养殖虾蟹疫病免疫防控的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虾蟹养殖是世界水产养殖业的重要组成部分,但病毒和细菌性疫病的频繁爆发严重影响了该产业的健康发展,发展有效的疫病防控策略迫在眉睫。本研究选取凡纳滨对虾(Litopenaes vannamei)和中华绒螯蟹(Eriocheir sinensis)为实验对象,研究了CpG寡聚核苷酸(CpG ODN)、表面展示VP28的解脂耶罗维亚酵母、嗜酸乳杆菌、长双歧杆菌、地衣次级代谢产物红粉苔酸对虾蟹的免疫保护作用及其作用机制,利用碳纳米管和壳聚糖优化了免疫活性物质的导入途径,探讨了不同免疫增强剂在养殖虾蟹疫病防控中的应用前景。
     将大规模发酵制备的CpG ODN和表面展示VP28的解脂耶罗维亚酵母(VP28-yl)分别拌饲投喂凡纳滨对虾15天,发现在WSSV侵染后,CpG ODN和VP28-yl投喂组对虾的死亡率和体内病毒拷贝数均显著低于对照组。CpGODN投喂组对虾的细胞凋亡水平呈现先升高后降低的趋势,而VP28-yl投喂组对虾与对照组相比则一直维持较低水平,提示VP28-yl能抑制由WSSV侵染而引起的细胞凋亡。同时CpG ODN投喂组对虾血淋巴细胞的呼吸爆发水平和Dicer、STAT、prophenoloxidase的mRNA表达量显著增加,VP28-yl投喂组对虾LGBP表达量显著增加,以上结果表明CpG ODN和表面展示VP28的耶罗维亚酵母能通过不同的作用机制增强凡纳滨对虾抵御WSSV侵染的能力。田间试验发现投喂CpG ODN和表面展示VP28的解脂耶罗维亚酵母30天后,凡纳滨对虾的相对存活率显著提高,且CpG ODN投喂组对虾的生长速率显著增加,进一步证明CpG ODN和VP28-yl对养殖对虾病毒性疫病的防控具有显著作用,具有在养殖生产中推广使用的前景。
     发现经嗜酸乳杆菌和长双歧杆菌拌饲投喂21天的中华绒螯蟹在嗜水气单胞菌注射处理后的死亡率较对照投喂组显著降低,其血细胞吞噬能力及酚氧化酶、过氧化氢酶和溶菌酶活力水平显著增强,C型凝集素、prophenoloxidase、peroxinectin和LGBP基因的mRNA表达量显著上升。这表明嗜酸乳杆菌和长双歧杆菌能激活中华绒螯蟹的固有免疫系统,可作为候选的免疫增强剂,应用于养殖虾蟹类细菌性疫病的免疫防控。
     体外抑菌实验发现光肺衣(Lobaria kurokawae)次级代谢产物红粉苔酸(lecanoric acid)对嗜水气单胞菌具有显著的抑制作用。发现10μg mL-1红粉苔酸注射处理中华绒螯蟹后,其新生血淋巴细胞数量显著增加,血淋巴细胞吞噬活性和酚氧化酶、溶菌酶的活性显著上升,而一氧化氮的含量显著降低,表明红粉苔酸具有较强的抗氧化作用,能增强中华绒螯蟹免疫防御能力,有效抵御嗜水气单胞菌的侵染。
     利用碳纳米管和壳聚糖等纳米载药载体,对免疫活性物质的导入途径进行了优化。发现碳纳米管-病毒灵在对虾原代血淋巴细胞中发挥了良好的抗病毒作用,与WSSV共孵育后,检测到100μg mL-1碳纳米管-病毒灵处理组血细胞中病毒拷贝数达到(1.20±0.21)×106copies ng-1,显著低于对照组的(1.95±0.16)×106copies ng-1,能在凡纳滨对虾和中华绒螯蟹细胞中实现自由穿膜,导入效率接近于100%;壳聚糖-CpG ODN和壳聚糖-dsRNAie1通过内吞作用被摄入到对虾细胞内并在胞内呈点状分布,且壳聚糖载体具有良好的缓释作用。表明碳纳米管和壳聚糖可辅助将免疫活性物质高效导入虾蟹细胞,不产生明显细胞毒性,因而可作为虾蟹类免疫增强剂的候选导入载体。
     综上所述,CpG ODN、表面展示VP28的解脂耶罗维亚酵母、嗜酸乳杆菌、长双歧杆菌、红粉苔酸等免疫活性物质能激活虾蟹类固有免疫系统,增强机体抵御WSSV和嗜水气单胞菌侵染的能力,可作为候选免疫增强剂应用于养殖甲壳动物疫病的免疫防控;碳纳米管和壳聚糖等纳米载药载体的应用能实现免疫活性物质在虾蟹细胞中的高效导入。研究结果对于发展虾蟹疫病免疫防控新技术具有重要理论和实践意义。
Crustacean farming is an important part in world aquaculture, however, thefrequent outbreaks of viral and bacterial diseases have caused severe economiclosses. It is urgently necessary to launch researches regarding to the exploration ofnew approaches for the immune control of diseases, which is meaningful for thedevelopment of aquaculture industry. In the present study, the CpG oligonucleotides(CpG ODN), surface-displayed VP28Yarrowia lipolytica (VP28-yl), Lactobacillusacidophilus,Bifidobacterium longum and lichen secondary metabolites lecanoricacid were applied and their protective effects for Litopenaes vannamei and Eriocheirsinensis in the defense against white spot syndrome virus (WSSV) or Aeromonashydrophila infection were investigated, and the importing route for immunoreactivesubstances into crustaceans were optimized by using Nano drug delivery vectors likecarbon nanotubes and chitosan, as well as the further applications of CpG ODN andVP28-yl in the shrimp aquaculture industry were evaluated.
     CpG ODN prepared by large-scale fermentation and VP28-yl were mixed intodiets for the feeding of L. vannamei with a15day oral administration. After WSSVchallenge, the mortalities and the numbers of viral copies in CpG ODN and VP28-ylfeeding shrimps were significantly lower than those in control group. The apoptosislevel in heamocytes of CpG ODN feeding group increased at the beginning and thendecreased, whereas remained relatively low in VP28-yl feeding shrimps, suggestingthat CpG ODN and VP28-yl exerted immune protective roles against WSSVinfection via different mechanisms in shrimp.The mRNA expression of Dicer, STAT,prophenoloxidase in shrimp heamocytes increased in CpG ODN feeding group,while that of LGBP increased in VP28-yl feeding group. It indicated that theantiviral abilities against WSSV enhanced by CpG ODN and VP28-yl were viadifferent menchanisms. Meanwhile, after the feeding tiral for30days in ponds, thesignificantly higher growth parameters were observed in CpG ODN feeding shrimps. And the relative survival rates in CpG ODN and VP28-yl feeding shrimps were alsosignificantly higher than that in control groups after WSSV infection, which furtherconfirmed the application of these two immunoactvie substances in shrimpaquaculture industry had marked effects for the control of viral diseases.
     A21-day oral administration of L. acidophilus and B.longum was performed incrab E.sinensis. After A. hydrophila infection, in comparition with the control group,the cumulative mortalities in lactic acid feeding crabs were significantly decreased.In addition, cellular and humoral immunity parameters such as phagocytosis, oxygenspecies (ROS) production and the activity of catalase, lysozyme were significantlyenhanced, and the mRNA expression levels of prophenoloxidase,peroxinectin andC-lectin were also remarkably up-regualted, suggested that L. acidophilus andB.longum could active the immune defense system of E.sinensis and exertedprotective effects against A. hydrophila infection. Therefore, they could be used aspromising immunostimulant candidates in the development of therapeutic agents forthe immune control of the bacterial diseases in crustacean aquaculture.
