中亚热带森林土壤呼吸对水分的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤呼吸是全球碳循环中的一个重要环节,其对全球碳平衡的影响是近年来人们关注的焦点之一。在全球变化的背景下,世界降水分布将发生改变,土壤呼吸也将随之变化,这将对全球的碳循环产生深远的影响。由降雨时间分布不均引发的土壤干湿交替现象是一个重要的生态学过程,但一直没受到重视。为探讨森林土壤呼吸与水分的关系及土壤呼吸对水分的响应机制,我们于2002年1月在福建三明莘口对格氏栲天然林、格氏栲人工林和杉木人工林土壤呼吸、土壤湿度及相关环境因子进行了较为系统研究,同时在室内对野外观测到的干湿交替现象进行模拟。研究结果如下:
     (1) 野外土壤总呼吸、矿质土壤层呼吸和枯枝落叶层呼吸均与湿度呈线性相关关系,以土壤总呼吸与土壤湿度的相关性最高。不同林分中以格氏栲大然林土壤呼吸与土壤湿度的相关性最高。当土壤温度低于12℃时,土壤呼吸速率较低,此时土壤温度是土壤呼吸的制约因素,与土壤湿度相关性较差:当<12℃土壤温度<23℃时,土壤呼吸随土壤温度和土壤湿度的增加而增大:当土壤温度高于23℃时,土壤呼吸随温度的升高而下降,对土壤湿度的响应敏感。当NF、CK和CF土壤湿度分别低于15.39%,14.91%和17.01%时,土壤湿度则成为土壤呼吸的主要因素,此时土壤呼吸与土壤温度相关性较差。
     (2) 通过室外定位观测持续干旱后天然降雨及室内模拟不同温度(10℃、19℃和28℃)下的格氏栲天然林、格氏栲人工林和杉木人工林土壤增湿后呼吸动态,发现室外定位观测和室内模拟试验均出现了增湿后土壤呼吸骤升至最大值及随后逐渐衰减的现象,且这种变化可由时间过程模型(R=ate~(-bt)+c)较好地进行拟合。温度升高提升了土壤呼吸对干湿交替的响应值RV。格氏栲天然林土壤呼吸对干湿交替的响应对温度最为敏感,随温度升高其响应指数RE增加:杉木人工林土壤呼吸对干湿交替的响应指数RE最高,且对土壤水分变化最敏感,但随温度升高超过一定限度后其响应指数RE反而降低。
     (3) 在2003年持续干旱状况下向采伐迹地注水后土壤湿度和土壤呼吸速率急剧增加,随后逐渐下降。土壤呼吸和土壤湿度对注水的响应均可用R=a·t·e~(-b·t)+c较好的拟合。随着注水量的增加,土壤湿度达到最大值所需时间逐渐增加(分别为0.52,0.75,2.56,2.63,2.7天),土壤含水量下降也趋向缓慢。在6个处理中,土壤呼吸最大值、最大值出现时间(t_(max))、响应值(RV)和响应值数(RE)
    
    均存在显著差异(p<0.05),其中75mm的土壤呼吸最大值、Rv和RE最大。
    土壤呼吸速率和土壤湿度间的关系相当离散(:2二0.5357),表明了土壤湿度与土
    壤呼吸相互关系的复杂性。
    (4)在室内设置了6个土壤含水量梯度进行干湿交替模拟试验(风干土,15%,30
     %,35%,40%和45%),发现室内与野外土壤呼吸对干湿交替的响应有相似的
     趋势。随着土壤含水址的增加,土壤释放CO:激增的持续时间延长。通过处理
     后时间、土壤含水量和土壤类型三因素方差分析和处理后时间、土坡湿度双因
     素方差分析,发现土壤湿度对土壤呼吸干湿交替有显著影响。格氏拷人工林土
     壤呼吸的最大值、RV值和响应指数既以含水量40%的处理最大(290.52 mg
     CoZ·g一’5011·d一’,757.50 mg eoZ·g”501一d一,,10.76),而杉木人工林矿质土壤呼吸
     的最大值、Rv值和响应指数RE以含水量35%的处理最大(282.43 mg coZ·g一’
     5011·d”,922.84 mg eoZ·g一’5051·d一’,12.53),二者均接近它们的田间持水率。相
     对于格氏拷矿质土壤呼吸最大值出现时间,杉木的有明显的滞后现象。矿质十
     壤增湿后土壤呼吸速率比干土高7.44~13.76倍。
    (5)与矿质土壤呼吸对干湿交替的响应相似,加水刺激了6个含水量梯度的枯枝落
     叶呼吸。各水处理间响应值Rv、响应指数RE和最大值均有显著差异(P<0.05),
     卿以杉木未分解枯枝落叶3.0倍处理的最大(一90一55 mg eoZ·g一,litter·d一’),RE
     最大值以格氏拷未分解枯枝落叶1.3倍处理的最大(820.44),最大值以格氏拷
     半分解枯枝落叶3.5倍处理的最大(364.60 mg eoZ·g-,一stter·d一’),而最大值出现
     时间差别不大。格氏拷未分解枯枝落叶、半分解枯枝落叶、杉木未分解枯枝落
     叶和半分解枯枝落叶增湿后,最大值分别出现在3.0,3.5,3.0,3.5倍的处理中,
     分别是对照的13.46,19.49,巧.51,16.54倍,所处含水量均与它们的最大持水
     率接近(分别为200%,266%,206%,259%)。枯枝落叶增湿后比风干枯枝落
     叶呼吸的高出5.26~1 8.49倍。
    (6)室内模拟不同pH值的酸雨对土壤呼吸均产生抑制作用。随着pH值的降低,土
     壤呼吸速率逐渐降低,抑制指数HE逐渐增大。各PH值处理间土壤呼吸存在显著
     差异(p     eoZ·g一’501一d一‘),对照(无eo:蒸馏水)的呼吸速率最高(302.23一305.88 mg
     c仇.g’’5011·d一,)。不同pH值的酸雨处理后,格氏拷土壤呼吸迅速下降,而杉
     木土壤呼吸在处理后的第二天则稍微增加,然后再下降。格氏拷矿质土壤呼?
