机电设备的效率优化方法及其优化控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在国民经济的众多领域,存在大量的机电设备,只要需要用多台设备来共同完成一件任务,就存在一个系统的整体能耗最低问题,也就是系统的整体效率优化问题。
     随着节能形式的日益严峻和环保工作的日益发展,这一问题变得越来越重要。
     当前,人们对各种系统的优化研究已经广泛开展,但是,1)较普遍意义上的机电设备的优化理论还没有统一的结论;2)很多系统的模型难于建立,所以目标函数的优化过程很难进行;3)很多被广泛采用的经典控制方法,如用于恒值控制的PID调节方法,由于方法本身就没有考虑能耗最小化问题,所以也就不可能自然而然地实现满足工艺条件下的最低能耗运行,但是人们在很多领域又没有发现最优的控制方法,所以也就不可避免的存在能量浪费,即使是象南水北调这样的世界级工程,其机电设备的节能优化问题依然没有解决。
     本文的目的是寻找机电设备的优化控制方法和优化切换方法,主要内容如下:
     1)分析各种机电设备的能量表达式,例如势能、动能、电能、热能、磁能等,所用的机电设备不同,系统的总功耗表达方式也不同,本文给出机电设备组成系统的能耗标准化形式及整体效率函数;
     2)由于很多系统的动态模型和静态模型都难以准确地建立,所以不论是静态优化还是动态优化工作就难以准确进行,难以给出准确的优化问题的解;本文依靠机电设备效率函数的形状,而不依赖于系统的准确模型,固定总负荷量,并假设每台参与工作的设备负荷率大于零,给出并证明了机电设备组成系统的最优调节方法和最优运行台数,变化总负荷量,给出最优切换方法及最优切换点,从而将机电设备的动态优化和静态优化合而为一;
     3)针对调速水泵和调速风机,给出了一种优化控制方法和一种优化切换方法,并给出最小电耗值,对于由相同水泵或风机并联组成的系统,其最优控制方法是保持各台运行设备的负荷率相等;
     4)针对定速水泵和定速风机,给出了一种优化控制方法和一种优化切换方法,给出最小电耗值,对于由相同水泵或风机并联组成的系统,其最优控制方法是保持各台运行设备的负荷率相等;
     5)针对由多台相同电动机驱动的高速列车和输送机械等系统,对于固定的总转矩,得出最优的控制方法,其最优控制方法是保持各台运行设备的负荷率相等,对于变化的总转矩,得出最优的切换方法。
     6)针对水泵风机系统存在的控制稳定性问题,利用水泵风机的相似定理,推导出稳定控制的判别方法和稳定控制方法。
     本文最重要的结论是提出了机电设备组成系统的优化调节方法和优化切换方法,其证明方法是基于:
     1)效率函数可以近似地看作是过原点的非负的凹函数;
     2)固定总负荷量,假设每台参与工作的机电设备负荷率大于零,推导出各台运行设备的最优负荷分配控制方法;
     3)改变总负荷量,以单位负荷的能耗为目标函数,推导出最优切换方法和最优切换点,总负荷增加时,确定出n和n+1台运行设备的最佳切换点,总负荷减小时,确定出n和n-1台运行设备的最佳切换点。
In various fields of national economy, there are a lot of mechanical and electrical equipment,there exists a minimum energy consumption method to complete the same task, that is theoptimizaition of the overall efficiency of the system.
     With the development of the energy-saving and environmental protection, this issue becomesincreasingly important.
     At present, the research about optimization of various machine are widely carried out.However, the optimization theory of the mechanical and electrical equipment in the commonsense there is no uniform conclusion. Another problem is that many typical control methods arenot the best, like PID. Although this method has been used around the world, but it is notoptimal.This control way doesn’t consider the total power factor, so it can not realize theminimum power consumption. We can say that, at present, there still haven’t optimal controlmethods which can accurately control energy-saving effect in many fields. Even in the South toNorth Water Transfer Project of China, which is the largest water project in the world, is noexception.The same problems exist in many areas.
     The purpose of this paper is to find out the optimal control method and optimal switchmethod for mechanical and electrical equipment.