     In vitro antibacterial experiment showed that lecanoric acid, which was isolatedfrom the acetone extracts of Lobaria kurokawae, could significantly inhibit thegrowth of A. hydrophila. After lecanoric acid was injected into crab E.sinensis, itsprotective effects against A. hydrophila infection were investigated. It showed that10μg mL-1lecanoric acid could not only promote regeneration of circulatingheamocytes and the phagocytosis, enhance the phenoloxidase and lysozyme activity,but also decrease NO production, which suggested lecanoric acid had antioxidantproperties. All of above were contributed to the boosted immunity of E.sinensiscasused by lecanoric acid against the infection of pathogen A. hydrophila.
     Nano drug delivery vectors like carbon nanotubes and chitosan were used tooptimize the importing route for immunoreactive substances into crustaceans.CNT-ribavirin exerted antiviral effects in primary culture heamocytes,after WSSVinfection,the viral number of WSSV copies in10μg mL-1treated group was (1.20±0.21)×106copies ng-1, which was significantly lower than that in the control group of (1.95±0.16)×106copies ng-1. And CNT-ribavirin could enter intoheamocytes via free diffusion, while the importing efficiency was reach to100%. Inaddition, chitosan-CpG ODN and chitosan-dsRNAie1were internalized directly byshrimp and crab haemocytes, and sustained release effect caused by chitosan wasalso observed. Because carbon nanotubes and chitosan drug carriers wereimmunoreactive substances can be efficiently introduced into cells of crabs, and theyhad no obvious cytotoxicity, they could serve as candidate methods to optimize theimporting route.
     In conclusion, CpG oligonucleotides (CpG ODN), surface-displayed VP28Y.lipolytica, L.acidophilus and B.longum and lichen secondary metabolites lecanoricacid could activate the innate immunity of crustaceans and played important roles inprotecting the animals against WSSV and A.hydrophlia. They might be possiblepractical supplements applicated in crustacean aquaculture industry. Meanwhile,carbon nanotubes and chitosan nanoparticle drug delivery system could optimize theimporting routes of immune active substance into crustaceans, which provided newstrategies for future industrial application. The findings were helpful for developingnovel immunostimulants in the disease control of aquaculture crustaceans.
引文
1.FAO. The State of World Fisheries and Aquaculture2012.2013:1-60.
    2.邱高峰.虾蟹类遗传育种学研究.水产学报.199822:265-274.
    3.Kautsky N, R nnb ck P, Tedengren M, Troell M. Ecosystem perspectives onmanagement of disease in shrimp pond farming. Aquaculture.2000191:145-161.
    4.Stevenson N. Disused shrimp ponds: Options for redevelopment of mangroves.1997.
    5.Cheng Y, Wu X, Yang X, Hines AH. Current trends in hatchery techniques andstock enhancement for Chinese mitten crab, Eriocheir japonica sinensis. reviews infisheries science.200816:377-384.
    6.Zhao N. Experiments on the artificial propagation of the woolly-handed crab(Eriocheir sinensis H. Milne-Edwards) in artificial sea water. J Fish China.19804:1-11.
    7.Sui L, Wille M, Cheng Y, Wu X, Sorgeloos P. Larviculture techniques of Chinesemitten crab Eriocheir sinensis. Aquaculture.2011315:16-19.
    8.李刚,刘小林,黄皓,崔朝霞,相建海.虾类遗传育种研究进展.水产科学.200726:525-530.
    9.Le Moullac G, Haffner P. Environmental factors affecting immune responses inCrustacea. Aquaculture.2000191:121-131.
    10.Chamberlain GW. Sustainability of world shrimp farming. GLOBAL TRENDS:FISHERIES MANAGEMENT.199720:195-209.
    11.Moriarty D. Control of luminous Vibrio species in penaeid aquaculture ponds.Aquaculture.1998164:351-358.
    12.Cho C, Hynes J, Wood K, Yoshida H. Development of high-nutrient-dense,low-pollution diets and prediction of aquaculture wastes using biological approaches.Aquaculture.1994124:293-305.
    13.Hauton C. The scope of the crustacean immune system for disease control. JInvertebr Pathol.2012110:251-60.
    14.李光友.中国对虾疾病与免疫机制.海洋科学.19954:3.
    15.Bachere E, Gueguen Y, Gonzalez M, De Lorgeril J, Garnier J, Romestand B.Insights into the anti‐microbial defense of marine invertebrates: the penaeidshrimps and the oyster Crassostrea gigas. Immunological reviews.2004198:149-168.
    16.Sritunyalucksana K, Utairungsee T, Sirikharin R, Srisala J. Reprint of:Virus-binding proteins and their roles in shrimp innate immunity. Fish&ShellfishImmunology.2013.
    17.Leu JH, Lin SJ, Huang JY, Chen TC, Lo CF. A model for apoptotic interactionbetween white spot syndrome virus and shrimp. Fish Shellfish Immunol.201334:1011-7.
    18.van Hulten MC, Witteveldt J, Peters S, Kloosterboer N, Tarchini R, Fiers M,Sandbrink H, Lankhorst RK, Vlak JM. The white spot syndrome virus DNA genomesequence. Virology.2001286:7-22.
    19.Yang F, He J, Lin X, Li Q, Pan D, Zhang X, Xu X. Complete genome sequence ofthe shrimp white spot bacilliform virus. J Virol.200175:11811-20.
    20.Haq MAB, Vignesh R, Srinivasan M. Deep insight into white spot syndromevirus vaccines: A review. Asian Pacific Journal of Tropical Disease.20122:73-77.
    21.雷质文,史成银.白斑综合症病毒(WSSV)的宿主调查.海洋与湖沼.200233:250-258.
    22.Escobedo‐Bonilla C, Alday‐Sanz V, Wille M, Sorgeloos P, Pensaert M,Nauwynck H. A review on the morphology, molecular characterization,morphogenesis and pathogenesis of white spot syndrome virus. Journal of fishdiseases.200831:1-18.
    23.闫冬春.对虾白斑综合征病毒(WSSV)宿主研究进展.海洋湖沼通报.2007:136-140.
    24.雷质文,杨冰.对虾病毒病的研究现状.海洋水产研究.200021:77-85.
    25.Rajendran K, Vijayan K, Santiago T, Krol R. Experimental host range andhistopathology of white spot syndrome virus (WSSV) infection in shrimp, prawns,crabs and lobsters from India. Journal of fish diseases.199922:183-191.
    26.郭闯,王永坤.嗜水气单胞菌研究进展.水产科学.200322:48-51.
    27.战文斌.水产动物疾病防治学.北京:中国农业出版社;2004.
    28.Wang J, Wang L, Gao Y, Jiang Q, Yi Q, Zhang H, Zhou Z, Qiu L, Song L. Atailless Dscam from Eriocheir sinensis diversified by alternative splicing. Fish&shellfish immunology.201335:249-261.
    29.Venegas C, Nonaka L, Mushiake K, Nishizawa T, Muroga K. Quasi-immuneresponse of Penaeus japonicus to penaeid rod-shaped DNA virus (PRDV). Diseasesof aquatic organisms.200042:83-89.
    30.Tassanakajon A, Somboonwiwat K, Supungul P, Tang S. Discovery of immunemolecules and their crucial functions in shrimp immunity. Fish Shellfish Immunol.201334:954-67.
    31.Hauton C, Smith VJ. Adaptive immunity in invertebrates: a straw house without amechanistic foundation. Bioessays.200729:1138-1146.
    32.贾翠红,汝少国.中国对虾淋巴器官的显微和超微结构研究.中国水产科学.19996:9-12.
    33.Oka M. Studies on Penaeus orientalis Kishinouye-VIII. Structure of the newlyfound lymphoid organ. Bull Jpn Soc Sci Fish.196935:245-250.
    34.Bachère E. Shrimp immunity and disease control. Aquaculture.2000191:3-11.
    35.Arts JA, Taverne-Thiele AJ, Savelkoul HF, Rombout JH. Haemocyte reactions inWSSV immersion infected Penaeus monodon. Fish Shellfish Immunol.200723:164-70.