Soil CO2 efflux in terrestrial ecosystems is an important consideration in the studies of the global carbon cycle, which contribution to the global carbon budget has been the focus of wide concern. Soil respiration is also crucial for figuring out the "missing sink" of carbon. It is absolutely necessary for terrestrial ecosystem soil respiration study to probe into the role of terrestrial ecosystem in source-sink and missing sink about carbon cycle. With global change, worldwide water distribution will alter greatly, and then soil respiration will change significantly, which will in turn impact on global carbon cycle. Although CO2 efflux plays a critical role in carbon exchange between the biosphere and atmosphere, our understanding of its regulation by soil moisture is rather limited. Drying and wetting cycles in forest soils caused by imbalance of precipitation time distribution is an important process, yet have not received much attention, partly due to methodological limitations for nondestructive monito
    ring of the soil water content. This phenomenon is familiar in surface soils, yet the mechanisms responsible for producing the CO2 pulse have not been positively identified. The objective of this study was to determine the correlation between forest soil respiration and soil moisture and the mechanism of soil respiration response to moisture. From Jan. 2002, soil respiration, soil moisture, soil temperature and other related environmental factors were studied in a natural forest of Castanopsis kawakamii (NF) and adjacent monoculture plantations of C. kawakamii (CK) and Chinese fir (Cimninghamia lanceolata, CF) in Sanming Nature Reserve, Fujian. In addition, a series of examinations were designed to simulate drying and wetting cycles in field and laboratory. The results were showed as follows:
    (1) The soil respiration in NF, CK and CF showed distinct seasonal dynamics in the field. Soil respiration was highest in July and lowest in January. The order of soil respiration rate in three stands was NF>CK>CF. Similar to soil respiration dynamics, soil moisture showed pronounced fluctuation. The correlations between total soil respiration, mineral soil respiration, litter respiration and moisture were all linear. Among three stands, the correlation between soil respiration and soil moisture was highest for the NF. Soil respiration was lower when soil temperature below 12C, and soil temperature was limiting factor and independent of soil moisture. When soil temperature was in the range of 12C~23C, soil respiration rate increased with increasing soil moisture and soil temperature. Once soil temperature over 23C, soil respiration declined with increasing soil temperature. When soil moisture under 15.39%, 14.91% and 17.01% in NF, CK and CF respectively, soil respiration rate was low and soil moisture became
     limiting
    
    
    
    factor, so in this case soil respiration independent of soil temperature.
