“植筋式”抗浮岩石锚杆研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高层建筑的增多和埋深的增加,地下建筑物的抗浮问题也就越来越突出。目前在工程实践中采取的抗浮方法主要有配重法、降截排水法、抗浮桩和抗浮锚杆四种,这四种方法中,抗浮锚杆由于造价低、工期短、结构稳定和安全性高等优点,在工程实际中得到了广泛的应用,但是由于抗浮锚杆存在长度过长,而且无法在动水压力注浆等缺点,使其工程应用领域受到较大局限。本文主要提出了一种处理地下水浮力的新型抗浮锚杆——“植筋式”抗浮岩石锚杆,是将植筋技术与抗浮锚杆技术相结合,可以有效的解决抗浮锚杆的上述问题,具有钻孔较浅、施工简便、成孔容易,造价低廉,工期较短,建筑材料消耗量低等优点,具有很好的发展潜力。
     本论文在分析研究抗浮锚杆的抗拔机理的基础上,将植筋技术引入抗浮锚杆中,对其工作机理、锚固剂的配制、施工工艺等方面进行了系统的研究,具体工作如下:
     (1)对“植筋式”抗浮岩石锚杆工作机理、锚杆与岩土体的应力传递模型进行了理论研究与推导,建立了影响锚杆锚固力的力学模型,系统分析了锚杆杆体材质、长度、锚固深度、锚杆布置形式、锚固剂、杆体粗糙度和锚杆安装工艺等因素对锚杆锚固力的影响。
     (2)在分析无机锚固剂研究现状及特点的基础上,研发了适用于岩石抗浮锚杆的锚固材料,并就锚固材料的性能进行了现场试验、室内模型试验,与抗浮桩及有机胶植筋施工实例进行了对比分析,获得了锚杆抗拔力与养护期、锚固深度、锚固剂等影响因素的关系。
     (3)应用FLAC3D(Fast Lagrange Analysis of Continua,连续介质快速拉格朗日分析程序)软件探讨了“植筋式”抗浮岩石锚杆的工作原理,建立了相应的计算模型,分析了单根锚杆和多根锚杆不同的工作机理,并对多种不同工况下的计算结果进行对比分析研究。
     (4)研究了“植筋式”抗浮锚杆的现场施工工艺及技术方法,并通过一个采用“植筋式”抗浮岩石锚杆的工程实例来说明其在抗浮基础施工中的应用,并与其他抗浮措施进行对比分析,证明应用该工法具有较好的经济和社会效益。
With the number and depth of foundation of high-rises increasing, the anti-floatability of underground structuress becomes more and more prominent. Nowadays, four kinds of anti-floating methods applied in practical projects are basically weight-matching, water-draining with stake-cutting, anti-floating stake and anti-floating bolt. Among them, anti-floating bolt is widely used for its advantage of low-cost, short construction time, steady structure and high safety performance. However, as anti-floating bolt is too long and grouting is difficult under the pressure of flowing water, its applicatin in projects is rather limted The paper chiefly poses a new type of anti-floating bolt ----“planting-bar”anti-floating rock bolt to deal with groundwater buoyancy. It conbines the technology of planting-bar with that of anti-floating bolt, and can solve effectively the problems with anti-floating bolt mentioned above. Meanwhile, with the advantage of shallow borehole, construction convenience, ease of pore-forming, low-cost, short construction time and low consumption in building materials, it has greater potential for development.
     The paper makes a detailed ananysis and study of the pullout resistance mechanism of anti-floating bolt. Based on the analysis, the paper introduces planting-bar technology and gives a systematic description of its working mechanism, concoction of anchorage substance, construction techniques and so on. The detailed studies are as follows.