     The main content of this paper is as follows:
     1) Analysis of the forms of energy, potential energy, kinetic energy, electricity, heat andmagnetic energy and so on, the expression of the system's total power consumption is indifferent ways for different mechanical and electrical equipment. This paper presents a standardenergy consumption function and an overall efficiency for mechanical and electricalequipments;
     2)Since it is difficult for the dynamic model and static model of many systems to beaccurately established, it is difficult to give accurate solution of optimization; only dependingon the shape of the efficiency function of electrical and mechanical equipment, the staticoptimization method is given and proved, it does not depend on the exact model of the system,and the optimical switching method is given also, it combines the dynamic optimization andstatic optimization into one method;
     3) This paper presents a kind of optimal control method and a kind of optimal switchingmethod for variable-speed pumping (or fan) stations with similar parallel pumps (or fan), andgives the minimum total power consumption. The optimal control method is to keep the same load for each pump or fan.
     4) A kind of optimal control method and a kind of optimal switching method for constant-speed pumping (or fan) stations with similar parallel pumps (or fan) is given, and gives theminimum total power consumption. The optimal control method is to keep the same load foreach pump or fan.
     5) This paper presents a kind of optimal control method and a kind of optimal switch methodfor a high speed train or a conveyor witch is driven by several motors, and gives the minimumpower consumption. The optimal control method is given for the fixed total torque, the optimalcontrol method is to keep the same torque for each motor, and the optimal switch method isgiven for the changing total torque.
     6) After the application of frequency converter, the speed of pump or fan can be adjusted, theinherent characteristics of some centrifugal pumps or fans imply instability. Based on thesimilitude law of centrifugal pumps, the stability criterion and control method of centrifugalpumps and fans is given.
     The most important conclusion of this paper is to propose the optimal control method and theoptimal switching method, the proof is based on:
     1) The efficiency function can be considered approximately a concave non-negative functionthrough the origin;
     2) Each load of all running equipments is greater than zero, and the total load is constant, thestatic optimal control method is given.
     3) Consider a load capacity per unit power of common system as an objective function, andthe total load is variable, the dynamic optimal switching method is given.The total laodincreases, we decide the switch point of optimal from n to n+1, when the total load c decreases,we decide the switch point of optimal from n to n-1.
引文
[1]李传江,马广富编著,最优控制,北京:科学出版社,2011.
    [2]张香云主编,线性规划,杭州:浙江大学出版社,2009.
    [3] M.Avriel, Nonlinear Programming analysis and methods,Prentice-Hall,1976.
    [4]张忠桢,二次规划,武汉:武汉大学出版社,2006.
    [5] Stephen Boyd, Lieven Vandenberghe, Convex Optimization[M]. New York: CAMBRIDGEUNIVERSITY PRESS,2009.
    [6]樊映川等编,高等数学讲义[M].上海:人民教育出版社,1979.
    [7]中国矿业学院数学教研室编,数学手册[M].北京:科学出版社,1980.
    [8]李桂成编著,计算方法[M].北京:电子工业出版社,2005.
    [9] Schm it L A.[A]. In: Proceedings of the2nd conference on Electronic Computation[C].York:American Society of Civil Engineers,1960.105-222
    [10]夏人伟,工程数值优化方法研究进展,航空学报,2000,12(6),p488-491.
    [11]何坚勇,最优化方法,北京:清华大学出版社,2007.
    [12]吴沧浦,最优控制的理论与方法,北京:国防工业出版社,2000.
    [13] Kirk D E,Optimal Control Theory:An Introduction,New York:Dover Publications.
    [14]钱伟长,变分法及有限元[M].北京:科学出版社,1980.
    [15] Leitmann G, The Calculus of Variations and Optimal Control, New York: Springer.
    [16]艾利斯哥尔兹,变分法,北京:人民教育出版社,1958.
    [17]黄平,孟永钢,最优化理论与方法,北京:清华大学出版社,2009.
    [18]秦寿康,张正方编,最优控制,北京:电子工业出版社,1984.
    [19]李国勇,最优控制理论与应用,北京:国防工业出版社,2008.
    [20]王晓陵,陆军,最优化方法与最优控制,哈尔滨:哈尔滨工程大学出版社,2007.
    [21] Beyer H G,Evolutionary algorithms in noisy environments:Theoretical issues and guidelines forpractice[J],Computer Methods in Applied Mechanics and Engineering,2000,186(2-4):239-267.
    [22]王凌,郑大钟,随机优化问题一类基于假设检验的模拟退火算法[J],控制与决策,2004,19(2):183-186
    [23] Bellman R.E.,Dynamic Programming,Princeton University Press,New Jersey,1957
    [24]庞特里雅金等,最优过程的数学理论,上海:上海科学技术出版社,1965.