    36.Johansson MW, Keyser P, Sritunyalucksana K, S derh ll K. Crustaceanhaemocytes and haematopoiesis. Aquaculture.2000191:45-52.
    37.Flegel TW, Sritunyalucksana K. Shrimp molecular responses to viral pathogens.Mar Biotechnol (NY).201113:587-607.
    38.Smith VJ, Ratcliffe N. Cellular defense reactions of the shore crab, Carcinusmaenas: in vivo hemocytic and histopathological responses to injected bacteria.Journal of Invertebrate Pathology.198035:65-74.
    39.Wang L, Zhi B, Wu W, Zhang X. Requirement for shrimp caspase in apoptosisagainst virus infection. Dev Comp Immunol.200832:706-15.
    40.Wang W, Zhang X. Comparison of antiviral efficiency of immune responses inshrimp. Fish Shellfish Immunol.200825:522-7.
    41.Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer biology&therapy.20054:139-163.
    42.Bachere E, Mialhe E, Noel D, Boulo V, Morvan A, Rodriguez J. Knowledge andresearch prospects in marine mollusc and crustacean immunology. Aquaculture.1995132:17-32.
    43.Sritunyalucksana K, S derh ll K. The proPO and clotting system in crustaceans.Aquaculture.2000191:53-69.
    44.Cheng W, Chen J-C. Effects of intrinsic and extrinsic factors on the haemocyteprofile of the prawn, Macrobrachium rosenbergii. Fish&Shellfish Immunology.200111:53-63.
    45.Matozzo V, Marin MG. The role of haemocytes from the crab Carcinus aestuarii(Crustacea, Decapoda) in immune responses: A first survey. Fish Shellfish Immunol.201028:534-41.
    46.Tassanakajon A, Amparyup P, Somboonwiwat K, Supungul P. Cationicantimicrobial peptides in penaeid shrimp. Mar Biotechnol (NY).201012:487-505.
    47.Rowley AF, Powell A. Invertebrate immune systems–specific, quasi-specific, ornonspecific? The Journal of Immunology.2007179:7209-7214.
    48.Heinsohn R, Double MC. Cooperate or speciate: new theory for the distributionof passerine birds. Trends Ecol Evol.200419:55-7.
    49.Witteveldt J, Cifuentes CC, Vlak JM, van Hulten MCW. Protection of Penaeusmonodon against White Spot Syndrome Virus by Oral Vaccination. Journal ofVirology.200478:2057-2061.
    50.魏克强,许梓荣.家蚕蛹表达的重组Vp28疫苗对克氏原螯虾的抗病毒保护效应.实验生物学报.200538:190-198.
    51.Li LJ, Yuan JF, Cai CA, Gu WG, Shi ZL. Multiple envelope proteins are involvedin white spot syndrome virus (WSSV) infection in crayfish. Arch Virol.2006151:1309-17.
    52.袁军法,李莉娟,谷万港,祝琳,石正丽.对虾白斑综合征病毒VP28免疫后克氏原螯虾血清酶活性及中和活性.武汉大学学报(理学版).200551.
    53.Rowley AF, Pope EC. Vaccines and crustacean aquaculture—A mechanisticexploration. Aquaculture.2012334-337:1-11.
    54.Johnson KN, van Hulten MC, Barnes AC."Vaccination" of shrimp against viralpathogens: phenomenology and underlying mechanisms. Vaccine.200826:4885-92.
    55.Kulkarni A, Rombout JH, Singh IS, Sudheer NS, Vlak JM, Caipang CM,Brinchmann MF, Kiron V. Truncated VP28as oral vaccine candidate against WSSVinfection in shrimp: an uptake and processing study in the midgut of Penaeusmonodon. Fish Shellfish Immunol.201334:159-66.
    56.Jha RK, Xu ZR, Shen J, Bai SJ, Sun JY, Li WF. The efficacy of recombinantvaccines against white spot syndrome virus in Procambarus clarkii. Immunologyletters.2006105:68-76.
    57.Baticados M, Lavilla-Pitogo C, Cruz-Lacierda E, De La Pena L, Sunaz N. Studieson the chemical control of luminous bacteria Vibrio harveyi and V. splendidusisolated from diseased Penaeus monodon larvae and rearing water. Dis Aquat Org.19909:133-139.
    58.Robert R, Gérard A. Bivalve hatchery technology: the current situation for thePacific oyster Crassostrea gigas and the scallop Pecten maximus in France. AquaticLiving Resources.199912:121-130.
    59.孙雷,李丹,毕言锋,苏富琴,朱馨乐,王鹤佳,徐士新.抗病毒药物的毒性及残留检测方法研究进展.中国兽药杂志.201347:57-61.
    60.杨国梁,王军毅,孔杰,罗坤,杨翠华,宫金华,张宇飞,高强.罗氏沼虾大规模家系构建与培育技术研究.海洋水产研究.200829:62-66.
    61.岳志芹,王伟继,孔杰,戴继勋,王清印. AFLP分子标记构建中国对虾遗传连锁图谱的初步研究.高技术通讯.200414:88-93.
    62.李健,刘萍,王清印,李朝霞,孙昭宁,何玉英.中国对虾遗传连锁图谱的构建.水产学报.200832:161-173.
    63.黄永春,艾华水,潘忠诚,陈锚,翁少萍,何建国,李色东.凡纳滨对虾抗WSSV选育家系的建立及其抗病特性.水产学报.201337:359-366.
    64.Xiao G-Q, Pan L-Q, Luan Z-H. Impact of Water Quality Adjustment Technologyon Eriocheir sinensis Breeding in the Sanila. MARINESCIENCES-QINGDAO-CHINESE EDITION-.200327:4-5.
    65.张世勇,傅洪拓,乔慧,孙盛明.中华绒螯蟹遗传育种研究进展.中国农学通报.201329:39-45.
    66.Tendencia EA, Bosma RH, Verreth JA. White spot syndrome virus (WSSV) riskfactors associated with shrimp farming practices in polyculture and monoculturefarms in the Philippines. Aquaculture.2011311:87-93.
    67.Avnimelech Y, Ritvo G. Shrimp and fish pond soils: processes and management.Aquaculture.2003220:549-567.
    68.Murray AG, Peeler EJ. A framework for understanding the potential for emergingdiseases in aquaculture. Preventive veterinary medicine.200567:223-235.
    69.Bondad-Reantaso MG, Subasinghe RP, Arthur JR, Ogawa K, Chinabut S, AdlardR, Tan Z, Shariff M. Disease and health management in Asian aquaculture.Veterinary parasitology.2005132:249-272.
    70.Tendencia EA, Bosma RH, Usero RC, Verreth JA. Effect of rainfall andatmospheric temperature on the prevalence of the whitespot syndrome virus in pond‐cultured Penaeus monodon. Aquaculture research.201041:594-597.
    71.Reyes A, Salazar M, Granja C. Temperature modifies gene expression insubcuticular epithelial cells of white spot syndrome virus-infected Litopenaeusvannamei. Developmental&Comparative Immunology.200731:23-29.
    72.Diasio R, LoBuglio A. Immunomodulators: immunosuppressive agents andimmunostimulants. Hardman JG, Limbird LE Goodman&Gilman's: thepharmacological basis of therapeutics New York: International.1996:1292-308.
    73.周进,黄健,宋晓玲.免疫增强剂在水产养殖中的应用.海洋水产研究.200324:70-79.
    74.Krieg AM, Yi A-K, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, KoretzkyGA, Klinman DM. CpG motifs in bacterial DNA trigger direct B-cell activation.Nature.1995374:546-549.
    75.Lee CH, Jeong H, Chung JK, Lee HH, Kim KH. CpG motif in synthetic ODNprimes respiratory burst of olive flounder Paralichthys olivaceus phagocytes andenhances protection against Edwardsiella tarda. Diseases of aquatic organisms.200356:43-48.