     (1) Carry out theoretical study and derivation of the working mechanism of“plant-bar”anti-floating rock bolt and stress transmission mode between anchor bolt and ground, and formulate mechanical model of anchoring ability that affects anchor bolt. Analyze systematiclly the effect that such factors can have on the anchoring capacity of anchor bolt as bolt material, bolt length, anchoring depth, bolt layout, anchorage substance, bolt roughness, installation techniques of anchor bolt, and so on,
     (2) On the basis of analyzing the present studies and features of inorganic anchorage substance, develop the anchoring material applied in anti-floating rock bolt and carry out on-the-spot and indoor modeling experiments on the performance of anchoring materials. By comparison with anti-floating stake and organic glue planting-bar construction, establish the relationship between pullout resistance capacity and influencing factors like maintenance time, anchoring depth and anchorage substance.
     (3) In terms of numerical calculation, apply FLAC(Fast Lagrange Analysis of Continua) numberical simulation calculation to the study of working mechanism of“plant-bar”anti-floating rock bolt, and formulate corresponding calculation models. Analyze the differenct working mechanisms between single bolt and multiple anchor bolts, and make a comparative study of the calculation results in various working conditions.
     (4) Make a study of the field construction techniques and technology of“planting-bar”anti-floating bolt, and take the project using“plant-bar”anti-floating rock bolt as an exmple to illustrate its application in anti-floating elementary construction and make a comparison with other anti-floating measures to show its substantial economic and social benefits.
引文
[1]中国岩土锚固工作协会.岩土锚固工程技术[M].北京:人民交通出版社, 1998.
    [2]吴斌.地下结构物抗浮设计初探[D].华南理工大学硕士学位论文.广州:华南理工大学, 2003.
    [3]催岩,吴世红.地铁车站采用锚杆抗浮的分析.岩土锚固工程技术[M].人民交通出版社, 1998.
    [4]中华人民共和国住房和城乡建设部. JGJ94-2008,建筑桩基技术规范.北京:中国建筑工业出版社, 2008-8-1.
    [5]杨文秀.植筋技术在土木工程中的应用[J].甘肃科技, 2007, 23(5): 167-168, 238.
    [6]刘益强.植筋在建筑工程中的应用[J].淮南职业技术学院学报, 2004, 4(4): 110-112.
    [7]于泓等.岩石锚杆基础应用及效益分析[J].电力建设, 2007,28(4): 34-35.
    [8]谭孟云,宋晓萍.抗浮岩石锚杆在某工程中的施工实践[J].中国勘察设计, 2005, 11: 47-48.
    [9]张超.浅议岩石锚杆基础的设计[j].湖南水利水电, 2007, 3: 24-27.
    [10]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术.煤炭工业出版社, 1998, 18.
    [11]魏新江,张世民,危伟.全长粘结式锚杆抗拔力计算公式的探讨.岩土工程学报, 2006, 28(7): 902-906.
    [12]尤春安.全长粘结式锚杆受力分析[J].岩石力学与工程学报. 2000, 19(3):339-341.
    [13]朱焕春,荣冠,肖明等, .张拉荷载下全长粘结锚杆工作机理试验研究[J].岩石力学与工程学报, 2002, 21(3): 379-384
    [14] SL212-98水工预应力锚固设计规范[S].北京:中国水利水电出版社.1998, 212-98
    [15]郑全明.拉力型土锚最优长度及最大极限承载力的确定[J].西部探矿工程,2000, 63(2): 27–28.
    [16]程良奎.中国岩土锚固技术的应用与发展[M].北京:万国学术出版社, 1996.
    [17]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社, 1998.
    [18]赵长海.预应力锚固技术.北京:中国水利水电出版社, 2001.
    [19]李粮纲等.基础工程施工技术[M].中国地质大学出版社, 2001, 5: 235.
    [20]彭振斌.锚固工程设计计算与施工[M].中国地质大学出版社, 1997.
    [21]陈秋南,王祥秋.抗浮锚杆和钢筋混凝土联合加固地下室地板[J].建筑技术开发, 2001
    [22]徐春国.地下室上浮开裂事故的坚定与加固处理[J].建筑结构,2002, 11
    [23]许仁朝等.注浆技术在治理漂浮地下工程中的应用[J].水文地质工程地质, 1998
    [24]张在明等.地下水赋存状态与渗流特征对基础抗浮的影响[J].土木工程学报, 2001, 34(1)
    [25] Phillips S H E. Factors affecting the design of anchorages in rock[R]. London: Cementation Research Ltd, 1970.