    [25] Kalman R.E.,Contributions to the Theory of Optimal Control,Bol. Soc. Mat. Mex.,1960,5:pp102-119.
    [26]阮小娥,万百五,递阶稳态优化下非线性大工业过程的迭代学习控制,2001中国控制与决策学术年会论文集,2001-5,西安,pp28-32.
    [27] Salazar L M,Rowe J E,Partcle swarm optimization and fitness sharing to solve multi-objectiveoptimization problems,Congress on Evolutionary Computation,2005,(2):1204-1211
    [28] Jia-chen Gu, Bai-wu Wan, Steady State Hierarchical Optimizing Control for Large-scale IndustrialProcesses with Fuzzy Parameters. IEEE Trans. Systems-Man-Cybernetics, Part C,2001.31(3): pp1-9.
    [29]钱积新,赵均,徐祖华,预测控制,北京:化学工业出版社,2007
    [30] John H. Holland, Adaptation in Natural and Artificial Systems, The MIT Press,1992.
    [31]陈国良等编著,遗传算法及其应用,北京:人民邮电出版社,2001.
    [32]孙虎儿,基于神经网络的优化设计及应用,北京:国防工业出版社,2006
    [33]胡毓达,多目标最优化方法,上海交通大学学报,1981,3:137-147
    [34]冯英浚,多目标最优化问题的Fuzzy解,科学通报,1081,17:1028-1031
    [35]方述诚,模糊数学与模糊优化,北京:科学出版社,1997.
    [36]编辑委员会.实用机电节能技术手册.北京:机械工业出版社,1996.
    [37]姚福来,张艳芳等编著.水泵变频调速的节电量计算与系统设计[M].北京:科学出版社,1998.
    [38]周希章等编,节电技术与方法.北京:机械工业出版社,2004.
    [39]胡景生主编,变压器能效与节电技术.北京:机械工业出版社,2007.
    [40]周胜,赵凯主编,电机系统节能实用指南.北京:机械工业出版社,2009.
    [41]姚福来,张艳芳等编著.电气节能控制方法与实践[M].北京:中国电力出版社,2008.
    [42]余龙海主编,电动机能效与节电技术.北京:机械工业出版社,2008.
    [43] Chatree H,Sastri T,Adaptive forecasting of hourly municipal water consumption[J],J of Water ResourcePlanning and Managenent,1944,120(6):pp888-905
    [44] Thomas Walski,Development of water resources planning and management[J],J of Water ResourcePlanning and Managenent,2001,126(4):pp203-205
    [45] Pezeshk S,Heiweg O J,Oliver K E,Optimal operation of ground-water supply distribution system[J],Jof Water Resource Planning and Managenent,1994,120(5):pp573-586
    [46] Ormsbee L,Lansey K,Optimal control of water supply pumping system[J],J of Water ResourcePlanning and Managenent,1994,120(2):pp237-253
    [47] Cohen G,Optimal control of water supply networks[A].Optimization and control of DynamicOperational Research Models[C],North Holland:Cliff Press,1992,pp128-138
    [48]张承慧,夏东伟,李红斌,李少远,城市水工业系统泵站优化调度问题建模方法研究,控制与决策,2004,19(5):582-588
    [49] Mircevsk,S.A.,Kostic,Z.A.,and Andonov,Z.LJ.,Energy Saving with Pumps AC Adjustable SpeedDrives,IEEE1998,pp1224-1227
    [50] Stadler. H., Energy Saving by Means of Electrical Drives,3rdInternational Conference on EnergyEfficiency in Motor Driven Systems, September2002.
    [51] Khaled M.Fetyan, M.A. Younes, M.A. Hetal and Mohab M.Hallouda, Energy saving of adjustablespeed pump stations, Eleventh International Water Technology Conference,2007, SharmEl-Sheikh,Egypt.