    (2) The effect of soil rewetting on soil respiration was determined in field for NF, CK, and CF and in laboratory at different temperature of 10C, 19C and 28 C with soil rewetting. The research both in the field and the laboratory, showed an increase of soil respiration and a subsequent decline after reaching a maximum following soil rewetting. This process can be simulated with a time model: R=a t e-b t+c. Higher temperature can increase the response value (E). The response of soil respiration to soil rewetting showed the highest sensitive to temperature in NF, the higher response efficiency with higher temperature. Soil respiration in CF had the highest response efficiency and the highest sensitive to soil water content, but temperature has a negative effect on its response efficiency. It was concluded that the positive effect of soil respiration following soil rewetting could contribute to a ignorable part of total soil CO2 efflux on annual basis, because there are high frequency of rain events in the local area.
    (3) This study was designed to examine the relationship between soil CO2 efflux and soil moisture in a clear-
引文
[1] Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263: 185-190
    [2] Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle. Biogeochemistry, 2000, 48:7~20
    [3] Raich J W, Tufekcioglu A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 2000, 48:71~90
    [4] Irvine J, Law B E. Contrasting soil respiration in young and old-growth ponderosa pine forests. Global change boil,, 2002, 8(12): 1183~1193
    [5] Raich J W and Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 1992, 44B: 81~99
    [6] Risk D, Lisa K, Hugo B. Carbon dioxide in soil profiles: Production and temperature dependence. Geophys. Res. Lette. , 2002, 29(6): 1~4
    [7] Certini G, Corti G, Agnelli A, et al. Carbon dioxide efflux and concentrations in two soils under temperate forests. Biol. Fertil. Soils, 2003, 37: 39~46
    [8] Buchmann N. Biotic and abiotic factors controlling soil respiration rates in Pica abies stands. Soil Biol. Biochem., 2000, 32: 1625~1635
    [9] Davidson B A, Belk E and Boone R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperature mixed hardwood forest. Global Change Biol., 1998, 4: 217~227
    [10] Davidson E A, Verchot L V, Cattanio J H, et al. Special Issue. Controls on soil respiration: implications for climate change. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 2000, 48(1): 53~69
    [11] Mielnick P C and Dugas W A. Soil CO_2 flux in a tallgrass prairie. Soil BioL Biochern., 2000, 32: 221~228
    [12] Maier C A, Kress L W. Soil CO_2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability. Canadian Journal of Forest Research, 2000, 30(3): 347~359
    [13] O'Neill K P, Kasischke E S and Richter D D. Environmental controls on soil CO_2 flux following fire in black spruce, white spruce, and aspen stands of interior Alaska. Can. J. For. Res., 2002, 32(9): 1525~1541
    [14] Casals P, Romanya J, Cortina J, et al. CO_2 efflux from a Mediterranean semi-arid forest soil. Ⅰ. Seasonality and effects of stoniness. Biogeochernistry, 2000, 48: 261~281
    [15] Fierer N. Schimel J P, A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry Soil, Soil Sci Soc Am J. 2003,67: 798~805.
    [16] Borken W, Davidson E A, Savage K., et al. Drying and wetting effects on carbon dioxide release from organic horizons. Soil Sci Soc Am J. 2003 67: 1888~1896.
    
    
    [17] Houghton, J T, Jenkins G J, Ephraums J J, Climate change: The IPCC scientific assessments. Cambridge University Press. 1990.
    [18] Billings W D. Carbon balance of Alaskan tundra and taiga ecosystems: past, present and future. Quaternary Science Reviews, 1987,6:165~177.