    [26] Fujita K, et al. A method to predict the load-displacement relationship of ground anchors[A]. Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering[C],Tokyo: The Japanese Society of Soil Mechanics and Foundation Engineering, 1997: 58-62.
    [27]程良奎等.岩土锚固[M].北京:中国建筑工业出版社, 2003, 1(1).
    [28]张在明.地下水与建筑基础工程[M].北京:中国建筑工业出版社, 2001.
    [29]北京市建筑设计标准化办公室.北京地区建筑地基基础勘察设计规范, J11254-2008,北京, 2008
    [30]首都规划建设委员会办公室.地下铁道设计规范, GB50157-2003,北京:中国计划出版社2003-07.
    [31]铁道部第三勘测设计院.铁路桥涵设计基本规范, TB 10002. 1-99,北京:中国铁道出版社2000.
    [32]《岩土工程手册》编写委员会.岩土工程手册[M].北京:中国建筑工业出版社, 1994
    [33]杨瑞清等.地下建筑结构设计和施工设防水位的选定与抗浮验算的探讨.深圳市地质学会, 2001学术年会论文集, 2002.
    [34] Evangelista, Sapio G. Behaviour of ground anchors in stiff clays [A]. Proceeding of the 9th International Conference on Soil Mechanics and Foundation Engineering [C]. Tokyo: The Japanese Society of Soil Mechanics and Foundation Engineering, 1977, 39-47
    [35] Ostermayer H, Scheele F. Research on ground anchors in non-cohesive soils [A]. Proceeding of the 9th International Conference on Soil Mechanics and Foundation Engineering [C]. Tokyo: The Japanese Society of Soil Mechanics and Foundation Engineering, 1977, 92-97
    [36] Fujita K, et a1. A method to predict the load-displacement relationship of ground anchors [A]. Proceeding of the 9th International Conference on Soil Mechanics and Foundation Engineering [C]. Tokyo: The Japanese Society of Soil Mechanics and Foundation Engineering, 1977, 58-62
    [37] Phillips S H E. Factors affecting the design of anchorages in rock [R]. London: Cementation Research Ltd, 1970.
    [38]王建宁.按共同变形原理计算地锚工程中黏结型锚头内力[A].岩土锚固工程新技术[M].北京:人民交通出版社, 1998. 52-63.
    [39]张季如,唐保付.锚杆荷载传递机理分析的双曲线函数模型[J].岩土工程学报, 2002, 24(2): 188-192.
    [40]陈棠茵,王贤能.抗浮锚杆应力-应变状态的线弹性理论分析[J].岩土力学, 2006, 27(11): 2033-2037.
    [41]魏新江,张世民,危伟.全长粘结式锚杆抗拔力计算公式的探讨[J].岩土工程学报, 2006, 28(7): 902-905.
    [42] LUTZ L, GERGELEY P. Mechanics of band and slip of deformed bars in concrete [J]. Journal of American Concrete Institute, 1967, 64(11): 711-721.
    [43] HANSOR N W. Influence of surface roughness of prestressing strand on band performance [J]. Journal of Prestressed Concrete Institute, 1969, 14(1): 32-45.
    [44] GOTO Y. Cracks formed in concrete around deformed tension bars [J]. Journal of American Concrete Institute, 1971, 68(4): 244-251.
    [45]贾金青,宋二祥.滨海大型地下工程抗浮锚杆的设计与试验研究[J].岩土工程学报, 2002, 24(6): 769-771.
    [46]候卫红,王景春,王锡朝.华信商厦深基坑锚杆试验研究[J].岩石力学与工程学报, 2005, 24(S2): 5418-5422
    [47]曾国机.土层抗浮锚杆受力机理研究分析[D].重庆:重庆大学硕士学位论文, 2004.