    [52] El-Sayed Y M,Evans R B,Thermoeconomics and the design of heat systems[J],Journal of Engineeringfor Power,1970,92(1):27-35
    [53] Frangopoulos C A,Methods of energy systems optimization[C],Optimization of Energy Systems andProcesses,Gliwice, Poland,2003
    [54] Valero A, Serra L,Lozano M A,Structural theory of thermoeconomics[C],International Symposium onThermodynamics and Design,Analysis and Improvement of Energy Systems,NewOrleans,LA,USA,1993:PP189-198
    [55] Gogus Y A,Thermoeconomic optimization[J],International Journal of EnergyReserach,2005,29(7):559-580
    [56] Silveira J L,Tuna C E,Thermoeconomics analysis method for optimization of combined heat and powersystem-Part I[J],Progress in Energy and Combustion Science,2003,29(6):479-485
    [57]熊杰,张超,赵海波,郑楚光,基于热经济学结构理论的电站热力系统全局优化,中国电机工程学报,2007,27(26):pp65-71
    [58]付萍,姚丽欣,李小珂,董泽,循环流化床锅炉床温系统控制特性分析及参数优化,华北电力大学学报,2005,32(5):89-91.
    [59] Mamandur K R C,Chenoweth R D,Optimal control of reactive power flow for improvements
    [60] in voltage profiles for real power loss minimization[J],IEEE Trans.on PAS,1981,100(7):3185-3196
    [61]颜伟,孙渝江,罗春雷等,基于专家经验的进化规则方法及其在无功优化中的应用[J],中国电机工程学报,2003,23(7):76-80
    [62] Lee K Y,Optimal reactive power planning using evolutionary programming,evolutionarystrategy,genetic algorithm and linear programming[J],IEEE Transactions on PowerSystem,1998,13(1):101-108
    [63] Das D B,Patvardhan C,Reactive power dispatch with a hybrid stochastic search technique[J],Int. J.Eletr Power&Energy Syst,2002,24(9):731-736.
    [64]赵波,曹一家,电力系统无功优化的多智能体例子群优化算法,中国电机工程学报,2005,25(5):1-7.
    [65] Abido M A, Optimal power flow using particle swarm optimization[J],Electrical Power and EnergySystem,2002,24:563-571.
    [66] Chen L,Sun F,Advances in finite time thermodynamics analysis and optimization[M],NewYork:Nova.Science Publishers,2004
    [67] Durmayaz A,Sogut O S,Sahin B,et al,Optimization of thermal systems based on finite-timethermodynamics and thermoeconomics[J],Progress Energy&Combustion Science,2004,30(2):175-217
    [68]王文华,陈林根,孙丰瑞,实际闭式中冷回热燃气轮机循环的效率优化,中国电机工程学报,2006,26(1):12-15
    [69]李从信,刘贤梅,陈淼鑫,大型注水系统的优化运行,石油学报,2001,22(6):69-72
    [70]张承慧,马永庆,钟麦英,刘红波,程兆林,离心式注水泵站变频调速系统效率优化控制,控制与决策,2003,18(6):744-750
    [71] Xue Dun-song,The energy-saving technology of water-injection systems in domestic and abroad oilfiled[J],Energy Convervaion of Oilfiled,1998,9(1):7-11
    [72] Spiegel R J,Turnerb M W,Mccormick V E,Fuzzy-logic-based controllers for efficiency optimization ofinverter-fed induction motor drives[J],Fuzzy Sets and Systems,2003,137(3):387-401
    [73] Kim G S,Ha I j,Ko M S,Control of induction motors for both high dynamic performance and highpower efficiency[J],IEEE Trans. Ind. Eletron.,1992,39(2):323-333
    [74]崔纳新,张承慧,孙丰涛,异步电动机的效率优化快速相应控制研究,中国电机工程学报,2005,25(11):118-123
    [75] Gribble J J,Kjaer P C,Miller T J E,Optimal commutation in average torque control of switchedreluctance motors[J],IEE Proc. Electronic.Power Application,1999,146(1):2-10
    [76]张立伟,温旭辉,郑琼林,异步电机用混合式模糊搜索效率优化控制研究,中国电机工程学报,2007,27(27):
    [77] Kusko A,Galler D,Control means for minimization of losses in ac and dc motor drives[J]IEEE Trans.IA,1983,19(4):561-570
    [78] Abrahamsen F, Blaabjerg F, On the energy optimized control of standard and high-efficiency inductionmotors in CT and HVAC application[J],IEEE Trans IA.,1998,34(4):822-831.