    [19] Rochette P, Desjardins R L and Pattey E. Spatial and temporal variability of soil respiration in agricultural fields. Can. J. For. Sci., 1991, 71: 189~196
    [20] Liu X Z, Wan S Q, Su B. Hui D F, Luo Y Q. Response of soil CO_2 efflux to water manipulation in a tallgrass prairie ecosystem. Plant and Soil, 2002, 240:213~223
    [21] 林鹏,丘喜昭.三明瓦坑格氏栲林的研究.植物生态学与地植物学学报,1986,10(4):241~252.
    [22] 杨玉盛,何宗明,邹双全.格氏栲天然林与人工林根际土壤微生物及其生化特性差异的研究.生态学报,1998,18(2):198~202.
    [23] Pettenkofer, M Ueber den Kolensuregehalt der Grundluft im Gerllboden von München in verschiedenen Zeiten Z. 1873, Biol.7.
    [24] 董树亭,高产麦田土壤呼吸及对群体光合作用的影响,山东农业大学学报:自然科学版.1990,21(4).-47~52
    [25] 李桂芳,王义甫,发酵肥与秸杆还田对土壤呼吸,固氮与反硝化作用的影响,微生物学杂志.1996,16(2):14~18
    [26] 杨青,吕宪国,三江平原湿地生态系统土壤呼吸动态变化的初探,土壤通报,1999,30(6):254~256
    [27] 王立刚,邱建军,等,黄淮海平原地区夏玉米农田土壤呼吸的动态研究,土壤肥料.2002,6:13~17
    [28] 王娓,宋日等,东北松嫩草原碱茅群落的土壤呼吸同枯枝落叶分解释入CO_2贡献量研究,草业学报.2002,11(2):45~50
    [29] 李凌浩,韩兴国等,锡林河流域一个羊草群落中土壤呼吸与生物量之间的相关性分析,Acta Botanica Sinica(植物学报:英文版)2002,44(5):593~597
    [30] 陈四清,崔骁勇,周广胜等,内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO_2排放速率研究,植物学报,1999,41(6):645~650。
    [31] 崔晓勇,陈佐中,陈四清.草地土壤呼吸的研究进展.生态学报,2001,25(2):315~325.
    [32] 王风玉,周广胜,贾丙瑞 等,水热因子对退化草原羊草恢复演替群落土壤呼吸的影响,植物生态学报.2003,27(5):644~649
    [33] 陈全胜 李凌浩 等,水热条件对锡林河流域典型草原退化群落土壤呼吸的影响,植物生态学报.2003,27(2):202~209
    [34] 刘建军,王得祥,雷瑞德等,秦岭天然油松、锐齿栎林地土壤呼吸与CO_2释放,林业科学,2003,39(2):8~13
    [35] 刘绍辉,方精云,清田 信,北京山地温带森林的土壤呼吸,植物生态学报,1998,22(2):119~126.
    [36] 刘绍辉,方精云,土壤呼吸的影响因素及全球尺度下温度的影响,生态学报,1997,17(5):469~476.
    [37] 蒋高明,黄银晓,北京山区辽东栎林土壤释放CO_2的模拟实验研究,生态学报,1997,17(5):477~482
    
    
    [38] 黄承才,葛滢,常杰等,中亚热带东部三种主要木本群落土壤呼吸的研究,生态学报,1999,19(3):324~328.
    [39] 王淼,姬兰柱,李秋荣等,土壤温度和土壤湿度对长白山不同森林类型土壤呼吸的影响,应用生态学报.2003,14(8):1234~1238
    [40] 杨玉盛,董彬,谢锦升 等,森林土壤呼吸及其对全球变化的响应,生态学报,2004,24(3),583~591.
    [41] 杨玉盛,陈光水,董彬 等,格氏栲天然林和人工林土壤呼吸对干湿交替的响应,生态学报,2004(b),待发表
    [42] 杨玉盛,董彬,谢锦升 等,林木根呼吸及测定方法进展,植物生态学报,2004(c),待发表
    [43] Gupta R.,Singh J S, Soil respiration in a tropical grassland. Soil Biol. Bioohem., 1981, 13: 261~268.