    76.J rgensen J, Zou J, Johansen A, Secombes C. Immunostimulatory CpGoligodeoxynucleotides stimulate expression of IL-1β and interferon-like cytokines inrainbow trout macrophages via a chloroquine-sensitive mechanism. Fish&shellfishimmunology.200111:673-682.
    77.Cuesta A, Salinas I, Esteban MA, Meseguer J. Unmethylated CpG motifsmimicking bacterial DNA triggers the local and systemic innate immune parametersand expression of immune-relevant genes in gilthead seabream. Fish ShellfishImmunol.200825:617-24.
    78.Sung H, Chen P, Liu C. Initiation of signal transduction of the respiratory burst ofprawn haemocytes triggered by CpG oligodeoxynucleotides. Fish&ShellfishImmunology.200824:693-700.
    79.Zhang Y, Wang L, Zhao J, Song L, Gai Y, Dong C, Qiu L. The effects of CpG-Coligodeoxynucleotides on innate immune responses in Eriocheir sinensis (H.Milne-Edwards,1853). Aquaculture Research.2010:no-no.
    80.Chen Y, Xiang L-X, Shao J-Z. Construction of a recombinant plasmid containingmulti-copy CpG motifs and its effects on the innate immune responses of aquaticanimals. Fish&shellfish immunology.200723:589-600.
    81.Sun R, Yue F, Qiu L, Zhang Y, Wang L, Zhou Z, Zhang H, Yi Q, Song L. TheCpG ODNs enriched diets enhance the immuno-protection efficiency and growthrate of Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol.201335:154-60.
    82.王爱萍,徐今宁.中药免疫调节作用研究进展.中国药业.201120:75-77.
    83.Citarasu T. Herbal biomedicines: a new opportunity for aquaculture industry.Aquaculture International.200918:403-414.
    84.Prasad NA, Reddy MS, Reddy DRK. Herbal and pharmaceutical drugs enhancedwith probiotics. Google Patents;2000.
    85.Citarasu T, Sivaram V, Immanuel G, Rout N, Murugan V. Influence of selectedIndian immunostimulant herbs against white spot syndrome virus (WSSV) infectionin black tiger shrimp, Penaeus monodon with reference to haematological,biochemical and immunological changes. Fish Shellfish Immunol.200621:372-84.
    86.Balasubramanian G, Sarathi M, Venkatesan C, Thomas J, Hameed AS. Studies onthe immunomodulatory effect of extract of Cyanodon dactylon in shrimp, Penaeusmonodon, and its efficacy to protect the shrimp from white spot syndrome virus(WSSV). Fish Shellfish Immunol.200825:820-8.
    87.杜爱芳,叶均安.复方大蒜油添加剂对中国对虾免疫机能的增强作用.浙江农业大学学报.199723:317-320.
    88.Rankovi B, Mi i M. The antimicrobial activity of the lichen substances of thelichens Cladonia furcata, Ochrolechia androgyna, Parmelia caperata and Par meliaconspresa. Biotechnol Biotechnol Equip.200822:1013-1016.
    89.Molnár K, Farkas E. Current results on biological activities of lichen secondarymetabolites: a review. Z Naturforsch C.201065:157-173.
    90.Huneck S. The significance of lichens and their metabolites. Naturwissenschaften.199986:559-570.
    91.Boustie J, Grube M. Lichens—a promising source of bioactive secondarymetabolites. Plant genetic resources: characterization and utilization.20053:273-287.
    92.Barillari J, Canistro D, Paolini M, Ferroni F, Pedulli GF, Iori R, Valgimigli L.Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolitecontained in rocket (Eruca sativa Mill.) seeds and sprouts. Journal of agricultural andfood chemistry.200553:2475-2482.
    93.Rankovic BR, Kosanic MM, Stanojkovic TP. Antioxidant, antimicrobial andanticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanoramuralis. BMC Complement Altern Med.201111:97.
    94.Cocchietto M, Skert N, Nimis P, Sava G. A review on usnic acid, an interestingnatural compound. Naturwissenschaften.200289:137-146.
    95.Selvin J, Lipton AP. Dendrilla nigra, a marine sponge, as potential source ofantibacterial substances for managing shrimp diseases. Aquaculture.2004236:277-283.
    96.Ba korová M, Jend elovsky R, Kello M, Ba kor M, Mike J, Fedoro ko P.Lichen secondary metabolites are responsible for induction of apoptosis in HT-29and A2780human cancer cell lines. Toxicology in Vitro.201226:462-468.
    97.Nordin A, Tibell L, Owe-Larsson B. A preliminary phylogeny of Aspicilia inrelation to morphological and secondary product variation.2007.
    98.Cetin H, Tufan-Cetin O, Turk AO, Tay T, Candan M, Yanikoglu A, Sumbul H.Insecticidal activity of major lichen compounds,()-and (+)-usnic acid, against thelarvae of house mosquito, Culex pipiens L. Parasitology research.2008102:1277-1279.
    99.Yildirim E, Emsen B, Aslan A, Bulak Y, Ercisli S. Insecticidal Activity of Lichensagainst the Maize Weevil, Sitophilus zeamais Motschulsky (Coleoptera:Curculionidae). Egyptian Journal of Biological Pest Control.201222.
    100.Gram L, Melchiorsen J, Spanggaard B, Huber I, Nielsen TF. Inhibition of Vibrioanguillarum byPseudomonas fluorescens AH2, a Possible Probiotic Treatment ofFish. Applied and Environmental Microbiology.199965:969-973.
    101.Shah N. Probiotic bacteria: selective enumeration and survival in dairy foods.Journal of Dairy Science.200083:894-907.
    102.Hatakka K, Savilahti E, P nk A, Meurman JH, Poussa T, N se L, Saxelin M,Korpela R. Effect of long term consumption of probiotic milk on infections inchildren attending day care centres: double blind, randomised trial. Bmj.2001322:1327.
    103.Gionchetti P, Rizzello F, Helwig U, Venturi A, Lammers KM, Brigidi P, Vitali B,Poggioli G, Miglioli M, Campieri M. Prophylaxis of pouchitis onset with probiotictherapy: a double-blind, placebo-controlled trial. Gastroenterology.2003124:1202-1209.
    104.Gildberg A, Mikkelsen H, Sandaker E, Ring E. Probiotic effect of lactic acidbacteria in the feed on growth and survival of fry of Atlantic cod (Gadus morhua).Asia-Pacific Conference on Science and Management of Coastal Environment:Springer;1997, p.279-285.
    105.Harikrishnan R, Kim MC, Kim JS, Balasundaram C, Heo MS.Immunomodulatory effect of probiotics enriched diets on Uronema marinuminfected olive flounder. Fish Shellfish Immunol.201130:964-71.
    106.薛恒平,薛彦青.微生物生态制剂在水产养殖中的应用.中国饲料.199715:30-32.
    107.Nogami K, Hamasaki K, Maeda M, Hirayama K. Biocontrol method inaquaculture for rearing the swimming crab larvae Portunus trituberculatus. LiveFood in Aquaculture: Springer;1997, p.291-295.
    108.刘倩,陈营.乳酸菌对病原菌定植的拮抗作用及其在水产养殖中的应用.中国水产.2007:63-64.
    109.Einarsson H, Lauzon HL. Biopreservation of Brined Shrimp (Pandalus borealis)by Bacteriocins from Lactic Acid Bacteria. Applied and environmental microbiology.199561:669-676.
    110.Lavens P, Sorgeloos P. Experiences on importance of diet for shrimp postlarvalquality. Aquaculture.2000191:169-176.
    111.Sui L, Wille M, Cheng Y, Sorgeloos P. The effect of dietary n-3HUFA levelsand DHA/EPA ratios on growth, survival and osmotic stress tolerance of Chinesemitten crab Eriocheir sinensis larvae. Aquaculture.2007273:139-150.
