蜜蜂以色列急性麻痹病毒的分子检测、流行传播及其对蜜蜂行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,全球部分地区蜂群数量的减少,尤其是2006年冬季至2007年春季,美国发生的大范围的蜜蜂突然消失现象——蜂群崩溃失调症(colony collapse disorder, CCD),类似的情况也发生在欧洲的部分地区,引发了严重的授粉危机。初步的研究表明以色列急性麻痹病毒(Israeli acute paralysis virus, IAPV)很可能是CCD的致病因素,尽管对于CCD的病因依然并未明确,现在普遍认为蜜蜂的健康主要受到蜂螨、病毒、蜜蜂微孢子虫、杀虫剂残留及营养不良等因素的影响,这些因素之间的交互作用或许是近年来世界范围内蜂群损失的原因。
     本研究调查了IAPV等常见蜜蜂病毒在浙江省地区的流行情况,描述了中、意蜂病害类别的差异进而分析了中、意蜂等与免疫相关基因的表达差异;通过分子检测发现了IAPV等蜜蜂病毒另一新的传播载体——蜜蜂球囊菌,揭示了IAPV等蜜蜂病毒新的生物学特征;基于蜜蜂伸吻反应(proboscis extension response, PER)行为实验及射频识别(radio frequency identification, RFID)技术,研究了IAPV对花粉采集蜂的梯度蔗糖溶液反应性及归巢能力的影响;初步研究了东方蜜蜂微孢子虫、蜂螨协同侵染对蜜蜂体内IAPV滴度及相关免疫基因表达的影响。主要结果如下:
     1.浙江省常见蜜蜂病毒的流行情况及中、意蜂病害类别的比较及其基因表达差异
     从浙江省七个地区的38个意蜂蜂场采集蜜蜂样品用于常见六种蜜蜂病毒的检测。IAPV,蜜蜂残翅病毒(Deformed wing virus, DWV)的检测率最高,分别为29%、27%;克什米尔蜜蜂病毒(Kashmir bee virus, KBV),囊状幼虫病毒(Sacbrood virus, SBV)的检测率为5%;慢性蜜蜂麻痹病毒(Chronic bee paralysis virus, CBPV)、急性蜜蜂麻痹病毒(Acute bee paralysis virus, ABPV)的检测率分别为4%、3%。病毒的组织嗜性调查发现,相较于头部,爬蜂及死蜂的胸部、腹部被病毒感染的可能性更大。
     通过对141个意大利蜜蜂(Apis mellifera L.)蜂场的调查,发现80%的蜂场存在不同程度的蜂螨侵染;21%的蜂场发现白垩病;18%的蜂场遭受了因农药中毒而引发的蜂群损失事件;6%的蜂场存在幼虫腐臭病;5%的蜂场发生了不明原因的蜂群消失事件。与意蜂蜂群相比,通过对39个中华蜜蜂(Apis cerana cerana)蜂场的调查,发现中蜂蜂场不存在蜂群消失事件且不存在蜂螨寄生蜜蜂的问题;近90%的蜂场存在不同程度地被大蜡螟危害的现象。鉴于上述中华蜜蜂、意大利蜜蜂生物学及病害类别方面的差异,我们通过高通量测序技术分析了中、意蜂头部基因的差异表达情况,发现了约2,370个与代谢、免疫、应激反应相关的差异表达基因。中、意蜂之间编码抗菌肽基因的差异表达表明了中、意蜂在抵御病害方面存在的分子机制差异。
     2.首次在蜜蜂球囊菌中检测到IAPV等蜜蜂病毒及病毒反义链
     蜜蜂球囊菌(Ascosphaera apis, A. apis)是蜜蜂的一种真菌性病原,可以感染蜜蜂幼虫并引起白垩病。已有研究表明真菌病毒存在于所有的主要真菌门类。本研究从白垩病虫尸中培养、分离蜜蜂球囊菌。通过RT-PCR检测所收集的球囊菌菌丝中常见7种蜜蜂病毒的存在情况。我们发现IAPV、黑蜂王台病毒(Black queen cell virus, BQCV)及DWV这三种病毒可以在球囊菌丝中被检测出,此外,这些病毒对应的反义链亦可以被检测出,说明球囊菌可能是IAPV、BQCV及DWV新的传播载体,这一发现揭示了蜜蜂病毒的一个新的生物学特征。系统进化分析发现源于蜜蜂、球囊菌的病毒序列形成了
     个单源的进化关系,但形成两个很明显的不同的进化簇。区别于蜜蜂病毒序列,来自于球囊菌的病毒基因序列组成了一个很明显的谱系。
     3. IAPV感染影响蜜蜂的蔗糖反应性行为及蜜蜂的归巢能力
     本研究通过蜜蜂PER行为和RFID技术两个方面来研究IAPV对意大利蜜蜂采集行为及归巢能力的影响。来源于健康蜂群(无可检测水平的蜜蜂病毒感染)的花粉采集蜂被人为地注射IAPV以诱导病毒感染的状态。结果表明,与未被IAPV感染的蜜蜂相比,被IAPV感染的蜜蜂对低浓度的糖水反应性更强。两天后,在被IAPV感染的蜜蜂头部可检测到大约107拷贝的病毒粒子。此外,与未被IAPV感染的蜜蜂相比,被IAPV感染的蜜蜂的归巢能力显著降低(p<0.05)。然而,IAPV感染不影响蜜蜂的致敏化反应及习惯化反应。实验数据表明IAPV在蜜蜂头部的感染或许使得IAPV能够让蜜蜂的采集行为发生紊乱并扰乱蜜蜂大脑负责学习、导航及定位的功能,结果使得蜜蜂对蔗糖溶液的反应阈值降低并在归巢的途中迷失。
     4.东方蜜蜂微孢子虫、蜂螨共同侵染蜜蜂对蜜蜂体内IAPV滴度及相关免疫基因表达影响的初步研究
     蜜蜂微孢子虫(Nosema ceranae)、蜂螨(Varroa destructor)对蜜蜂的协同侵染可以影响蜜蜂体内IAPV滴度及蜜蜂抗菌肽、Eater、卵黄蛋白原等免疫相关基因的表达,但免疫基因表达的变化趋势不是很明显,有的甚至呈相反的表达趋势,这些初步的数据显示蜜蜂微孢子虫、蜂螨、IAPV及蜜蜂之间相互作用关系的复杂性。
The honey bee colony losses across parts of the world in recent years and that honey bee colonies disappeared abruptly in the US and parts of Europe from winter2006to spring2007have triggered pollination crisis. The sudden collapse of honeybee colonies is known as colony collapse disorder (CCD) and was initially thought to be caused by Israeli acute paralysis virus (IAPV). Following more research, it is generally accepted that a variety of factors including Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition may cause CCD. Besides, interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years.