    [44] Kursar T A. Elevation of soil respiration and soil CO_2 concentration in a low land moist forest in Panama. Plant and Soil, 1989, 113: 21~29.
    [45] Cavelier J, Peula M C. Soil respiration in the cloud forest and dry deciduous forest of Serrania de Macuria, Colombia. Biotropica. 1990, 22(4): 346~352.
    [46] Bouma T J, Bryla D R. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO_2 concentrations. Plant Soil, 2000, 227(1-2): 215~221.
    [47] Franzluebbers A J, Haney R L, Honeycutt C W, et al. Flush of carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Sci. Soc. Am. J. 2000, 64: 613~623.
    [48] Medina E, Zetwer M. Soil respiration in tropical plant communities. In: Golley, P. M. & F. B. Golley. eds. Proceedings of the second international symposium of tropical ecology, Athens, Georgia, University of Georgia Press, Athens, Georgia., 1972,245~269.
    [49] Holt J A, Hodgen M J, Lamb D. Soil respiration in the seasonally dry tropics near Townsville, North Queensland. Australian Journal of Soil Research, 1990, 28(5): 737~745.
    [50] Stevenson I L. Some observations on the microbial activity in remoistened air-dryed soils. Plant Soil. 1957, 8: 170~182.
    [51] Funke B R, Harris J Q. Early respiratory responses of soil treated by heat or drying. Plant Soil. 1968, 28: 38~48.
    [52] Doran J W, Mienlke I N, Power J F, Microbial activity as regulated by soil water-filled pore space. In: Transactions of the 14th International Congress of soil science, Kyoto, Japan, August 1990.International Society of Soil Science, Kyoto, Japan. 1991, 94~99.
    [53] Franzluebbers A J, Haney R L, Hons F M, et al.. Determination of soil microbial biomass and nitrogen mineralization following rewetting of dried soil. SoilSci. Soc. Am. J. 1996, 60:1133~1139.
    [54] Orchard V A and Cook F J. Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry, 1983, 22:153~160
    [55] Singh J S, Gupta S R, Plant decomposition and soil respiration in terrestrial ecosystems. Bot. Rev., 1997,43:449~528.
    [56] Mitsoulov N, Jubilee Scientific Conference "50 years of the Institute for Soil Science in Bulgaria".
    
    Session Ⅲ- "Problems of soil fertility and sustainable agriculture". Pochvoznanie,-Agrokhimiya-y-Ekologiya. The influence of soil tcmpcraturc and moisture content on the intensity of soil respiration. 1998, 33: 5, 77~80
    [57] Carlyle J C, Than U B. Abiotic controls of soil respiration beneath an eighteen-year-old Pinus radiata stand in south-eastern Australia. Journal-of-Ecology (UK). 1988, 76 (3): 654~662
    [58] Fang C, Moncrieff JB. An improved dynamic chamber technique for measuring CO_2 cfflux from the surface of soil. Functional Ecology, 1996,10:297~305.
    [59] Simmons J A, Fernandez J I, Briggs R D, et al. Forest floor carbon pools and fluxes along a regional climate gradient in Maine, USA. Forest Ecology and Management, 1996, 84: 81~95.
    [60] Gdenrs A I. Soil respiration fluxes measured along a hydrological gradient in a Norway spruce stand in south Sweden(Skogaby). Plant and Soil, 2000, 221: 273~280.
    [61] Thuille A, Buchmann N, Schulzc E D, Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy. Tree Phydioligy,2000, 20: 849~857.
    [63] Brook G A, FolkoffM E, Box E O. A world model of soil carbon dioxide, Earth Surface Process and Landforms. 1983. 8: 79~88.
    [64] Kucera C, Kirkham D. Soil respiration studies in tall grass prairie in Missouri. Ecology, 1971, 52: 912~915
    [65] Schlentner R E, Van Clevc K, Relationships between CO_2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Can. J. For. Res. 1985,15: 97~106
    [66] Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils. Global Biogeochem. Cycles, 1995, 9: 23~36.