    112.Wu X, Chang G, Cheng Y, Zeng C, Southgate PC, Lu J. Effects of dietaryphospholipid and highly unsaturated fatty acid on the gonadal development, tissueproximate composition, lipid class and fatty acid composition of precocious Chinesemitten crab,Eriocheir sinensis. Aquaculture Nutrition.201016:25-36.
    113.Bell JG, Sargent JR. Arachidonic acid in aquaculture feeds: current status andfuture opportunities. Aquaculture.2003218:491-499.
    114.Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic Bacteria asBiological Control Agents in Aquaculture. Microbiology and Molecular BiologyReviews.200064:655-671.
    115.沈锦玉,刘问,曹铮,尹文林,沈智华,钱冬,吴颖蕾.免疫增强剂对中华绒螯蟹免疫功能的影响.浙江农业学报.200416:25-29.
    116.Robalino J, Bartlett TC, Chapman RW, Gross PS, Browdy CL, Warr GW.Double-stranded RNA and antiviral immunity in marine shrimp: inducible hostmechanisms and evidence for the evolution of viral counter-responses. Dev CompImmunol.200731:539-47.
    117.Robalino J, Browdy CL, Prior S, Metz A, Parnell P, Gross P, Warr G. Inductionof antiviral immunity by double-stranded RNA in a marine invertebrate. J Virol.200478:10442-8.
    118.Xu J, Han F, Zhang X. Silencing shrimp white spot syndrome virus (WSSV)genes by siRNA. Antiviral Res.200773:126-31.
    119.Zhu F, Zhang X. The antiviral vp28-siRNA expressed in bacteria protectsshrimp against white spot syndrome virus (WSSV). Aquaculture.2011319:311-314.
    120.Labreuche Y, Warr GW. Insights into the antiviral functions of the RNAimachinery in penaeid shrimp. Fish Shellfish Immunol.201334:1002-10.
    121.Zhang Y, Song L, Zhao J, Wang L, Kong P, Liu L, Wang M, Qiu L. Protectiveimmunity induced by CpG ODNs against white spot syndrome virus (WSSV) viaintermediation of virus replication indirectly in Litopenaeus vannamei. Dev CompImmunol.201034:418-24.
    122.Sarathi M, Simon MC, Ahmed VP, Kumar SR, Hameed AS. Silencing VP28gene of white spot syndrome virus of shrimp by bacterially expressed dsRNA. MarBiotechnol (NY).200810:198-206.
    123.Kim CS, Kosuke Z, Nam YK, Kim SK, Kim KH. Protection of shrimp (Penaeuschinensis) against white spot syndrome virus (WSSV) challenge by double-strandedRNA. Fish Shellfish Immunol.200723:242-6.
    124.Shekhar MS, Lu Y. Application of nucleic-acid-based therapeutics for viralinfections in shrimp aquaculture. Mar Biotechnol (NY).200911:1-9.
    125.Namikoshi A, Wu JL, Yamashita T, Nishizawa T, Nishioka T, Arimoto M,Muroga K. Vaccination trials with Penaeus japonicus to induce resistance to whitespot syndrome virus. Aquaculture.2004229:25-35.
    126.Tseng DY, Ho PL, Huang SY, Cheng SC, Shiu YL, Chiu CS, Liu CH.Enhancement of immunity and disease resistance in the white shrimp, Litopenaeusvannamei, by the probiotic, Bacillus subtilis E20. Fish Shellfish Immunol.200926:339-44.
    127.Syed MS, Kwang J. Oral vaccination of baculovirus-expressed VP28displaysenhanced protection against White Spot Syndrome Virus in Penaeus monodon. PLoSOne.20116:e26428.
    128.Hauton C, Smith VJ. Adaptive immunity in invertebrates: a straw house withouta mechanistic foundation. Bioessays.200729:1138-46.
    129.Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems.Advanced drug delivery reviews.200658:467-486.
    130.Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H.Nano-graphene oxide for cellular imaging and drug delivery. Nano research.20081:203-212.
    131.Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H. Carbon materials for drugdelivery&cancer therapy. Materials Today.201114:316-323.
    132.Bianco A, Hoebeke J, Godefroy S, Chaloin O, Pantarotto D, Briand J-P, MullerS, Prato M, Partidos CD. Cationic carbon nanotubes bind to CpGoligodeoxynucleotides and enhance their immunostimulatory properties. Journal ofthe American Chemical Society.2005127:58-59.
    133.Kam NWS, Dai H. Carbon nanotubes as intracellular protein transporters:generality and biological functionality. Journal of the American Chemical Society.2005127:6021-6026.
    134.Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, GennaroR, Prato M, Bianco A. Targeted delivery of amphotericin B to cells by usingfunctionalized carbon nanotubes. Angewandte Chemie International Edition.200544:6358-6362.
    135.Salvador-Morales C, Flahaut E, Sim E, Sloan J, H Green ML, Sim RB.Complement activation and protein adsorption by carbon nanotubes. Molecularimmunology.200643:193-201.
    136.Pantarotto D, Briand J-P, Prato M, Bianco A. Translocation of bioactive peptidesacross cell membranes by carbon nanotubes. Chemical Communications.2004:16-17.
    137.Mumper R, Wang J, Claspell J, Rolland A. Novel polymeric condensing carriersfor gene delivery. Proceedings of the international symposium on controlledrelease bioactive materials;1995, p.178-179.
    138.Yang S-J, Shieh M-J, Lin F-H, Lou P-J, Peng C-L, Wei M-F, Yao C-J, Lai P-S,Young T-H. Colorectal cancer cell detection by5-aminolaevulinic acid-loadedchitosan nano-particles. Cancer letters.2009273:210-220.
    139.Aulton ME, Wells T. Pharmaceutics: The science of dosage form design.2002.
    140.Lee D, Zhang W, Shirley SA, Kong X, Hellermann GR, Lockey RF, MohapatraSS. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained genedelivery. Pharmaceutical research.200724:157-167.
    141.Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA andsiRNA. Advanced drug delivery reviews.201062:12-27.
    142.Zhu K, Jin H, Ma Y, Ren Z, Xiao C, He Z, Zhang F, Zhu Q, Wang B. Acontinuous thermal lysis procedure for the large-scale preparation of plasmid DNA.Journal of biotechnology.2005118:257-264.
    143.Liu X-Y, Chi Z, Liu G-L, Wang F, Madzak C, Chi Z-M. Inulin hydrolysis andcitric acid production from inulin using the surface-engineered Yarrowia lipolyticadisplaying inulinase. Metabolic engineering.201012:469-476.
    144.Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data UsingReal-Time Quantitative PCR and the2ΔΔCTMethod. methods.200125:402-408.
    145.Jang I-K, Meng X-H, Seo H-C, Cho Y-R, Kim B-R, Ayyaru G, Kim J-S. ATaqMan real-time PCR assay for quantifying white spot syndrome virus (WSSV)infections in wild broodstock and hatchery-reared postlarvae of fleshy shrimp,Fenneropenaeus chinensis. Aquaculture.2009287:40-45.
    146.雷雯雯,徐团,王兰.镉诱导长江华溪蟹(Sinopotamon yangtsekiense)心肌细胞凋亡的研究.海洋与湖沼.20122:299-305.
    147.Pope EC, Powell A, Roberts EC, Shields RJ, Wardle R, Rowley AF. EnhancedCellular Immunity in Shrimp (Litopenaeus vannamei) after ‘Vaccination’. PLoSONE.20116:e20960.
    148.Wang G, Ahn J-h, Yao J, Lindsay M, Liu H, Dou S. Preparation andcharacterization of carbon nanotubes for energy storage. Journal of power sources.2003119:16-23.
    149.Dong C, Zhao J, Song L, Wang L, Qiu L, Zheng P, Li L, Gai Y, Yang G. Theimmune responses in Chinese mitten crab Eriocheir sinensis challenged withdouble-stranded RNA. Fish&Shellfish Immunology.200926:438-442.