     Viral prevalence of common honey bee viruses including IAPV, Deformed wing virus (DWV), Chronic bee paralysis virus (CBPV), Acute bee paralysis virus (ABPV), Sacbrood virus (SBV) and Kashmir bee virus (KBV) was surveyed in parts of Zhejiang province, and comparisons between Apis mellifera and Apis cerana for pathogen diversity and differential expression of immune genes were furthered analyzed in the study; first detection of honey bee viruses including IAPV, Black queen cell virus (BQCV) and DWV and their replication in the fungi Ascosphaera apis (A. apis) uncovers a new biological feature of honey bee viruses; effects of IAPV on sucrose responsiveness and homing ability of pollen foragers were investigated based on proboscis extension response (PER) and radio frequency identification (RFID) techniques; synergistic effects of two pathogens including Varroa mites and Nosema ceranae on IAPV titer dynamics and expression of immune genes in honey bees were also studied. These results were summarized as follows:
     1. A survey of six honey bee viruses in Zhejiang province and comparisons between Apis mellifera and Apis cerana for pathogen diversity and molecular mechanisms underlying the differential response to pathogens
     Samples collected from38typical apiaries located in7different regions of Zhejiang province were tested for presence of six common honey bee viruses. The most prevalent virus was IAPV, with the detection rate of29%in all samples, followed by DWV (27%), KBV (5%), SBV (5%), CBPV (4%) and ABPV (3%). Examination of tissue tropism of the viruses showed that thorax and abdomen of crawling bees and dead bees were more likely to be positive for viruses.
     A regional survey covering honey bee viruses, mite and wax moth infestation, pesticide poisoning, foulbrood, chalkbrood, which are detrimental to the health of colonies was carried out in the study. Of141apiary locations consisting of colonies of Apis mellifera ligustica (Aml),5%of apiaries suffered from inexplicable colony losses. Honey bee colonies from about80%of apiaries were observed with different levels of Varroa mite infestation.21%of apiaries had chalkbrood, and6%of apiaries had foulbrood.18%of apiaries underwent colony losses resulting from pesticide poisoning.39apiaries raising A. cerana cerana (Acc) did not confront with colony mortality or Varroa mites compared with A. mellifera. Nearly90%of Acc apiaries were more or less infected with the greater wax moth (Galleria mellonella), followed by foulbrood positive apiaries (18%).
     Given the differences in biology and pathogen diversity between Acc and Aml, we first used the Illumina-Solexa deep sequencing technology to describe the differences in the heads of Acc and Aml foragers at the gene expression level, and found about2,370differentially expressed genes related to metabolism, immune and stress response between Acc and Aml. The differential expression of antimicrobial peptide genes suggested that the defense mechanisms against pathogenic microbes in Acc and Aml are different from each other. That may be a reason why there were no reports about the unusual mortality of eastern honeybee (Acc) colonies in comparison to the drastic loss of western honeybee (A. mellifera) that has been occurring worldwide in recent years.
     2. First detection of honey bee viruses and their replication in the fungi Ascosphaera apis
     The Ascosphaera apis (A. apis) is a fungal pathogen of honey bees causing chalkbrood in honey bee larvae and it has been shown that fungal viruses or mycoviruses have been found to be widespread in all major fungal taxa. Therefore, the chalkbrood mummies from which the A. apis was cultured and isolated, and the mycelium of A. apis were further used for detecting the common honey bee viruses in the present study. We demonstrated that honey bee viruses including DWV, Black queen cell virus (BQCV) and IAPV could infect and replicate in the fungal pathogen A. apis that causes honey bee chalkbrood disease, revealing a novel biological feature of honey bee viruses. Replication of honey bee viruses in A. apis indicated that A. apis may act as a possible vector during honey bee viruses transmission.
     The phylogenetic analysis showed that phylogenetic relationships between viruses of fungal and honey bee origins are all monophyletic, forming two clusters in the phylogenetic trees distinctly. Viruses from A. apis constitute a distinctive lineage, separated from the clades of viruses identified in honey bees. Further studies are warranted to investigate the impact of the viruses on the fitness of their fungal host and phenotypic effects the virus-fungus combination has on honey bee hosts.
     3. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.
     In the present study, the effects of a honey bee virus, IAPV, on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on PER assays and RFID systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around107copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. However, sensitization test and habituation test, two patterns of nonassociative learning, showed no significant difference between foragers infected with IAPV and foragers infected with PBS. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.
     4. Effects of Varroa mites and Nosema ceranae on IAPV titer dynamics and expression of immune genes in honey bees
     IAPV titer dynamics and expression of Abaecin, Eater and Vitellogenin (Vg) in honey bees can be affected by co-infection with Varroa mites and Nosema ceranae. However, no obvious trend regarding expression of immune genes was found in the study. Some immune genes showed trends opposite the expect trends. This preliminary study indicated that the complicated interactions beween Nosema ceranae、mites、IAPV and honey bees. Further study is needed regarding the complicated interactions.
引文
[1]WINSTON M L. The biology of the honey bee [M]. Harvard University Press, 1991.
    [2]CONSORTIUM H G S. Insights into social insects from the genome of the honeybee Apis mellifera [J]. Nature, 2006, 443(7114):931.
    [3]KLEIN A-M, VAISSIERE B E, CANE J H, et al. Importance of pollinators in changing landscapes for world crops [J]. Proceedings of the Royal Society B:Biological Sciences, 2007,274(1608):303-13.
    [4]MORSE R A, CALDERONE N W. The value of honey bees as pollinators of US crops in 2000 [J]. Bee culture,2000,128(3):1-15.
