S, Iwasaka T. Detection of monocyte-derived microparticles in patients with Type Ⅱ diabetes mellitus. Diabetologia 2002; 45:550-555.
    90. Diehl P, Aleker M, Helbing T, Sossong V, Germann M, Sorichter S et al. Increased platelet, leukocyte and endothelial microparticles predict enhanced coagulation and vascular inflammation in pulmonary hypertension. J ThrombThrombolysis 2011; 31:173-179.
    91. Amabile N, Guerin AP, Leroyer A, Mallat Z, Nguyen C, Boddaert J et al. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. JAm Soc Nephrol 2005; 16:3381-3388.
    92. Amabile N, Guerin AP, Tedgui A, Boulanger CM, London GM. Predictive value of circulating endothelial· microparticles for cardiovascular mortality in end-stage renal failure:a pilot study. Nephrol Dial Transplant 2012; 27: 1873-1880.
    93. Dursun I, Poyrazoglu HM, Gunduz Z, Ulger H, Yykylmaz A, Dusunsel R et al. The relationship between circulating endothelial microparticles and arterial stiffness and atherosclerosis in children with chronic kidney disease. Nephrol Dial Transplant 2009; 24:2511-2518.
    94. Gonzalez-Quintero VH, Jimenez JJ, Jy W, Mauro LM, Hortman L, O'Sullivan MJ et al. Elevated plasma endothelial microparticles in preeclampsia. Am J Obstet Gynecol 2003; 189:589-593.
    95. Bernal-Mizrachi L, Jy W, Jimenez JJ, Pastor J, Mauro LM, Horstman LL et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J 2003; 145:962-970.
    96. Wang JM, Su C, Wang Y, Huang YJ, Yang Z, Chen L et al. Elevated circulating endothelial microparticles and brachial-ankle pulse wave velocity in well-controlled hypertensive patients. J Hum Hypertens 2009; 23:307-315.
    97. Yun CH, Jung KH, Chu K, Kim SH, Ji KH, Park HK et al. Increased circulating endothelial microparticles and carotid atherosclerosis in obstructive sleep apnea. JClin Neurol 2010; 6:89-98.
    98. Esposito K, Ciotola M, Schisano B, Gualdiero R, Sardelli L, Misso, L et al. Endothelial microparticles correlate with endothelial dysfunction in obese women. J Clin Endocrinol Metab 2006; 91:3676-3679.
    99. Amabile N, Heiss C, Chang V, Angeli FS, Damon L, Rame EJ et al. Increased CD62e+ endothelial microparticle levels predict poor outcome in pulmonary hypertension patients. J Heart Lung Transplant 2009; 28:1081-1086.
    100. Sinning JM, Losch J, Walenta K, Bohm M, Nickenig G, Werner N et al. Circulating CD31+/Annexin V+ microparticles correlate with cardiovascular outcomes. Eur Heart J2011; 32:2034-2041.
    101. Nozaki T, Sugiyama S, Sugamura K, Ohba K, Matsuzawa Y, Konishi M et al. Prognostic value of endothelial microparticles in patients with heart failure. Eur J Heart Failure 2010; 12:1223-1228.
    102. Nomura S, Inami N, Shouzu A, Omoto S, Kimura Y, Takahashi N et al. The effects of pitavastatin, eicosapentaenoic acid and combined therapy on platelet-derived microparticles and adiponectin in hyperlipidemic, diabetic patients. Platelets 2009; 20:16-22.
    103. Nomura S, Shouzu A, Omoto S, Nishikawa M, Iwasaka T. Effects of losartan and simvastatin on monocyte-derived microparticles in hypertensive patients with and without type 2 diabetes mellitus. Clin Appl Thromb Hemostasis 2004; 10:133-141.
    104. Pelletier F, Garnache-Ottou F, Angelot F, Biichle S, Vidal C, Humbert P et al. Increased levels of circulating endothelial-derived microparticles and small-size platelet-derived microparticles in psoriasis. J Invest Dermatol 2011; 131: 1573-1576.
    105. Tamagawa-Mineoka R, Katoh N, Kishimoto S. Platelet activation in patients with psoriasis:increased plasma levels of platelet-derived microparticles and soluble P-selectin. J Am Acad Dermatol 2010; 62:621-626.
    106. Sheremata WA, Jy W, Delgado S, Minagar A, McLarty J, Ahn Y et al. Interferon-β1a reduces plasma CD31+ endothelial microparticles (CD31+EMP) in multiple sclerosis. JNeuroinflammation 2006; 3:23.