    150.Liu C-G, Desai KGH, Chen X-G, Park H-J. Linolenic acid-modified chitosan forformation of self-assembled nanoparticles. Journal of agricultural and food chemistry.200553:437-441.
    151.Chaung HC. CpG oligodeoxynucleotides as DNA adjuvants in vertebrates andtheir applications in immunotherapy. Int Immunopharmacol.20066:1586-96.
    152.Mosca F, Tritto E, Muzzi A, Monaci E, Bagnoli F, Iavarone C, O'Hagan D,Rappuoli R, De Gregorio E. Molecular and cellular signatures of human vaccineadjuvants. Proc Natl Acad Sci U S A.2008105:10501-6.
    153.Xu Y, Li X, Jin L, Zhen Y, Lu Y, Li S, You J, Wang L. Application of chickenegg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases: areview. Biotechnol Adv.201129:860-8.
    154.Carrington AC, Secombes CJ. A review of CpGs and their relevance toaquaculture. Vet Immunol Immunopathol.2006112:87-101.
    155.Lu K-Y, Sung H-J, Sung H-H. Genes expression in hemocytes of the giantfreshwater prawn (Macrobrachium rosenbergii) elicited by CpGoligodexoynucleotide by suppression subtractive hybridization.臺灣水產學會刊.200734:275-290.
    156.Jang I-K, Meng X-H, Seo H-C, Cho Y-R, Kim B-R, Ayyaru G, Kim J-S. ATaqMan real-time PCR assay for quantifying white spot syndrome virus (WSSV)infections in wild broodstock and hatchery-reared postlarvae of fleshy shrimp,Fenneropenaeus chinensis. Aquaculture.2009287:40-45.
    157.Krieg AM. CpG Motifs in Bacterial DNA and Their Immune Effects. Annualreview of immunology.200220:709-760.
    158.Fu LL, Shuai JB, Xu ZR, Li JR, Li WF. Immune responses of Fenneropenaeuschinensis against white spot syndrome virus after oral delivery of VP28usingBacillus subtilis as vehicles. Fish Shellfish Immunol.201028:49-55.
    159.Wu J, Muroga K. Apoptosis does not play an important role in the resistance of‘immune’Penaeus japonicus against white spot syndrome virus. Journal of fishdiseases.200427:15-21.
    160.Bachère E. Anti-infectious immune effectors in marine invertebrates: potentialtools for disease control in larviculture. Aquaculture.2003227:427-438.
    161.Sun R, Qiu L, Yue F, Wang L, Liu R, Zhou Z, Zhang H, Song L. Hemocyticimmune responses triggered by CpG ODNs in shrimp Litopenaeus vannamei. FishShellfish Immunol.201334:38-45.
    162.Andaloussi AE, Sonabend AM, Han Y, Lesniak MS. Stimulation of TLR9withCpG ODN enhances apoptosis of glioma and prolongs the survival of mice withexperimental brain tumors. Glia.200654:526-535.
    163.Li F, Xiang J. Signaling pathways regulating innate immune responses in shrimp.Fish Shellfish Immunol.201334:973-80.
    164.Amparyup P, Charoensapsri W, Tassanakajon A. Prophenoloxidase system andits role in shrimp immune responses against major pathogens. Fish ShellfishImmunol.201334:990-1001.
    165.Mui B, Raney SG, Semple SC, Hope MJ. Immune stimulation by aCpG-containing oligodeoxynucleotide is enhanced when encapsulated and deliveredin lipid particles. Journal of Pharmacology and Experimental Therapeutics.2001298:1185-1192.
    166.Chuo CP, Liang SM, Sung HH. Signal transduction of the prophenoloxidaseactivating system of prawn haemocytes triggered by CpG oligodeoxynucleotides.Fish Shellfish Immunol.200518:149-62.
    167.李义.中华绒螯蟹新型免疫调节剂及其酚氧化酶的纯化和性质研究[D]:南京农业大学博士学位论文;2007.
    168.Jiravanichpaisal P, Sricharoen S, S derh ll I, S derh ll K. White spot syndromevirus (WSSV) interaction with crayfish haemocytes. Fish&shellfish immunology.200620:718-727.
    169.雷质文,俞开康.感染白斑综合病毒(WSSV)对虾相关免疫因子的研究.中国水产科学.20018:46-51.
    170.Lu K-Y, Huang Y-T, Lee H-H, Sung H-H. Cloning the prophenoloxidase cDNAand monitoring the expression of proPO mRNA in prawns (Macrobrachiumrosenbergii) stimulated in vivo by CpG oligodeoxynucleotides. Fish&shellfishimmunology.200620:274-284.
    171.Bogdan C. Nitric oxide and the immune response. Nature immunology.20012:907-916.
    172.Colasanti M, Venturini G. Nitric oxide in invertebrates. Molecular neurobiology.199817:157-174.
    173.He H, Crippen TL, Farnell MB, Kogut MH. Identification of CpGoligodeoxynucleotide motifs that stimulate nitric oxide and cytokine production inavian macrophage and peripheral blood mononuclear cells. Developmental&Comparative Immunology.200327:621-627.
    174.Darnell JE. STATs and gene regulation. Science.1997277:1630-1635.
    175.Decker T, Stockinger S, Karaghiosoff M, Müller M, Kovarik P. IFNs and STATsin innate immunity to microorganisms. Journal of Clinical Investigation.2002109:1271-1277.
    176.Durbin JE, Hackenmiller R, Simon MC, Levy DE. Targeted Disruption of theMouse Stat1Gene Results in Compromised Innate Immunity to Viral Disease. Cell.199684:443-450.
    177.Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C,Hoffmann JA, Imler J-L. The Jak-STAT signaling pathway is required but notsufficient for the antiviral response of drosophila. Nature immunology.20056:946-953.
    178.Chen WY, Ho KC, Leu JH, Liu KF, Wang HC, Kou GH, Lo CF. WSSVinfection activates STAT in shrimp. Dev Comp Immunol.200832:1142-50.
    179.Kemp C, Imler J-L. Antiviral immunity in drosophila. Current opinion inimmunology.200921:3-9.
    180.Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW.Distinct roles for Drosophila Dicer-1and Dicer-2in the siRNA/miRNA silencingpathways. Cell.2004117:69-82.
    181.Haase AD, Jaskiewicz L, Zhang H, LainéS, Sack R, Gatignol A, Filipowicz W.TRBP, a regulator of cellular PKR and HIV-1virus expression, interacts with Dicerand functions in RNA silencing. EMBO reports.20056:961-967.
    182.Liu CS, Sun Y, Hu YH, Sun L. Identification and analysis of a CpG motif thatprotects turbot (Scophthalmus maximus) against bacterial challenge and enhancesvaccine-induced specific immunity. Vaccine.201028:4153-61.
    183.Mai WJ, Wang WN. Protection of blue shrimp (Litopenaeus stylirostris) againstthe White Spot Syndrome Virus (WSSV) when injected with shrimp lysozyme. FishShellfish Immunol.201028:727-33.
    184.Liu XL, Xi QY, Yang L, Li HY, Jiang QY, Shu G, Wang SB, Gao P, Zhu XT,Zhang YL. The effect of dietary Panax ginseng polysaccharide extract on theimmune responses in white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol.201130:495-500.
    185.Balasubramanian G, Sarathi M, Venkatesan C, Thomas J, Sahul Hameed AS.Oral administration of antiviral plant extract of Cynodon dactylon on a large scaleproduction against White spot syndrome virus (WSSV) in Penaeus monodon.Aquaculture.2008279:2-5.
    186.张敬艳,刘庆慧,黄倢. vp28重组核酸疫苗对凡纳滨对虾抗WSSV感染的免疫反应和保护效果.渔业科学进展ISTIC.201233.
    187.李一宁,梁艳,黄倢,董双林.对虾白斑综合征病毒分子致病机制的研究进展.安徽农业科学.2010:3533-3536.