    [48]谢曙.抗浮锚杆与高层建筑地下室底板共同作用的有限元分析与优化设计[D].广州:华南理工大学硕士学位论文, 2005.
    [49]董晔等.国内外岩石锚杆设计之比较[J].地质与资源, 2001, 4(10): 235-237.
    [50]中华人民共和国建设部.中华人民共和国国家标准.建筑地基基础设计规范. GB50007-2002.
    [51]中国工程建设标准化协会标准.岩土锚杆(索)技术规程, CECS 22: 2005
    [52]中华人民共和国行业标准.混凝土结构后锚固技术规程, JGJ 145-2004
    [53]陈宗严,王绍基.岩层和土体的锚固技术[M].冶金部建筑研究总院施工技术情报研究室.
    [54]郭宪义,张晓萍.垂直抗浮锚杆施工工艺的工程探索[J].建筑技术, 2007, 38(3): 204-206.
    [55]陈根全.锚杆桩的抗拔试验[J].工程勘察, 1997(2)
    [56]韩定华,沈吉英.构筑物基础锚杆工程的施工[J].江苏水利, 2005, 4: 29-31.
    [57]李士均.抗浮锚杆基础施工及质量保证措施[J].建筑技术, 2005, 36(8): 621-622.
    [58]于清军.酒仙桥污水处理长工程沉淀池抗浮锚杆施工技术[J].市政技术, 2001, 1: 20-28
    [59]宋修军,唐永杰,杜红.青岛大剧院工程不同地质条件下抗浮锚杆的施工方法[J].青岛理工大学学报, 2006, 27(6): 54-56.
    [60]陈棠茵,王贤能.抗浮锚杆应力-应变状态的线弹性理论分析[J].岩土力学, 2006,27(11): 2033-2036
    [61] Evangelista A, Sapin G. Behavior of ground anchor in stiff clays[A]. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering[C],Tokyo: The Japanese Society of Soil Mechanics and Foundation Engineering, 1997: 39-47.
    [62]荣冠等.螺纹钢与圆钢锚杆工作机理对比试验研究[J].岩石力学与工程学报, 2004, 23(3): 469-475.
    [63] Seed H B, Reese L C. The action of soft clay along friction piles, Transactions, ASCE, 1957, 122: 731-764.
    [64]佐藤悟.基桩承载力机理[J].土木技术. 1965, 20(1): 1-5.
    [65] Colye H M, Reese L C. Load Transfer for Axially Loaded Piles in Clay [J]. Journal of the Soil Mechanics and Foundations Engineering, ASCE, 1996, 92(2): 1-26.
    [66]曹汉志.桩的轴向荷载传递及荷载沉降曲线的数值计算方法[J].岩土工程学报, 1986, 8(6): 37-49
    [67]朱训国.地下工程中注浆岩石锚杆锚固机理研究.大连理工大学博士学位论文, 2006: 21-24
    [68]岩石力学学会.锚固与注浆手册[M].北京:电力出版社, 1999: 35-178.
    [69]程良奎.岩土锚固的现状与发展[J] .土木工程学报, 2001, 34 (3): 7213.
    [70]王文臣.钻孔冲洗与注浆[M].北京:冶金工业出版社, 1996: 143-144.
    [71]梁乃兴,陈忠明.注浆用水泥浆体性能研究[J].建筑材料学报, 2000, 3(3): 275—278.
    [72]陈友治.调凝型外加剂对水泥凝结硬化性能的影响[J].武汉理工大学学报, 2003, 25(4): 24—26.
    [73]阜新煤矿学院. .煤矿掘进技术译文—锚杆支护[M].北京:煤炭工业出版社, 1976.
    [74]西罔哲.有关锚杆及垫板作用效果的试验[J].隧道译丛, 1989, 10: 55-62
    [75]程良奎,刘启琛.岩土锚固工程技术的应用与发展—国际岩土锚固技术研讨会论文集[C]. .北京:万国学术出版社, 1996, 260-264.