    [5]JOHNSON R. Honey Bee Colony Collapse Disorder, Congressional Research Service, 7-5700 [M].2010.
    [6]刘朋飞,吴杰,李海燕,et al.中国农业蜜蜂授粉的经济价值评估[J].中国农业科学,2012,44(24):5117-23.
    [7]NEUMANN P, CARRECK N L. Honey bee colony losses [J]. Journal of Apicultural Research,2010,49(1):1-6.
    [8]POTTS S G, BIESMEIJER J C, KREMEN C, et al. Global pollinator declines:trends, impacts and drivers [J]. Trends in ecology & evolution, 2010, 25(6):345-53.
    [9]OLDROYD B P. What's killing American honey bees? [J]. PLoS biology, 2007, 5(6): e168.
    [10]HOLDEN C. Report warns of looming pollination crisis in North America [J]. Science, 2006, 314(5798): 397.
    [11]STOKSTAD E. Pollinator diversity declining in Europe [J]. Science, 2006, 313(5785): 286.
    [12]SUMNER D, BORISS H. The Case of the Empty Hives [J]. Science, 2007, 316:970-5.
    [13]WATANABE M E. Colony collapse disorder: many suspects, no smoking gun [J]. Bioscience,2008,58(5):384-8.
    [14]DEGRANDI-HOFFMAN G, CHEN Y, HUANG E, et al. The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.) [J]. Journal of insect physiology, 2010, 56(9):1184-91.
    [15]ROSENKRANZ P, AUMEIER P, ZIEGELMANN B. Biology and control of Varroa destructor [J]. Journal of invertebrate pathology, 2010, 103:S96-S119.
    [16]ANDERSON D, TRUEMAN J. Varroa jacobsoni (Acari:Varroidae) is more than one species [J]. Experimental & applied acarology, 2000, 24(3):165-89.
    [17]PENG Y-S, FANG Y, XU S, et al. The resistance mechanism of the Asian honey bee, Apis cerana Fabr., to an ectoparasitic mite, Varroa jacobsoni Oudemans [J]. Journal of invertebrate pathology, 1987,49(1):54-60.
    [18]LE CONTE Y, ELLIS M, RITTER W. Varroa mites and honey bee health: can Varroa explain part of the colony losses? [J]. Apidologie, 2010, 41(3):353-63.
    [19]ALAUX C, DANTEC C, PARRINELLO H, et al. Nutrigenomics in honey bees:digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees [J]. Bmc Genomics, 2011, 12(1):496.
    [20]AMDAM G V, HARTFELDER K, NORBERG K, et al. Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae):a factor in colony loss during overwintering? [J]. Journal of economic entomology, 2004, 97(3):741-7.
    [21]DE JONG D, DE JONG P, GONCALVES L. Weight loss and other damage to developing worker honeybees from infestation with Varroa jacobsoni [parasitic mite] [J]. Journal of Apicultural Research, 1982.
    [22]KRALJ J, BROCKMANN A, FUCHS S, et al. The parasitic mite Varroa destructor affects non-associative learning in honey bee foragers, Apis mellifera L [J]. Journal of Comparative Physiology A, 2007, 193(3):363-70.
    [23]KRALJ J, FUCHS S. Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers [J]. Apidologie, 2006, 37(5):577-87.
    [24]YANG X, COX-FOSTER D. Effects of parasitization by Varroa destructor on survivorship and physiological traits of Apis mellifera in correlation with viral incidence and microbial challenge [J]. Parasitology, 2007,134(03):405-12.
    [25]GREGORY P G, EVANS J D, RINDERER T, et al. Conditional immune-gene suppression of honeybees parasitized by Varroa mites [J]. Journal of insect science, 2005, 5.
    [26]DI PRISCO G, PENNACCHIO F, CAPRIO E, et al. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera [J]. Journal of General Virology, 2011,92(1):151-5.
    [27]BOWEN-WALKER P L, MARTIN S J, GUNN A. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite varroa jacobsoni Oud [J]. Journal of invertebrate pathology, 1999, 73(1):101-6.
    [28]BAILEY L, BALL B. Honey Bee Pathology. 2nd [M]. London, Harcourt Brace Jovanovich. 1991.
    [29]BOECKING O, GENERSCH E. Varroosis-the ongoing crisis in bee keeping [J]. Journal fur Verbraucherschutz und Lebensmittelsicherheit, 2008, 3(2): 221-8.
    [30]DE MIRANDA J R, GENERSCH E. Deformed wing virus [J]. Journal of invertebrate pathology, 2010, 103:S48-S61.
    [31]CHEN Y P, SIEDE R. Honey bee viruses [J]. Advances in virus research, 2007, 70: 33-80.
    [32]RUNCKEL C, FLENNIKEN M L, ENGEL J C, et al. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia [J]. PloS one,2011,6(6):e20656.
    [33]MAORI E, LAVI S, MOZES-KOCH R, et al. Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honeybees in Israel: evidence for diversity due to intra-and inter-species recombination [J]. Journal of General Virology, 2007, 88(12): 3428-38.
    [34]EVANS J D, SPIVAK M. Socialized medicine: individual and communal disease barriers in honey bees [J]. Journal of invertebrate pathology, 2010, 103:S62-S72.
    [35]GO VAN V, LEAT N, ALLSOPP M, et al. Analysis of the complete genome sequence of acute bee paralysis virus shows that it belongs to the novel group of insect-infecting RNA viruses [J]. Virology, 2000, 277(2):457-63.
    [36]LEAT N, BALL B, GO VAN V, et al. Analysis of the complete genome sequence of black queen-cell virus, a picorna-like virus of honey bees [J]. Journal of General Virology, 2000,81(8):2111-9.
    [37]OLIVIER V, BLANCHARD P, CHAOUCH S, et al. Molecular characterisation and phylogenetic analysis of Chronic bee paralysis virus, a honey bee virus [J]. Virus research, 2008,132(1):59-68.
    [38]LANZI G, DE MIRANDA J R, BONIOTTI M B, et al. Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.) [J]. Journal of virology, 2006,80(10):4998-5009.