    188.Sieczkarski SB, Whittaker GR. Dissecting virus entry via endocytosis. Journalof General Virology.200283:1535-1545.
    189.Mu Y, Lan JF, Zhang XW, Wang XW, Zhao XF, Wang JX. A vector thatexpresses VP28of WSSV can protect red swamp crayfish from white spot disease.Dev Comp Immunol.201236:442-9.
    190.Gomez-Gil B, Roque A, Turnbull JF. The use and selection of probiotic bacteriafor use in the culture of larval aquatic organisms. Aquaculture.2000191:259-270.
    191.Sritunyalucksana K, Utairungsee T, Sirikharin R, Srisala J. Virus-bindingproteins and their roles in shrimp innate immunity. Fish Shellfish Immunol.201233:1269-75.
    192.Jiang G, Yu R, Zhou M. Studies on nitric oxide synthase activity in haemocytesof shrimps Fenneropenaeus and Marsupenaeus japonicus after white spot syndromevirus infection. Nitric oxide.200614:219-227.
    193.Zhang W, Gu Y, Chen Y, Deng H, Chen L, Chen S, Zhang G, Gao Z. Intestinalflora imbalance results in altered bacterial translocation and liver function in ratswith experimental cirrhosis. European journal of gastroenterology&hepatology.201022:1481-1486.
    194.王瑾,刘静,杨丽杰.益生菌对抗生素性肠道菌群失衡的调节作用.中国乳品工业.2010:15-17.
    195.Aly SM, Abdel-Galil Ahmed Y, Abdel-Aziz Ghareeb A, Mohamed MF. Studieson Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on theimmune response and resistance of Tilapia nilotica (Oreochromis niloticus) tochallenge infections. Fish Shellfish Immunol.200825:128-36.
    196.Talpur A, Memon A, Khan M, Ikhwanuddin M, Daniel M, Abol-Munafi A.Isolation and Screening of Lactic Acid Bacteria from the Gut of Blue SwimmingCrab, P. pelagicus, an in vitro Inhibition Assay and Small Scale in vivo Model forValidation of Isolates as Probiotics. Journal of Fisheries&Aquatic Science.20127.
    197.Talpur A, Memon A, Khan M, Ikhwanuddin M, Daniel M, Abol-Munafi A.Inhibition of pathogens by lactic acid bacteria and application as water additive multiisolates in early stages larviculture of P. pelagicus (Linnaeus,1758). JAPS, Journalof Animal and Plant Sciences.201222:54-64.
    198.Schulze AD, Alabi AO, Tattersall-Sheldrake AR, Miller KM. Bacterial diversityin a marine hatchery: balance between pathogenic and potentially probiotic bacterialstrains. Aquaculture.2006256:50-73.
    199.Flores-Albino B, Arias L, Gomez J, Castillo A, Gimeno M, Shirai K. Chitin andL(+)-lactic acid production from crab (Callinectes bellicosus) wastes byfermentation of Lactobacillus sp. B2using sugar cane molasses as carbon source.Bioprocess Biosyst Eng.201235:1193-200.
    200.Kongnum K, Hongpattarakere T. Effect of Lactobacillus plantarum isolatedfrom digestive tract of wild shrimp on growth and survival of white shrimp(Litopenaeus vannamei) challenged with Vibrio harveyi. Fish Shellfish Immunol.201232:170-7.
    201.Zhang SP, Li JF, Wu XC, Zhong WJ, Xian JA, Liao SA, Miao YT, Wang AL.Effects of different dietary lipid level on the growth, survival and immune-relatinggenes expression in Pacific white shrimp, Litopenaeus vannamei. Fish ShellfishImmunol.201334:1131-8.
    202.Parrilla-Taylor DP, Zenteno-Savín T. Antioxidant enzyme activities in Pacificwhite shrimp (Litopenaeus vannamei) in response to environmental hypoxia andreoxygenation. Aquaculture.2011318:379-383.
    203.Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis andredox regulation in cellular signaling. Cell Signal.201224:981-90.
    204.Li Y, Chai X, Wu H, Jing W, Wang L. The response of metallothionein andmalondialdehyde after exclusive and combined Cd/Zn exposure in the crabSinopotamon henanense. PLoS One.20138:e80475.
    205.Chiu CH, Guu YK, Liu CH, Pan TM, Cheng W. Immune responses and geneexpression in white shrimp, Litopenaeus vannamei, induced by Lactobacillusplantarum. Fish Shellfish Immunol.200723:364-77.
    206.Calo-Mata P, Arlindo S, Boehme K, de Miguel T, Pascoal A, Barros-Velazquez J.Current applications and future trends of lactic acid bacteria and their bacteriocinsfor the biopreservation of aquatic food products. Food and Bioprocess Technology.20081:43-63.
    207.Sritunyalucksana K, Wongsuebsantati K, Johansson M, S derh ll K.Peroxinectin, a cell adhesive protein associated with the proPO system from theblack tiger shrimp, Penaeus monodon. Developmental&Comparative Immunology.200125:353-363.
    208.Park E, Kum S, Wang C, Park SY, Kim BS, Schuller-Levis G.Anti-inflammatory activity of herbal medicines: inhibition of nitric oxide productionand tumor necrosis factor-α secretion in an activated macrophage-like cell line. TheAmerican Journal of Chinese Medicine.200533:415-424.
    209.Zelensky AN, Gready JE. The C‐type lectin‐like domain superfamily. FebsJournal.2005272:6179-6217.
    210.Paudel B, Bhattarai HD, Lee JS, Hong SG, Shin HW, Yim JH. Antibacterialpotential of Antarctic lichens against human pathogenic Gram-positive bacteria.Phytother Res.200822:1269-71.
    211.Immanuel G, Vincybai VC, Sivaram V, Palavesam A, Marian MP. Effect ofbutanolic extracts from terrestrial herbs and seaweeds on the survival, growth andpathogen (Vibrio parahaemolyticus) load on shrimp Penaeus indicus juveniles.Aquaculture.2004236:53-65.
    212.Yin G, Ardo L, Thompson KD, Adams A, Jeney Z, Jeney G. Chinese herbs(Astragalus radix and Ganoderma lucidum) enhance immune response of carp,Cyprinus carpio, and protection against Aeromonas hydrophila. Fish ShellfishImmunol.200926:140-5.
    213.Luo H, Yamamoto Y, Kim JA, Jung JS, Koh YJ, Hur J-S. Lecanoric acid, asecondary lichen substance with antioxidant properties from Umbilicaria antarcticain maritime Antarctica (King George Island). Polar biology.200932:1033-1040.
    214.Lorenzon S, De Guarrini S, Smith V, Ferrero E. Effects of LPS injection oncirculating haemocytes in crustaceans in vivo. Fish&Shellfish Immunology.19999:31-50.
    215.宋林生,季延宾,蔡中华,方敏,苏建国,崔朝霞,李太武.温度骤升对中华绒螯蟹(Eriocheir sinensis)几种免疫化学指标的影响.海洋与湖沼.200435:74-77.
    216.Harikrishnan R, Balasundaram C, Heo MS. Herbal supplementation diets onhematology and innate immunity in goldfish against Aeromonas hydrophila. FishShellfish Immunol.201028:354-61.
    217.J rgensen JB, Johansen A, Stenersen B, Sommer A-I. CpGoligodeoxynucleotides and plasmid DNA stimulate Atlantic salmon (Salmo salar)leucocytes to produce supernatants with antiviral activity. Developmental&Comparative Immunology.200125:313-321.
    218.Zhu F, Du H, Miao ZG, Quan HZ, Xu ZR. Protection of Procambarus clarkiiagainst white spot syndrome virus using inactivated WSSV. Fish Shellfish Immunol.200926:685-90.
    219.Ning JF, Zhu W, Xu JP, Zheng CY, Meng XL. Oral delivery of DNA vaccineencoding VP28against white spot syndrome virus in crayfish by attenuatedSalmonella typhimurium. Vaccine.200927:1127-35.