    107. Sheremata WA, Jy W, Horstman LL, Ahn YS, Alexander JS, Minagar A et al. Evidence of platelet activation in multiple sclerosis. J Neuroinflammation 2008; 5:27.
    108. Jy W, Minagar A, Jimenez JJ, Sheremata WA, Mauro LM, Horstman LL et al. Endothelial microparticles (EMP) bind and activate monocytes:elevated EMP-monocyte conjugates in multiple sclerosis. Front Biosci 2004; 9: 3137-3144.
    109. Nielsen CT, Ostergaard O, Johnsen C, Jacobsen S, Heegaard NH. Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus. Arthritis Rheum 2011; 63: 3067-3077.
    110. Nielsen CT, Ostergaard O, Stener L, Iversen LV, Truedsson L, Gullstrand B et al. Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation. Arthritis Rheum 2012; 64:1227-1236.
    111. Sellam J, Proulle V, Jungel A, Ittah M, Miceli Richard C, Gottenberg JE et al. Increased levels of circulating microparticles in primary Sjogren's syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity. Arthritis Res Ther 2009; 11:R156.
    112. Pereira J, Alfaro G, Goycoolea M, Quiroga T, Ocqueteau M, Massardo L et al. Circulating platelet-derived microparticles in systemic lupus erythematosus. Association with increased thrombin generation and procoagulant state. Thromb Haemostasis 2006; 95:94-99.
    113. Rank A, Nieuwland R, Toth B, Pihusch V, Delker R, Hiller E et al. Microparticles for diagnosis of graft-versus-host disease after allogeneic stem transplantation. Transplantation 2011; 92:244-250.
    114. Knijff-Dutmer EA, Koerts J, Nieuwland R, Kalsbeek-Batenburg EM, van de Laar MA. Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum 2002; 46:1498-1503.
    115. Andoh A, Tsujikawa T, Hata K, Araki Y, Kitoh K, Sasaki M et al. Elevated circulating platelet-derived microparticles in patients with active inflammatory bowel disease. Am J Gastroenterol 2005; 100:2042-2048.
    116. Umekita K, Hidaka T, Ueno, S, Takajo I, Kai Y, Nagatomo Y et al. Leukocytapheresis (LCAP) decreases the level of platelet-derived microparticles (MPs) and increases the level of granulocytes-derived MPs:a possible connection with the effect of LCAP on rheumatoid arthritis. Mod Rheumatol 2009; 19:265-272.
    117. Koiou E, Tziomalos K, Katsikis I, Kalaitzakis E, Kandaraki EA., Tsourdi EA et al. Circulating platelet-derived microparticles are elevated in women with polycystic ovary syndrome diagnosed with the 1990 criteria and correlate with serum testosterone levels. Eur JEndocrinol 2011; 165:63-68.
    118. Owens Ⅲ AP, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res 2011; 108:1284-1297.
    119. Kasthuri RS, Glover SL, Jonas W, McEachron T, Pawlinski R, Arepally GM et al. PF4/heparin-antibody complex induces monocyte tissue factor expression and release of tissue factor positive microparticles by activation of Fcγ RI. Blood2012; 119:5285-5293.
    120. Sinauridze EI, Kireev DA, Popenko NY, Pichugin AV, Panteleev MA, Krymskaya OV et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemostasis 2007; 97:425-434.
    121. Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol Heart Circ Physiol 2004; 286:1910-1915.
    122. Burger D, Kwart DG, Montezano AC, Read NC, Kennedy CRJ, Thompson CS et al. Microparticles induce cell cycle arrest through redox-sensitive processes in endothelial cells:implications in vascular senescence. JAm Heart Assoc 2012; 1: 001842.
    123. Yang C, Mwaikambo BR, Zhu T, Gagnon C, Lafleur J, Seshadri S et al. Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways. Am J Physiol Regul Integr Comp Physiol 2008; 294:467-476.
    124. Mostefai HA, Agouni A, Carusio N, Mastronardi ML, Heymes C, Henrion D et al. Phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells. J Immunol 2008;180:5028-5035.
    125. Essayagh S, Xuereb JM, Terrisse AD, Tellier-Cirioni L, Pipy B, Sie P. Microparticles from apoptotic monocytes induce transient platelet recruitment and tissue factor expression by cultured human vascular endothelial cells via a redox-sensitive mechanism. Thromb Haemostasis 2007; 98:831-837.