    [67] Kcith H, Jacobsen K L, Raison R J. Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus panciflora forest. Plant Soil, 1997, 190(1): 127~141.
    [68] Hudgens E, Yavitt J B. Land-use effects on soil methane and carbon dioxide fluxes in forests near Ithaca, New York. Ecosci., 1997, 4: 214~222.
    [69] Oberauer S F, Gillcspic C T, Cheng W, et al. Enviromental effects on CO_2 cfflux from riparian tundra in the northern foothills of the Brooks Range, Alaska, U. S. A. Oecologia, 1992, 92:568~577.
    [70] Rout S K, Gupta S R. Soil respiration in relation to abiotic factors, forest floor litter, root biomass and litter quality in forest ecosystems of Siwaliks in northern India. Acta Oecol./Oecol. Plant. ,1989, 10: 229~244.
    [71] Raich J W. Abovcground productivity and soil respiration in three Hawaiian rain forests. For. Ecol. Manage., 1998, 107(1-3): 309~318.
    [73] Mattson K G, Smith H C. Detrital organic matter and soil CO_2efflux in forests regeneration from cutting in West Virginia. Soil Biol. Biochem., 1993,25(9): 1241~1248.
    [74] Steudler P A, Feigl B J, Melillo J M, et al. Annual patterns of soil CO_2 emissions from Brazilian forests and pastures. Biogeochemistry, 2000,49:523~531.
    
    
    [75] Borken, W., Y. J. Xu, E. A. Davidson, and F. Beese. 2002b. Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Global Change Biol. 8: 1205-1216.
    [76] Gallardo A, Schlesinger W H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biol. Biochem. 1994, 26: 1409~1415.
    [77] Harding R B, Jokela E J. Long-term effects of forest fertilization on site organic matter and nutrients. Soil Sci. Soc. Amer. J.. 1994, 58: 216~221.
    [78] Hall, A J, Connor D J, Whitfield D M. Root respiration during grain filling in sunflower: the effects of water stress. Plant and Soil. 1990, 121: 27~66.
    [79] Edwards N T, Sollins P. Continuous measurement of carbon dioxide evolution from partitioned forest floor components. Ecology, 1973, 54: 406~412
    [80] Verma S B, Kim J, Clement R J. Momentum, water vapor, and carbon dioxide exchange ata centrally located prairie site during FIFE. Journal of Geophysical Research, 1992, 97(18): 18629~18639.
    [81] Fang C, Moncrieff J B, Gholz H L, et al. Soil.CO_2 efflux and its variation in Florida slash pine plantation. Plant and Soil, 1998, 205: 135~146.
    [82] Burton A J, Pregitzer K S. Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine. Tree Physiol., 2003, 23: 273~280.
    [83] Rey A, Pegoraro E, Tedeschi V, et al. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy, Global Change Biol., 2002, 8(9): 851~866.
    [84] Qi Y, Xu M. Separating the effects of moisture and temperature on soil CO_2 efflux in a coniferous forest in the Sierra Nevada mountains, Plant Soil, 2001,237(1): 15~23.
    [85] Fierer N, Schimel J P, Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol. Biochem. 2002, 34:777~787.
    [86] O'Connel A M. Microbial decomposition (respiration) of litter in eucalypt forests of south-western Australia: an empirical model based on laboratory incubations. Soil Bio. Biochem. 1900, 22: 153~160.
    [87] Wildung R E, Garland T R, Buschbom R L, The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biol. Biochem. 1975, 7: 373~378
    [88] Howard D M, Howard P J A, Relationships between CO_2 evolution, moisture content and temperature for a range of soil types. Soil Biol. Biochem., 1993, 25: 1537~1546
    [89] Hanson P J, Wullschleger S D, Bohlman S A, et al. Seasonal and topographic patterns of forest floor CO_2 efflux from an upland oak forest. Tree Physiology,1993,13:1~15
    [90] Oberbauer S F, Gillespie C T, Cheng W, et al. Environmental effects on CO_2 efflux from riparian tundra in the northern foothills of the Brooks Range, Alaska, U.S.A. Oecologia, 1992,92:568~577
    [91] Coleman D C, Mark D H, Hutton J, et al. Soil respiration from four aggrading forested watersheds measured over a quarter century. For. Ecol. Manage., 2002,157:247~253.