    [39]DE MIRANDA J, DREBOT M, TYLER S, et al. Complete nucleotide sequence of Kashmir bee virus and comparison with acute bee paralysis virus [J]. Journal of general virology, 2004, 85(8):2263-70.
    [40]FUJIYUKI T, TAKEUCHI H, ONO M, et al. Novel insect picorna-like virus identified in the brains of aggressive worker honeybees [J]. Journal of virology, 2004, 78(3): 1093-100.
    [41]GHOSH R, BALL B, WILLCOCKS M, et al. The nucleotide sequence of sacbrood virus of the honey bee: an insect picorna-like virus [J]. Journal of General Virology, 1999, 80(6):1541-9.
    [42]DE MIRANDA J R, CORDONI G, BUDGE G. The acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex [J]. Journal of invertebrate pathology, 2010, 103:S30-S47.
    [43]FLENNIKEN M L. Honey Bee-Infecting Plant Virus with Implications on Honey Bee Colony Health [J]. mBio, 2014, 5(2):e00877-14.
    [44]LI J L, CORNMAN R S, EVANS J D, et al. Systemic Spread and Propagation of a Plant-Pathogenic Virus in European Honeybees, Apis mellifera [J]. mBio, 2014, 5(1): e00898-13.
    [45]GOBLIRSCH M J, SPIVAK M S, KURTTI T J. A Cell Line Resource Derived from Honey Bee (Apis mellifera) Embryonic Tissues [J]. PloS one, 2013,8(7):e69831.
    [46]GENERSCH E, GISDER S, HEDTKE K, et al. Standard Methods for cell cultures in Apis mellifera research [J]. J Apic Res, 2013,52:1-8.
    [47]CHEN Y, HIGGINS J, FELDLAUFER M. Quantitative real-time reverse transcription-PCR analysis of deformed wing virus infection in the honeybee (Apis mellifera L.) [J]. Applied and environmental microbiology, 2005, 71(1):436-41.
    [48]YUE C, GENERSCH E. RT-PCR analysis of Deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor) [J]. Journal of general virology, 2005,86(12): 3419-24.
    [49]YUE C, SCHRODER M, GISDER S, et al. Vertical-transmission routes for deformed wing virus of honeybees (Apis mellifera) [J]. Journal of general virology, 2007, 88(8): 2329-36.
    [50]GENERSCH E, VON DER OHE W, KAATZ H, et al. The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies [J]. Apidologie, 2010, 41(3): 332-52.
    [51]BAILEY L. Honey bee pathology [M]. Academic Press Inc.(London) Ltd.,1981.
    [52]DRAKE J W, HOLLAND J J. Mutation rates among RNA viruses [J]. Proceedings of the National Academy of Sciences, 1999, 96(24):13910-3.
    [53]FERRIS M T, JOYCE P, BURCH C L. High frequency of mutations that expand the host range of an RNA virus [J]. Genetics, 2007, 176(2): 1013-22.
    [54]LAURING A S, ANDINO R. Quasispecies theory and the behavior of RNA viruses [J]. PLoS pathogens, 2010, 6(7):e1001005.
    [55]LI J, QIN H, WU J, et al. The prevalence of parasites and pathogens in Asian honeybees Apis cerana in China [J]. PloS one, 2012, 7(11):e47955.
    [56]YANEZ O, ZHENG H-Q, HU F-L, et al. A scientific note on Israeli acute paralysis virus infection of Eastern honeybee Apis cerana and vespine predator Vespa velutina [J]. Apidologie, 2012, 43(5):587-9.
    [57]SINGH R, LEVITT A L, RAJOTTE E G, et al. RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species [J]. PLoS One, 2010,5(12):e14357.
    [58]LARSSON R. Ultrastructure, function, and classification of microsporidia [J]. Progress in protistology, 1986, 1:325-90.
    [59]GOBLIRSCH M, HUANG Z Y, SPIVAK M. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection [J]. PloS one, 2013,8(3): e58165.
    [60]FRIES I, CHAUZAT M-P, CHEN Y-P, et al. Standard methods for nosema research [J]. Journal of Apicultural Research, 2013,52.
    [61]KLEE J, BESANA A M, GENERSCH E, et al. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera [J]. Journal of invertebrate pathology, 2007, 96(1):1-10.
    [62]FRIES I, FENG F, DA SILVA A, et al. Nosema ceranae n. sp.(Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae) [J]. European Journal of Protistology, 1996, 32(3):356-65.
    [63]HIGES M, MARTIN R, MEANA A. Nosema ceranae, a new microsporidian parasite in honeybees in Europe [J]. Journal of invertebrate pathology, 2006,92(2):93-5.
    [64]HUANG W-F, JIANG J-H, CHEN Y-W, et al. A Nosema ceranae isolate from the honeybee Apis mellifera [J]. Apidologie, 2007,38(1):30-7.
    [65]HIGES M, MARTIN-HERNANDEZ R, BOTIAS C, et al. How natural infection by Nosema ceranae causes honeybee colony collapse [J]. Environmental microbiology, 2008, 10(10):2659-69.
    [66]HIGES M, GARCIA-PALENCIA P, MARTIN-HERNANDEZ R, et al. Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia) [J]. Journal of invertebrate pathology, 2007,94(3):211-7.
    [67]PLISCHUK S, MARTIN - HERNANDEZ R, PRIETO L, et al. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera) [J]. Environmental microbiology reports, 2009,1(2):131-5.
    [68]CHAIMANEE V, CHEN Y, PETTIS J S, et al. Phylogenetic analysis of Nosema ceranae isolated from European and Asian honeybees in Northern Thailand [J]. Journal of invertebrate pathology, 2011, 107(3):229-33.
    [69]MAYACK C, NAUG D. Parasitic infection leads to decline in hemolymph sugar levels in honeybee foragers [J]. Journal of insect physiology, 2010, 56(11):1572-5.
    [70]MAYACK C, NAUG D. Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection [J]. Journal of invertebrate pathology, 2009, 100(3):185-8.
    [71]KRALJ J, FUCHS S. Nosema sp. influences flight behavior of infected honey bee (Apis mellifera) foragers [J]. Apidologie, 2010, 41(1):21-8.