    [79]张飞舟,晏磊,范跃祖,孙先仿,智能交通系统中的运营车辆优化调度研究,北京航空航天大学学报,2002,28(6):707-710
    [80]陈恩红,刘贵全,蔡庆生,基于遗传算法的Job-Shop的调度问题求解方法[J],软件学报,1998,9(2):139-143
    [81]蔡延光,钱积新,孙优贤,智能运输调度系统的设计与实现[J],决策与决策系统支持,1996,6(4):108-114
    [82] Guly B,Demet O,A tube search algorithm for vehicle routing problem[J],Computer&OperationResearch,1999,26(3)255-270
    [83]姚福来,用于调速器的水泵风机运行效率控制方法,中华人民共和国专利局,专利号:ZL02159869.X.
    [84]姚福来,用于工业控制器和组态软件的水泵风机运行效率控制方法,中华人民共和国专利局,专利号:ZL03103247.8.
    [85]姚福来,控制调速器的水泵风机运行效率控制装置,中华人民共和国专利局,专利号:ZL03103255.9.
    [86]姚福来.变频供水系统设计和运行时应注意的稳定性问题[J].电气传动,2002,32(5):59-61.
    [87]姚福来.用优化控制实现泵站节能量化运行[J].河北省科学院学报,2006,23:97-99.
    [88]姚福来.供水系统效率计算的研究[J].控制工程,2003,10(6):561-563.
    [89]姚福来.按目标电耗设计泵站[J].灌溉排水学报,2003,22:121-122.
    [90]姚福来.用目标电耗技术定量确定泵站的节电潜力[J].变频器世界,2002,11:56-59.
    [91]姚福来.如何确定大型调水工程的目标电耗[J].中国水利,2003,2:99-100.
    [92]姚福来.确定大型输水工程目标电耗的重要性[J].水利水电科技进展,2003,23(5):56-57.
    [93]姚福来.泵站节能标准建立的必要性和可行性[J].排灌机械,2004,22(6):37-39.
    [94]姚福来.瑞安江南水厂改造调速泵站实现节能最大化[J].节能,2006,25(2):32-34.
    [95]姚福来.调速供水领域存在的误区[J].电工技术杂志,2003,2:40-42.
    [96]姚福来.泵站节能指标的科学确定[J].能源工程,2002,6:33-36.
    [97]姚福来.大型泵站电能浪费的症结与对策[J].泵站技术,2005,4:35-38.
    [98]姚福来,张艳芳等编著.电气自动化工程师速成教程[M].北京:机械工业出版社,2007.
    [99] Holland J H. Genetic algorithm[J].Scientific Ameerican,1992,4:44
    [100] Kirkpartick,Gelatt C D,Vecchi M P,Optimization by simulated annealing[J],Science,1983,220:671
    [101]樊叔维,张兴志,全局优化算法.自适应模拟退火-遗传算法的研究[J],光学精密工程,1998,4:16-21
    [102]顾元宪,项宝卫,赵国忠,一种改进的连续变量全局优化模拟退火算法,系统工程理论与实践,2005,4:103-109
    [103]王凌,郑大钟,随机优化问题一类基于假设检验的模拟退火算法,控制与决策,2004,19(2):183-186
    [104]邬莉娜,汪雄海,基于自适应遗传算法的机泵群效率优化控制,浙江大学学报:工学版,2008,11:1910-1914.
    [105]曾喆昭,神经网络优化方法及其在信息处理中的应用研究[D],湖南大学,2008.
    [106]张余岳,化工过程模拟与在线优化[D],浙江大学,1998.
    [107]王晓鹏,遗传算法及其在气动优化设计中的应用研究[D],西北工业大学,2000.
    [108]陈泯融,基于极值动力学的优化方法及其应用研究[D],上海交通大学,2008.
    [109]赵波,群集智能计算和多智能体技术及其在电力系统优化运行中的应用研究[D],浙江大学,2005.
    [110]钱仲焱,复杂结构协同优化理论、方法及技术的研究[D],浙江大学,2001
    [111]宋平岗,变速风力发电系统变流与优化控制研究[D],西南交通大学,2007.
    [112]邓世光,高压变频器在江西万年青水泥厂风机节能改造中的应用,变频器世界,2011,6:86-88.
    [113]李建军,高压变频器在600MW机组增压风机上的应用,变频器世界,2011,4:79-80.
    [114]谢红军,李璟,一托二变频调速技术及其在凝结水泵中的应用,变频器世界,2011,3:84-86.
    [115]贺永冰,节能减排评价方法在火电厂凝结水泵变频改造中的应用,电力技术,2010,7:27-29.
    [116]李生民,变频恒压供水系统新型控制方法,变频器世界,2009,7:34-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700