    [92] MacCracken M., Cubsch U, Gates W L, et al. A critical appraisal of model simulation. In: M. E.
    
    Schlesinger ed. Greenhouse gas induced climatic change: A critical appraisal of simulation and observations, Elsevier, Amsterdam. 1991. 583~591.
    [93] Lieth H, Ouellette R, Studies on the vegetation of the Gaspé peninsula Ⅱ. The soil respiration of some plant communities. Canadian Journal of Botany, 1962,40:127~140
    [94] 中华人民共和国林业部科技司.林业标准汇编(三)[S].北京:林业出版社,1991.
    [95] 鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999,231~231.
    [96] 樊后保,森林降水酸度及电导率的时空变化。植物生态学报,2000,24(4):463~467。
    [97] Dursun S, Ineson P, Frankland J C, et al. Sulphite and pH effects on CO_2evolution from decomposing angiospermous and coniferous three leaf litters. Soil BioL Biochem. 1993, 25(11): 1513~1525.
    [98] 杨平,杜宝华.国外土壤二氧化碳释放问题的研究动态.中国农业气象,1996,17(1):48~50
    [99] Johnson D W, Walker R F and Ball J T. Lessons from lysimeters, soil N release from disturbance compromises controlled environment study. Ecol. Appl., 1995, 5: 395~400
    [100] Degens B P, Spading G P. Repeated wet-dry cycles do not accelerate the mineralization of organic C involved in the macro-aggregation of a loam soil. Plant Soil. 1995, 175: 197~203.
    [101] Lund, C P, Riley E J, Pierce L L, et al. The effects of chamber pressurization on soil-surface CO_2flux and the implications for NEE measurements under elevated CO_2. Global Change Biology, 1999, 5: 269~91.
    [102] Pietikinen J, Vaijarvi E, Ilvesniemi H, Fritze H, et al. Carbon storage of microbes ad roots and the flux of CO_2 across a moisture gradient. Can. J. For. Res. 1999, 29: 1197~1203.
    [103] Schnürer J, Clarholm M, Bostrm S, et al. Effects of moisture on soil microorganisms and nematodes, a field experiment. Microb. Ecol. 1986,12: 217~230.
    [104] Gli'nski J, Stepniewski W. 1985 Soil aeration and its role for plants. CRC Press Inc. Boca Raton, Florida.
    [105] Grace J, Rayment M. Respiration in the balance. Nature, 2000, 404: 819-820.
    [106] Schulze E D, Wirth C, Heimann M. Managing forests after Kyoto. Science,2000, 289: 2058~2059.
    [107] Valentini R, Matteucci G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests. Nature, 2000, 404: 861~865.
    [108] Leiros M C, Trasr C C, Gil S F. Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biol. Biochem. 1999, 31: 327~335.
    [109] Norman J N, Garcia R, Verma S B. Soil CO_2 fluxes and the carbon budget of a grassland. Journal Geophysical Research, 1992, 97(17): 8845~18853.
    [110] Hanson P J, O'Neill E G, Chambers M L S., et al. 2003. Soil respiration and litter decomposition. In P. J. Hanson and S.D.Wullschleger (ed) North American temperate deciduous forest responses to changing precipitation regimes. Ecological Studies 166. Springer, New York.
    [111] Smith W H. Air pollution and forests interaction between air contaminonts and forest ecosystems. New York, Springer-Verlag, 1981,178~191.
    [112] 陶福禄,冯宗炜.我国南方生态系统的酸沉降临界负荷。中国环境科学,1999,19(1):14~17。
    
    
    [113] Alewell C, Bredemeier M.ls acidification still an ecological threat? Nature, 2000,85: 856~857.