    [72]HIGES M, MARTIN-HERNANDEZ R, GARCIA-PALENCIA P, et al. Horizontal transmission of Nosema ceranae (Microsporidia) from worker honeybees to queens (Apis mellifera) [J]. Environmental microbiology reports, 2009, 1(6):495-8.
    [73]ALAUX C, FOLSCHWEILLER M, MCDONNELL C, et al. Pathological effects of the microsporidium Nosema ceranae on honey bee queen physiology (Apis mellifera) [J]. Journal of invertebrate pathology, 2011,106(3):380-5.
    [74]PETTIS J S, JOHNSON J, DIVELY G. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema [J]. Naturwissenschaften, 2012, 99(2): 153-8.
    [75]COSTA C, TANNER G, LODESANI M, et al. Negative correlation between Nosema ceranae spore loads and deformed wing virus infection levels in adult honey bee workers [J]. Journal of invertebrate pathology, 2011,108(3):224-5.
    [76]MARTIN S J, HARDY J, VILLALOBOS E, et al. Do the honeybee pathogens Nosema ceranae and deformed wing virus act synergistically? [J]. Environmental microbiology reports, 2013,5(4):506-10.
    [77]DOUBLET V, LABARUSSIAS M, MIRANDA J R, et al. Bees under stress:sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle [J]. Environmental Microbiology, 2014.
    [78]JENSEN A B, ARONSTEIN K, FLORES J M, et al. Standard methods for fungal brood disease research [J]. Journal of apicultural research, 2013,52(1).
    [79]MAASSEN A. Weitere Mitteilungen uber der seuchenhaften Brutkrankheiten der Bienen [Further communication on the epidemic brood disease of bees] [J]. Mitteilungen aus der Kaiserlichen Biologischen Anstalt fur Land-und Forstwirtscshaft, 1913,14: 48-58.
    [80]ARONSTEIN K, MURRAY K. Chalkbrood disease in honey bees [J]. Journal of invertebrate pathology, 2010, 103:S20-S9.
    [81]ARONSTEIN K, HOLLO WAY B. Honey bee fungal pathogen, Ascosphaera apis; current understanding of host-pathogen interactions and host mechanisms of resistance [J]. Microbial Pathogenesis, 2013,1:402-10.
    [82]CORNMAN R S, BENNETT A K, MURRAY K D, et al. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis:implications for host pathogenesis [J]. BMC genomics, 2012, 13(1):285.
    [83]GILLIAM M, TABER III S, LORENZ B J, et al. Factors affecting development of chalkbrood disease in colonies of honey bees, Apis mellifera, fed pollen contaminated with Ascosphaera apis [J]. Journal of invertebrate pathology, 1988,52(2):314-25.
    [84]VOJVODIC S, JENSEN A B, MARKUSSEN B, et al. Genetic variation in virulence among chalkbrood strains infecting honeybees [J]. PloS one, 2011,6(9):e25035.
    [85]HOLLOWAY B, SYLVESTER H A, BOURGEOIS L, et al. Association of single nucleotide polymorphisms to resistance to chalkbrood in Apis mellifera [J]. Journal of Apicultural Research, 2012,51(2):154-63.
    [86]MATSUDA K, BUCKINGHAM S D, KLEIER D, et al. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors [J]. Trends in Pharmacological Sciences, 2001,22(11):573-80.
    [87]ELBERT A, HAAS M, SPRINGER B, et al. Applied aspects of neonicotinoid uses in crop protection [J]. Pest management science, 2008,64(11):1099-105.
    [88]SCHMUCK R, SCHONING R, STORK A, et al. Risk posed to honeybees (Apis mellifera L, Hymenoptera) by an imidacloprid seed dressing of sunflowers [J]. Pest management science, 2001,57(3):225-38.
    [89]BLACQUIERE T, SMAGGHE G, VAN GESTEL C A, et al. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment [J]. Ecotoxicology, 2012,21(4): 973-92.
    [90]IWASA T, MOTOYAMA N, AMBROSE J T, et al. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera [J]. Crop Protection, 2004,23(5):371-8.
    [91]ALIOUANE Y, EL HASSANI A K, GARY V, et al. Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior [J]. Environmental Toxicology and Chemistry, 2009, 28(1):113-22.
    [92]YANG E, CHUANG Y, CHEN Y, et al. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae) [J]. Journal of economic entomology, 2008, 101(6): 1743-8.
    [93]HENRY M, BEGUIN M, REQUIER F, et al. A common pesticide decreases foraging success and survival in honey bees [J]. Science, 2012, 336(6079):348-50.
    [94]AUFAUVRE J, BIRON D G, VIDAU C, et al. Parasite-insecticide interactions:a case study of Nosema ceranae and fipronil synergy on honeybee [J]. Scientific reports, 2012, 2.
    [95]DI PRISCO G, CAVALIERE V, ANNOSCIA D, et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees [J]. Proceedings of the National Academy of Sciences, 2013,110(46):18466-71.
    [96]CLAUDIANOS C, RANSON H, JOHNSON R, et al. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee [J]. Insect molecular biology, 2006, 15(5):615-36.
    [97]BRODSCHNEIDER R, CRAILSHEIM K. Nutrition and health in honey bees [J]. Apidologie, 2010, 41(3):278-94.
    [98]FIELD C J, JOHNSON I R, SCHLEY P D. Nutrients and their role in host resistance to infection [J]. Journal of Leukocyte Biology, 2002,71(1):16-32.
    [99]LI P, YIN Y-L, LI D, et al. Amino acids and immune function [J]. British Journal of Nutrition, 2007, 98(02):237-52.
    [100]WAHL O, ULM K. Influence of pollen feeding and physiological condition on pesticide sensitivity of the honey bee Apis mellifera carnica [J]. Oecologia, 1983,59(1): 106-28.
    [101]RINDERER T E, DELL ELLIOTT K. Worker honey bee response to infection with Nosema apis: influence of diet [J]. Journal of economic entomology, 1977, 70(4):431-3.
    [102]RINDERER T E, ROTHENBUHLER W C, GOCHNAUER T A. The influence of pollen on the susceptibility of honey-bee larvae to Bacillus larvae [J]. Journal of invertebrate pathology, 1974, 23(3):347-50.