    220.Fu L-L, Wang Y, Wu Z-C, Li W-F. In vivo assessment for oral delivery ofBacillus subtilis harboring a viral protein (VP28) against white spot syndrome virusin Litopenaeus vannamei. Aquaculture.2011322-323:33-38.
    221.Zhang Y, Ning JF, Qu XQ, Meng XL, Xu JP. TAT-mediated oral subunit vaccineagainst white spot syndrome virus in crayfish. J Virol Methods.2012181:59-67.
    222.Farzanfar A. The use of probiotics in shrimp aquaculture. FEMS Immunol MedMicrobiol.200648:149-58.
    223.Carr FJ, Chill D, Maida N. The lactic acid bacteria: a literature survey. Criticalreviews in microbiology.200228:281-370.
    224.Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L. Probiotics inaquaculture: The need, principles and mechanisms of action and screening processes.Aquaculture.2008274:1-14.
    225.Ring E, Gatesoupe F-J. Lactic acid bacteria in fish: a review. Aquaculture.1998160:177-203.
    226.Senthong R, Chanthachum S, Sumpavapol P. Screening and Identification ofProbiotic Lactic Acid Bacteria Isolated From Poo-Khem, A Traditional Salted Crab.International Proceedings of Chemical, Biological&Environmental Engineering.201239.
    227.Maeda M, Shibata A, Biswas G, Korenaga H, Kono T, Itami T, Sakai M.Isolation of Lactic Acid Bacteria from Kuruma Shrimp (Marsupenaeus japonicus)Intestine and Assessment of Immunomodulatory Role of a Selected Strain asProbiotic. Mar Biotechnol (NY).201416:181-92.
    228.Ajitha S, Sridhar M, Sridhar N, Bright Singh I, Varghese V. Probiotic effects oflactic acid bacteria against Vibrio alginolyticus in Penaeus (Fenneropenaeus) Indicus(H. Milne Edwards). Asian Fisheries Science.200417:71-80.
    229.Vieira FdN, Pedrotti FS, Buglione Neto CC, Mouri o JLP, Beltrame E, MartinsML, Ramirez C, Arana LAV. Lactic-acid bacteria increase the survival of marineshrimp, Litopenaeus vannamei, after infection with Vibrio harveyi. Brazilian Journalof Oceanography.200755:251-255.
    230.Bai D, Wu X, Zhu G, Guo Y, Yang G, Ning B, Xing K. Astragaluspolysaccharides enhance cellular immune response and disease resistance in yellowcatfish.2012.
    231.Francis G, Kerem Z, Makkar HP, Becker K. The biological action of saponins inanimal systems: a review. British journal of nutrition.200288:587-605.
    232.Friedl R, Moeslinger T, Kopp B, Spieckermann PG. Stimulation of nitric oxidesynthesis by the aqueous extract of Panax ginseng root in RAW264.7cells. Britishjournal of pharmacology.2001134:1663-1670.
    233.Luo Y, Qin Z, Hong Z, Zhang X, Ding D, Fu J-H, Zhang W-D, Chen J.Astragaloside IVprotects against ischemic brain injury in a murine model oftransient focal ischemia. Neuroscience letters.2004363:218-223.
    234.Newman SG. A Review of the Use of Non Specific Immune-Stimulants toReduce the Impact of the WSSV.1999.
    235.Raa J. The use of immune-stimulants in fish and shellfish feeds. Avances enNutrición Acuícola V Memorias del V Simposium Internacional de NutriciónAcuícola.200019:22.
    236.张海娟.五种植物的化学成分及其生物活性研究:山东大学;2007.
    237.Harikrishnan R, Kim MC, Kim JS, Balasundaram C, Heo MS. Probiotics andherbal mixtures enhance the growth, blood constituents, and nonspecific immuneresponse in Paralichthys olivaceus against Streptococcus parauberis. Fish ShellfishImmunol.201131:310-7.
    238.Zhang Q, Ma H, Mai K, Zhang W, Liufu Z, Xu W. Interaction of dietaryBacillus subtilis and fructooligosaccharide on the growth performance, non-specificimmunity of sea cucumber, Apostichopus japonicus. Fish Shellfish Immunol.201029:204-11.
    239.Peraza-Gó mez V, Luna-González A, Campa-Córdova áI, López-Meyer M,Fierro-Coronado JA, álvarez-Ruiz P. Probiotic microorganisms and antiviral plantsreduce mortality and prevalence of WSSV in shrimp (Litopenaeus vannamei)cultured under laboratory conditions. Aquaculture Research.200940:1481-1489.
    240.Kam NWS, Liu Z, Dai H. Carbon nanotubes as intracellular transporters forproteins and DNA: an investigation of the uptake mechanism and pathway.Angewandte Chemie.2006118:591-595.
    241.Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients fornanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine.20084:183-200.
    242.Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients fornanomedicines: I. Pharmaceutical properties. Nanomedicine.20084:173-82.
    243.Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled,localized drug delivery. Advanced drug delivery reviews.201062:83-99.
    244.Blaise C, Gagne F, Ferard J, Eullaffroy P. Ecotoxicity of selected nano‐materials to aquatic organisms. Environmental toxicology.200823:591-598.
    245.Mouchet F, Landois P, Flahaut E, Pinelli E, Gauthier L. Assessment of thepotential in vivo ecotoxicity of double-walled carbon nanotubes (DWNTs) in water,using the amphibian Ambystoma mexicanum. Nanotoxicology.20071:149-156.
    246.Cheng J, Flahaut E, Cheng SH. Effect of carbon nanotubes on developingzebrafish (Danio rerio) embryos. Environmental Toxicology and Chemistry.200726:708-716.
    247.Mwangi JN, Wang N, Ingersoll CG, Hardesty DK, Brunson EL, Li H, Deng B.Toxicity of carbon nanotubes to freshwater aquatic invertebrates. Environ ToxicolChem.201231:1823-30.
    248.Liu Y, Kong M, Feng C, Yang KK, Li Y, Su J, Cheng XJ, Park HJ, Chen XG.Biocompatibility, cellular uptake and biodistribution of the polymeric amphiphilicnanoparticles as oral drug carriers. Colloids and Surfaces B: Biointerfaces.2013103:345-353.
    249.Ogawa S, Decker EA, McClements DJ. Production and characterization of O/Wemulsions containing droplets stabilized by lecithin-chitosan-pectin mutilayeredmembranes. Journal of agricultural and food chemistry.200452:3595-3600.
    250.Avadi MR, Sadeghi AMM, Mohammadpour N, Abedin S, Atyabi F, DinarvandR, Rafiee-Tehrani M. Preparation and characterization of insulin nanoparticles usingchitosan and Arabic gum with ionic gelation method. Nanomedicine:Nanotechnology, Biology and Medicine.20106:58-63.
    251.Morales MA, de Souza Rodrigues EC, de Amorim AS, Soares JM, Galembeck F.Size selected synthesis of magnetite nanoparticles in chitosan matrix. AppliedSurface Science.2013275:71-74.
    252.Peter M, Binulal N, Soumya S, Nair S, Furuike T, Tamura H, Jayakumar R.Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminatedchitosan matrix for tissue engineering applications. Carbohydrate Polymers.201079:284-289.
    253.Hirano S. Chitin and chitosan as novel biotechnological materials. PolymerInternational.199948:732-734.
    254.Carre o-Gómez B, Duncan R. Evaluation of the biological properties of solublechitosan and chitosan microspheres. International Journal of Pharmaceutics.1997148:231-240.
    255.Roy K, Mao H-Q, Huang S-K, Leong KW. Oral gene delivery withchitosan–DNA nanoparticles generates immunologic protection in a murine model ofpeanut allergy. Nature medicine.19995:387-391.
    256.Ilium L. Chitosan and its use as a pharmaceutical excipient. Pharmaceuticalresearch.199815:1326-1331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700