    126. Fontaine D, Pradier O, Hacquebard M, Stefanidis C, Carpentier Y, de Canniere D et al. Oxidative stress produced by circulating microparticles in on-pump but not in off-pump coronary surgery. Acta Cardiol 2009; 64:715-722.
    127. Agouni A, Mostefai HA, Porro C, Carusio N, Favre J, Richard V et al. Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB J2007; 21:2735-2741.
    128. Chen GY, Nunez G. Sterile inflammation:sensing and reacting to damage. Nat Rev Immunol 2010;10:826-837.
    129. Mesri M, Altieri DC. Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway. J Biol Chem 1999; 274:23111-23118.
    130. Neri T, Armani C, Pegoli A, Cordazzo C, Carmazzi, Y., Brunelleschi S et al. Role of NF-κB and PPAR-y in lung inflammation induced by monocyte-derived microparticles. Eur Respir J 2011; 37:1494-1502.
    131. Berda-Haddad Yl, Robert S p, Salers P, Zekraoui L, Farnarier C, Dinarello CA et al. Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1β. Proc Natl Acad Sci U.S.A.2011; 108:20684-20689.
    132. Barry OP, Pratico D, Savani RC, FitzGerald GA. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest 1998;102:136-144.
    133. Wang JG, Williams JC, Davis BK, Jacobson K, Doerschuk CM, Ting JP et al. Monocytic microparticles activate endothelial cells in an IL-1β-dependent manner. Blood 2011; 118:2366-2374.
    134. Buesing KL, Densmore JC, Kaul S, Pritchard Jr KA., Jarzembowski JA., Gourlay DM et al. Endothelial microparticles induce inflammation in acute lung injury. JSurg Res 2011; 166:32-39.
    135. Densmore JC, Signorino PR, Ou J, Hatoum OA, Rowe JJ, Shi Y et al. Endothelium-derived microparticles induce endothelial dysfunction and acute lung injury. Shock 2006; 26:464-471.
    136. Mastronardi ML, Mostefai HA, Meziani F, Martinez MC, Asfar P, Andriantsitohaina R. Circulating microparticles from septic shock patients exert differential tissue expression of enzymes related to inflammation and oxidative stress. Crit Care Med 2011;39:1739-1748.
    137. Radziwon-Balicka A, Moncada de la Rosa C, Jurasz P. Platelet-associated angiogenesis regulating factors:a pharmacological perspective. Can J Physiol Pharmacol 2012; 90:679-688.
    138. Kim HK, Song KS, Chung JH, Lee KR, Lee SN. Platelet microparticles induce angiogenesis in vitro. Br J Haematol 2004; 124:376-384.
    139. Leroyer AS, Rautou PE, Silvestre JS, Castier Y, Leseche G, Devue C et al. CD40 ligand+microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization. JAm Coll Cardiol 2008; 52:1302-1311.
    140. Yang C, Gagnon C, Hou X, Hardy P. Low density lipoprotein receptor mediates anti-VEGF effect of lymphocyte T-derived microparticles in Lewis lung carcinoma cells. Cancer Biol Ther 2010; 10:448-456.
    141. Yang C, Xiong W, Qiu Q, Shao Z, Hamel D, Tahiri H et al. Role of receptor-mediated endocytosis in the antiangiogenic effects of human T lymphoblastic cell-derived microparticles. Am J Physiol Regul Integr Comp Physiol 2012; 302:941-949.
    142. Huang PH, Huang SS, Chen YH, Lin CP, Chiang KH, Chen JS et al. Increased circulating CD31+/annexin V+ apoptotic microparticles and decreased circulating endothelial progenitor cell levels in hypertensive patients with microalbuminuria. JHypertens 2010; 28:1655-1665.
    143. Distler JH, Akhmetshina A, Dees C, Jungel A, Sturzl M, Gay S et al. Induction of apoptosis in circulating angiogenic cells by microparticles. Arthritis Rheum 2011; 63:2067-2077.
    144. Huber LC, Jungel A, Distler JH, Moritz F, Gay RE, Michel BA et al. The role of membrane lipids in the induction of macrophage apoptosis by microparticles. Apoptosis 2007; 12; 363-374.
    145. Boing AN, Hau C M, Sturk A, Nieuwland R. Platelet microparticles contain active caspase 3. Platelets 2008; 19:96-103.
    146. Abid Hussein MN, Nieuwland R, Hau CM, Evers LM, Meesters EW, Sturk A. Cell-derived microparticles contain caspase 3 in vitro and in vivo. J Thromb Haemostasis 2005; 3:888-896.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700