    [103]ALAUX C, DUCLOZ F, CRAUSER D, et al. Diet effects on honeybee immunocompetence [J]. Biology Letters, 2010, 6(4):562-5.
    [104]HOFFMANN J A. The immune response of Drosophila [J]. Nature, 2003,426(6962): 33-8.
    [105]CREMER S, ARMITAGE S A, SCHMID-HEMPEL P. Social immunity [J]. Current biology, 2007,17(16):R693-R702.
    [106]EVANS J, ARONSTEIN K, CHEN Y, et al. Immune pathways and defence mechanisms in honey bees Apis mellifera [J]. Insect molecular biology, 2006, 15(5):645-56.
    [107]SIMONE M, EVANS J D, SPIVAK M. Resin collection and social immunity in honey bees [J]. Evolution,2009,63(11):3016-22.
    [108]STARKS P T, BLACKIE C A, SEELEY T D. Fever in honeybee colonies [J]. Naturwissenschaften,2000,87(5):229-31.
    [109]LE CONTE Y, ALAUX C, MARTIN J F, et al. Social immunity in honeybees (Apis mellifera):transcriptome analysis of varroa - hygienic behaviour [J]. Insect molecular biology, 2011,20(3):399-408.
    [110]PARKER R, GUARNA M M, MELATHOPOULOS A P, et al. Correlation of proteome-wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee (Apis mellifera) [J]. Genome Biol,2012, 13:R81.
    [111]TRANIELLO J F, ROSENGAUS R B, SAVOIE K. The development of immunity in a social insect: evidence for the group facilitation of disease resistance [J]. Proceedings of the National Academy of Sciences, 2002,99(10):6838-42.
    [112]COTTER S C, LITTLEFAIR J E, GRANTHAM P J, et al. A direct physiological trade - off between personal and social immunity [J]. Journal of Animal Ecology, 2013, 82(4):846-53.
    [113]BOUTROS M, AGAISSE H, PERRIMON N. Sequential Activation of Signaling Pathways during Innate Immune Responses in Drosophila [J]. Developmental cell, 2002, 3(5): 711-22.
    [114]PARKER J S, MIZUGUCHI K, GAY N J. A family of proteins related to Spatzle, the toll receptor ligand, are encoded in the Drosophila genome [J]. Proteins: Structure, Function, and Bioinformatics,2001,45(1):71-80.
    [115]ROYET J, REICHHART J-M, HOFFMANN J A. Sensing and signaling during infection in Drosophila [J]. Current opinion in immunology, 2005,17(1):11-7.
    [116]HULTMARK D. Drosophila immunity: paths and patterns [J]. Current opinion in immunology, 2003, 15(1):12-9.
    [117]AGAISSE H, PERRIMON N. The roles of JAK/STAT signaling in Drosophila immune responses [J]. Immunological reviews, 2004,198(1):72-82.
    [118]DOSTERT C, JOUANGUY E, IRVING P, et al. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila [J]. Nature immunology, 2005,6(9):946-53.
    [119]COX-FOSTER D L, CONLAN S, HOLMES E C, et al. A metagenomic survey of microbes in honey bee colony collapse disorder [J]. Science, 2007, 318(5848):283-7.
    [120]BLANCHARD P, SCHURR F, CELLE O, et al. First detection of Israeli acute paralysis virus (IAPV) in France, a dicistrovirus affecting honeybees (Apis mellifera) [J]. Journal of invertebrate pathology, 2008, 99(3):348-50.
    [121]CHEN Y, EVANS J D. Historical presence of Israeli acute paralysis virus in the United States [J]. American bee journal, 2007, 147(12):1027-8.
    [122]CORNMAN R S, TARPY D R, CHEN Y, et al. Pathogen webs in collapsing honey bee colonies [J]. PloS one, 2012, 7(8): e43562.
    [123]EVANS J D, SAEGERMAN C, MULLIN C, et al. Colony collapse disorder: a descriptive study [J]. PloS one, 2009, 4(8):e6481.
    [124]PALACIOS G, HUI J, QUAN P, et al. Genetic analysis of Israel acute paralysis virus: distinct clusters are circulating in the United States [J]. Journal of virology, 2008, 82(13): 6209-17.
    [125]NAKASHIMA N, UCHIUMI T. Functional analysis of structural motifs in dicistroviruses [J]. Virus research,2009,139(2):137-47.
    [126]PESTOVA T V, LOMAKIN I B, HELLEN C U. Position of the CrPV IRES on the 40S subunit and factor dependence of IRES/80S ribosome assembly [J]. EMBO reports, 2004, 5(9):906-13.
    [127]PESTOVA T V, HELLEN C U. Translation, interrupted [J]. Nature, 2006, 200:6. [128] BELSHAM G J. Divergent picornavirus IRES elements [J]. Virus research, 2009, 139(2):183-92.
    [129]KOONIN E V, DOLJA V V, MORRIS T J. Evolution and taxonomy of positive-strand RNA viruses:implications of comparative analysis of amino acid sequences [J]. Critical Reviews in Biochemistry and Molecular Biology, 1993,28(5):375-430.
    [130]JOHNSON K N, CHRISTIAN P D. The novel genome organization of the insect picorna-like virus Drosophila C virus suggests this virus belongs to a previously undescribed virus family [J]. Journal of General Virology, 1998,79(1):191-203.
    [131]DOMIER L L, MCCOPPIN N K. In vivo activity of Rhopalosiphum padi virus internal ribosome entry sites [J]. Journal of general virology, 2003,84(2):415-9.
    [132]NISHIYAMA T, YAMAMOTO H, SHIBUYA N, et al. Structural elements in the internal ribosome entry site of Plautia stall intestine virus responsible for binding with ribosomes [J]. Nucleic acids research,2003,31(9):2434-42.
    [133]ALLEN M, BALL B. The incidence and world distribution of honey bee viruses [J]. Bee world, 1996, 77.
    [134]MAYO M. A summary of taxonomic changes recently approved by ICTV [J]. Archives of virology, 2002, 147(8):1655-6.
    [135]MAORI E, TANNE E, SELA I. Reciprocal sequence exchange between non-retro viruses and hosts leading to the appearance of new host phenotypes [J]. Virology, 2007, 362(2):342-9.