    [114] Chen G S, Yang Y S et al. Soil biological activities and seasonal changed in natural and monoculture plant forest of Castanopsis kawakarnii in subtropical China.2004, (In press)
    [115] Persson T, Lundkvist H, Wiren A, et al. Effects of acidification and liming on carbon and nitrogen mineralization and soil organisms in mor humus. Water, Air Soil Poilu., 1989, 45: 77~96.
    [116] Sitaula B K, Bakken L R, Abrahamsen G. N-fertilization and soil acidification effects on N_2O and CO_2 emission from temperature pine forest soil. Soil Biol. Biochera. ,1995, 27(11): 1401~1408.
    [117] Sursun S, Ineson P, Frankland J C, et al. Sulphite and pH effects on CO_2 evolution from decomposing angiospermous and coniferous tree leaf litters. Soil Biol. Biochem., 1993, 25(11): 1513~1525.
    [118] 冯宗炜,酸雨对生态系统的影响—西南地区酸雨研究,中国科学技术出版社,1993,109~117。
    [119] Francis D, Hengeveld H. Extreme weather and climate change. Climate Change Digest, Atmospheric Environment Service, Minister of Supply and Services Canada, Climate and Water Products Division, Downsview, On. 1998, Catalogue No. En57-27/1998-01E
    [120] Stewart R. Possible effects of climatic change on estimated crop yields in Canada: A review. Proceedings of an international symposium/workshop on climate change: Implications for water and ecological resources, Department of Geography Publication Series No. 11, University of Waterloo, Ontario 1990, 275~283
    [121] Smit B. Implications of climatic change for agriculture in Ontario. Climate Change Digest, Atmospheric Environment Service, Canadian Program Office, Canadian Climate Centre, Downsview, On. 1987, Catalogue No. EN57-27/1987-01
    [122] Bunnell F, Tait D E N..Mathematical simulation models of decomposition processes. P. 1974,207~225. In A.J. Holding et al.(ed.) Soil organisms and decomposition in tundra. Tundra Biome Steering Committee, Stockholm, Sweden.
    [123] Skopp J, Jawson M D, Doran J W, Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J., 1990,54:1619~1625.
    [124] van Gestel M., Ladd J N, Amato M. Carbon and nitrogen mineralization from two soils of contrasting texture and microaggregate stability: Influence of sequential fumigation, drying and storage. Soil Biol. Biochera. 1991,23:373~378.
    [125] Rosacker L L, Kieff T L. Biomass and adenylate energy charge of a grassland soil respiration in agricultural fields. Canadian Journal of Soil Science, 1990, 71: 189~196.
    [126] Bottner P. Response of microbial biomass to alternate moist and dry conditions in a soil incubated with ~(14)C-and ~(15)N-labeled plant material. Soil Biol. Biochem. 1985, 17: 329~337
    [127] Anderson J M, Ineson P., A soil microcosm system and its application and nutrient leaching. Soil Biol. Biochem. 1982,14:415~416
    [128] Black C A .1968 Soil Plant Relationships.2nd Ed.,Wiley, New York.
    [129] Glinski J, Stepniewski W 1985 Soil Aeration and its Role for Plants. CRC Press, Boca Raton. Florida.
    [130] Lundquist E J, Jackson L E, Scow K M. Wet-dry cycles affect dissolved organic carbon in two
    
    California agricultural soils. Soil Biol. Biochem., 1999, 31: 1031~1038.
    [131] Lin D M, Doran J W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. d., 1984, 48:1267~1272.
    [132] Doran J W, Mielk I N, Power J F. Microbial activity as regulated by soil water-filled pore space. In: Ecology of soil microorganisms in the microhabitat environments Transactions of the 14th Int. Congress of soil Science. 1991,Symposium Ⅲ-3:94~99.
    [133] Papendick R I, Campbell G S. theory and measurement of water potential. In: Parr, J. F, W. R. Gardner, & L. F. Elliot. Eds. Water potential relations in soil Microbiology. 1981,Soil Science Society of America Special Publications Number 9. Madison, WI, U. S. A. 1~22.
    [134] Edwards N T, Effects of temperature and moisture on carbon dioxide evolution from partitioned forest floor. Soil Sci.Am.Proc. 1975,39: 361~365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700