    [76]伊克良,徐华斌,娄延春.浅议全长粘结型岩石锚杆的锚固深度.有色金属设计, 2004 , 31(3): 41-42
    [77]许化彬.水泥基无机粘结材料植筋粘结锚固性能研究[D].郑州大学, 2006.
    [78]马青华,龚高平,朱生宾.无机粘接剂的性能及其在舰船上的应用探讨[J].中国修船, 2003(1): 15-17.
    [79]刘成伦,徐锋.胶粘剂的研究进展[J].表面技术. 2004, 33(4): 1-3.
    [80]徐峰.改性硅酸盐无机胶粘剂的制备及性能研究[D].重庆大学, 2005.
    [81]申鑫.水泥基粘结剂植筋锚固受力性能分析[J], 2006, 15(5): 58-60.
    [82]张林绪,张兴虎.耐热植筋胶实验研究及其应用[J].应用科技, 2006, 33(7): 1-3.
    [83] R. A. Cook, G. T. Doerr, R. E.Klingner. Bond stressmodel for design of adhesive an-chor[J]. ACI Structural Journa, 1993, 90(5): 514-524.
    [84]高天宝,史文利,杨树标等.混凝土无机料植筋拉拔试验研究[J].河北建筑科技学院学报(自然科学版), 2005, 22(1): 36-38, 53.
    [85]史晋荣,熊余怀.水下岩石锚杆基础应用实例[J].科技情报开发与经济, 2007, 17(21): 251-252
    [86]侯天江.一种成胶时间可控的无机凝胶调剖体系的研究及应用[J].江汉石油学院学报, 2004, 26(3): 117-118.
    [87]郝建英.新型岩土无机胶粘剂及其抗压强度性能研究[D].昆明理工大学, 2003.
    [88]史晋荣,熊余怀.水下岩石锚杆基础应用实例[J].科技情报开发与经济, 2007, 17(21): 251-252.
    [89]沈珠江.理论土力学[M]北京:中国水利水电出版社, 2000.
    [90] Lutz L. Gergeley. M, Mechanics of band and slip of deformed bars in concrete , Journal of American Concrete Institute , 1967,64(11):711-721
    [91] Hansor N.W.,Influence of surface roughness of prestressing strand on band Performance,Journal of prestressed Concrete Institute,1969,14(1):32-45
    [92] Goto Y.,Craeks formed in concrete around deformed tension bars,Journal of American Concrete Institute,1971,68(4):244-251
    [93]张乐文、汪捻,岩土锚固理论研究之现状岩土力学,2000,23(5):627--631.
    [94]张发明,岩质边坡预应力锚固效应及应用研究,南京:河海大学博士学位论文,2000
    [95] Fuller PG.,Cox R H T. Mechanics load transfer from steel tendons of cement based grouted[A〕,Fifth Australasian Conference on the Mechanics of Structures and Materials,Melboume: Australasian Institute of Mining and Metallurgy, 1995
    [96] Evangelista A,Sapio G..,Behaviour of ground anchors in stiff clays[A] Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering[C],Tokyo: The Japanese Society of Soil Mechanics Foundation Engineering,1977,39-47
    [97]高永涛、吴顺川、孙金海,预应力锚杆锚固段应力分布规律及应用,北京科技大学学报,2002,24(4):387--390
    [98]张季如、唐保付,,锚杆荷载传递机理分析的双曲函数模型[A],岩土工程学报,2002, 24(2):188一192
    [99] A. Kilic、E.Yasar、A.G. Celik,Effect of grout properties on the pull-out load capacity of fully grouted rock bolt,Tunnelling Underground Space Technology,17(2002),355-362
    [100] A. Kilic、E.Yasar、C.D. Atis,Effect of bar shape on the pull-out load capacity of fully grouted rock bolt,Tunnelling Underground Space Technology,18(2002),1-6
    [101]朱焕春、荣冠、肖明等,张拉荷载下全长粘结式锚杆工作机理试验研究[J]岩石力学与工程学报,2002,21(3),379-384

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700