    [136]JOHNSON R M, EVANS J D, ROBINSON G E, et al. Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera) [J]. Proceedings of the National Academy of Sciences, 2009,106(35):14790-5.
    [137]MAORI E, PALDI N, SHAFIR S, et al. IAPV, a bee - affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion [J]. Insect molecular biology, 2009,18(1):55-60.
    [138]SCHEINER R, PAGE R E, ERBER J. Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera) [J]. Apidologie, 2004, 35(2):133-42.
    [139]SEELEY T D. The wisdom of the hive: the social physiology of honey bee colonies [M]. Harvard University Press, 2009.
    [140]MENZEL R, MULLER U. Learning and memory in honeybees:from behavior to neural substrates [J]. Annual review of neuroscience,1996,19(1):379-404.
    [141]BITTERMAN M, MENZEL R, FIETZ A, et al. Classical conditioning of proboscis extension in honeybees (Apis mellifera) [J]. Journal of Comparative Psychology, 1983,97(2): 107.
    [142]SCHEINER R. Responsiveness to sucrose and habituation of the proboscis extension response in honey bees [J]. Journal of Comparative Physiology A, 2004, 190(9):727-33.
    [143]PANKIW T, WADDINGTON K D, PAGE R E. Modulation of sucrose response thresholds in honey bees (Apis mellifera L.):influence of genotype, feeding, and foraging experience [J]. Journal of Comparative Physiology A, 2001,187(4):293-301.
    [144]IQBAL J, MUELLER U. Virus infection causes specific learning deficits in honeybee foragers [J]. Proceedings of the Royal Society B:Biological Sciences, 2007, 274(1617): 1517-21.
    [145]PANKIW T, PAGE JR R. The effect of genotype, age, sex, and caste on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.) [J]. Journal of Comparative Physiology A, 1999, 185(2):207-13.
    [146]PANKIW T, PAGE JR R E. Response thresholds to sucrose predict foraging division of labor in honeybees [J]. Behavioral Ecology and Sociobiology, 2000, 47(4):265-7.
    [147]SCHEINER R, BARNERT M, ERBER J. Variation in water and sucrose responsiveness during the foraging season affects proboscis extension learning in honey bees [J]. Apidologie, 2003,34(1):67-72.
    [148]HAMMER M, MENZEL R. Learning and memory in the honeybee [J]. The Journal of Neuroscience, 1995,15(3):1617-30.
    [149]MULLER U. Learning in honeybees: from molecules to behaviour [J]. Zoology, 2002, 105(4):313-20.
    [150]BRAUN G, BICKER G. Habituation of an appetitive reflex in the honeybee [J]. Journal of Neurophysiology, 1992, 67(3):588-98.
    [151]THANY S H, GAUTHIER M. Nicotine injected into the antennal lobes induces a rapid modulation of sucrose threshold and improves short-term memory in the honeybee Apis mellifera [J]. Brain research, 2005,1039(1):216-9.
    [152]LAMBIN M, ARMENGAUD C, RAYMOND S, et al. Imidacloprid - induced facilitation of the proboscis extension reflex habituation in the honeybee [J]. Archives of insect biochemistry and physiology, 2001, 48(3): 129-34.
    [153]RAMIREZ-ROMERO R, DESNEUX N, DECOURTYE A, et al. Does CrylAb protein affect learning performances of the honey bee Apis mellifera L.(Hymenoptera, Apidae)? [J]. Ecotoxicology and Environmental Safety, 2008,70(2):327-33.
    [154]VON FRISCH K. The dance language and orientation of bees [J].1967.
    [155]PAHL M, ZHU H, TAUTZ J, et al. Large scale homing in honeybees [J]. PloS one, 2011,6(5):e19669.
    [156]CAPALDI E A, DYER F C. The role of orientation flights on homing performance in honeybees [J]. Journal of Experimental Biology, 1999,202(12):1655-66.
    [157]CHITTKA L, GEIGER K, KUNZE J. The influences of landmarks on distance estimation of honey bees [J]. Animal Behaviour, 1995,50(1):23-31.
    [158]MENZEL R, GREGGERS U, SMITH A, et al. Honey bees navigate according to a map-like spatial memory [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(8):3040-5.
    [159]STREIT S, BOCK F, PIRK C W, et al. Automatic life-long monitoring of individual insect behaviour now possible [J]. Zoology, 2003,106(3):169-71.
    [160]SCHNEIDER C W, TAUTZ J, GRUNEWALD B, et al. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera [J]. PLoS One, 2012, 7(1):e30023.
    [161]BORTOLOTTI L, MONTANARI R, MARCELINO J, et al. Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees [J]. Bulletin of Insectology, 2003,56:63-8.
    [162]AIZEN M A, GARIBALDI L A, CUNNINGHAM S A, et al. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency [J]. Current Biology, 2008, 18(20):1572-5.
    [163]VANENGELSDORP D, MEIXNER M D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them [J]. Journal of invertebrate pathology, 2010, 103:S80-S95.
    [164]TYLIANAKIS J M. The global plight of pollinators [J]. Science, 2013,339(6127): 1532-3.
    [165]罗其花,彭文君,安建东,et al.蜂群衰竭失调病(CCD)致病因子分析及我国的应对措施[J].昆虫知识,2008,45(6):991-5.
    [166]任锦芳.浙江省蜜蜂产业发展情况分析[J].中国蜂业,2007,58(1):13-4.
    [167]陈盛禄.中国养蜂学[M].北京:中国农业出版杜.2001.
    [168]CHEN Y, EVANS J, FELDLAUFER M. Horizontal and vertical transmission of viruses in the honey bee, Apis mellifera [J]. Journal of invertebrate pathology, 2006, 92(3): 152-9.
    [169]HOLLINGS M. Viruses associated with a die-back disease of cultivated mushroom [J]. Nature,1962,196:962-5.
    [170]HERRERO N, MARQUEZ S S, ZABALGOGEAZCOA I. Mycoviruses are common among different species of endophytic fungi of grasses [J]. Archives of virology, 2009, 154(2):327-30.
    [171]ROBINSON G E. Regulation of division of labor in insect societies [J]. Annual review of entomology, 1992, 37(1):637-65.
    [172]BAKONYIT, FARKAS R, SZENDROI A, et al. Detection of acute bee paralysis virus by RT-PCR in honey bee and Varroa destructor field samples:rapid screening of representative Hungarian apiaries [J]. Apidologie, 2002, 33(1):63-74.
    [173]RIBIERE M, TRIBOULOT C, MATHIEU L, et al. Molecular diagnosis of chronic bee paralysis virus infection [J]. Apidologie, 2002, 33(3):339-52.
    [174]GENERSCH E. Development of a rapid and sensitive RT-PCR method for the detection of deformed wing virus, a pathogen of the honeybee (Apis mellifera) [J]. The Veterinary Journal, 2005, 169(1):121-3.
    [175]STOLTZ D, XUEREN S, BOGGIS C, et al. Molecular diagnosis of Kashmir bee virus infection [J]. Journal of Apicultural Research (United Kingdom),1995.
    [176]TENTCHEVA D, GAUTHIER L, ZAPPULLA N, et al. Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France [J]. Applied and environmental microbiology, 2004, 70(12):7185-91.
    [177]SCHIPPERS M-P, DUKAS R, SMITH R, et al. Lifetime performance in foraging honeybees:behaviour and physiology [J]. Journal of Experimental Biology, 2006, 209(19): 3828-36.
    [178]PATEL A, FONDRK M K, KAFTANOGLU O, et al. The making of a queen: TOR pathway is a key player in diphenic caste development [J]. PLoS One, 2007, 2(6):e509.
    [179]STANFEL M N, SHAMIEH L S, KAEBERLEIN M, et al. The TOR pathway comes of age [J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2009, 1790(10):1067-74.
    [180]ANTUNEZ K, ALESSANDRO B D, CORBELLA E, et al. Detection of chronic bee paralysis virus and acute bee paralysis virus in Uruguayan honeybees [J]. Journal of invertebrate pathology, 2005,90(1):69-72.
    [181]DI PRISCO G, ZHANG X, PENNACCHIO F, et al. Dynamics of Persistent and Acute Deformed Wing Virus Infections in Honey Bees, Apis mellifera [J]. Viruses, 2011,3(12): 2425-41.
    [182]KLAUDINY J, ALBERT S, BACHANOVA K, et al. Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera [J]. Insect biochemistry and molecular biology, 2005, 35(1):11-22.
    [183]JENSEN A B, WELKER D L, KRYGER P, et al. Polymorphic DNA sequences of the fungal honey bee pathogen Ascosphaera apis [J]. FEMS microbiology letters, 2012, 330(1): 17-22.
    [184]JAMES R, SKINNER J. PCR diagnostic methods for Ascosphaera infections in bees [J]. Journal of invertebrate pathology, 2005, 90(2):98-103.
    [185]BENJEDDOU M, LEAT N, ALLSOPP M, et al. Detection of acute bee paralysis virus and black queen cell virus from honeybees by reverse transcriptase PCR [J]. Applied and environmental microbiology, 2001, 67(5):2384-7.
    [186]CHEN Y, ZHAO Y, HAMMOND J, et al. Multiple virus infections in the honey bee and genome divergence of honey bee viruses [J]. Journal of invertebrate pathology, 2004, 87(2):84-93.
    [187]KUKIELKA D, ESPERON F, HIGES M, et al. A sensitive one-step real-time RT-PCR method for detection of deformed wing virus and black queen cell virus in honeybee Apis mellifera [J]. Journal of virological methods, 2008, 147(2):275-81.
    [188]TAMURA K, PETERSON D, PETERSON N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular biology and evolution, 2011,28(10):2731-9.
    [189]GHABRIAL S A, SUZUKI N. Viruses of plant pathogenic fungi [J]. Annual review of phytopathology, 2009, 47: 353-84.
    [190]KONDO H, CHIBA S, TOYODA K, et al. Evidence for negative-strand RNA virus infection in fungi [J]. Virology, 2013,435(2):201-9.
    [191]ADAMS M. Transmission of plant viruses by fungi [J]. Annals of Applied Biology, 1991,118(2):479-92.
    [192]ADAMS M, ANTONIW J, MULLINS J. Plant virus transmission by plasmodiophorid fungi is associated with distinctive transmembrane regions of virus-encoded proteins [J]. Archives of virology, 2001,146(6):1139-53.
    [193]MARQUEZ L M, REDMAN R S, RODRIGUEZ R J, et al. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance [J]. Science, 2007, 315(5811): 513-5.
    [194]YU X, LI B, FU Y, et al. Extracellular transmission of a DNA mycovirus and its use as a natural fungicide [J]. Proceedings of the National Academy of Sciences, 2013,110(4): 1452-7.
    [195]FROST E H, SHUTLER D, HILLIER N K. The proboscis extension reflex to evaluate learning and memory in honeybees (Apis mellifera):some caveats [J]. Naturwissenschaften, 2012,99(9):677-86.
    [196]GUEZ D, SUCHAIL S, GAUTHIER M, et al. Contrasting Effects of Imidacloprid on Habituation in 7-and 8-Day-Old Honeybees (Apis mellifera) [J]. Neurobiology of learning and memory, 2001, 76(2):183-91.
    [197]FROST E H, SHUTLER D, HILLIER N K. Effects of cold immobilization and recovery period on honeybee learning, memory, and responsiveness to sucrose [J]. Journal of insect physiology, 2011,57(10):1385-90.
    [198]TSURUDA J M, PAGE JR R E. The effects of foraging role and genotype on light and sucrose responsiveness in honey bees (Apis mellifera L.) [J]. Behavioural brain research, 2009,205(1):132-7.
    [199]DYER F. Spatial memory and navigation by honeybees on the scale of the foraging range [J]. Journal of Experimental Biology, 1996, 199(1):147-54.
    [200]PANKIW T. Directional change in a suite of foraging behaviors in tropical and temperate evolved honey bees (Apis mellifera L.) [J]. Behavioral Ecology and Sociobiology, 2003,54(5):458-64.
    [201]CHEN Y, EVANS J D, ZHOU L, et al. Asymmetrical coexistence of Nosema ceranae and Nosema apis in honey bees [J]. Journal of invertebrate pathology, 2009, 101(3):204-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700