浅海水声定位技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水声定位技术在军事和海洋科学领域都有广泛的应用,它在保障国家的国防安全和国民经济建设的顺利进行中起着重要作用。基于测时的长基线水声定位系统由于定位精度高、范围广的特点是常用的定位方法之一。根据不同的工作方式可以选取不同的定位数学模型,包括球定位数学模型、双曲线定位数学模型等。无论选用哪种定位数学模型,目标与水听器之间的斜距都是通过传播时间与声速的乘积获得,通过求解非线性方程组进行目标位置估计。目前普遍采用经验声速的方法获得声速值,它适用于声速剖面变化不大、海底与海平面对声传播的作用可以忽略的深海海域或者短距离定位的情况。浅海海域由于自身的特点对声传播影响很大,浅海两点的声速值由于不同的到达结构而不同。为了提高测距和水声定位精度,本文选取浅海海域两点间的声速,研究了浅海水声定位技术及应用问题。
     众所周知,浅海水声定位主要包括两个方面:一是声场建模,二是定位算法研究。声场建模是水声定位的基础,而射线理论是常用的一种模型。浅海海域由于复杂性、多途性等特点使得声线传播非常复杂,目前基于声线跨度的射线理论声场模型具有精度低并且本征声线搜索不全的缺点。本文在研究浅海声线传播的基础上应用有穷状态自动机理论对浅海声场进行建模,声线传播严格遵循Snell定律。基于有穷状态自动机的浅海声场模型克服了其他模型难以处理反转点处和反射点处声线传播误差大的缺点,具有更高的计算精度。数值仿真验证了该模型的有效性和正确性。
     有效声速法根据不同的声线到达结构区分声速值,数值模拟和实验验证表明:深海有效声速法比经验声速法极大地提高了水声定位精度。本文在深海有效声速法概念的基础上发展并提出了浅海有效声速法,浅海有效声速可以根据有穷状态自动机的声场模型计算得出。为了满足水声定位实时性的要求,本文提出了浅海有效声速建表法和查表法,并通过数值模拟验证了方法的正确性。
     作为本文的另一个研究内容,本文对深度已知的准三维定位数学模型、传感器网络导致冗余信息存在等不同情况下的基于有效声速法的水声定位算法进行研究,模拟仿真得出以下结论:准三维的定位数学模型受控于深度信息,在实际应用中尽量采用三维定位数学模型;冗余信息可以提高水声定位精度。通过对定位解的模糊性、无解性及水声定位精度的几何精度因子分析,得出一些有益的结论。数值模拟结果和理论相吻合,为水声定位技术的应用提供理论依据和技术支持。
     浅海水声定位技术的研究旨在解决国家安全和国民经济建设问题,本文对此开展了深入的理论及数值研究。所做的工作能够对海洋探测与开发、海洋工程建设、海洋环境监测和水下潜艇定位提供理论和技术支持。
Underwater acoustic localization technique can be widely used in the military affairs and oceanic scientific areas, it plays an important role in warranting our country’s safety and making the construction all right. The long base line positioning system based on time measurement has a high positioning resolution and it can act on larger areas than other systems, so it is one of the most commonly used positioning systems. The mathematical positioning models depend on the way the system works and there are many mathematical models such as spherical model, hyperbolic model and so on. Whatever mathematical model it is, the slant range between the target and the hydrophones is obtained by multiplying the time measurement by the acoustic sound velocity. The estimation of the target is obtained by solving a set of nonlinear equations. By far, the acoustic sound velocity is usually considered as a constant value, which is determined by the experience. The constant empirical acoustic sound velocity is well suitable for the case where the acoustic sound velocity changes slightly with the water depth, or the ray reflection can be ignored in the deep water, or the localization area is small. In shallow water, the ray reflection on the surface and the bottom must be considered, thus the acoustic sound velocity changes seriously with different eigenray. Under the above analysis of the acoustic sound velocity, the shallow water acoustic localization technique based on shallow water acoustic sound velocity is studied in this dissertation to improve the precision of the range measurement and the localization.
     It is well known that the shallow water acoustic localization technique mainly consists of two parts: one is the establishment and computation of the acoustic model and the other one is the positioning algorithm. The establishment of the acoustic model is the basis of the localization problem and the ray tracing theory is commonly used. The ray in shallow water is very complex because of the complexity and multi-path character in shallow water. By far, the acoustic models based on the ray span have such limitation as low computational resolution, not finding all eigen-rays and so on. This dissertation does a lot of research on the ray in the shallow water and uses the finite automaton (FA) to establish the acoustic model. The ray tracing is following the Snell’s law. The acoustic model based on the FA can overcome the disadvantage stated before and has a high computational resolution. The numerical simulation verifies the validation and correctness of the proposed acoustic model.
     The effective sound velocity(ESV) varies with different eigen-rays, a common conclusion is drawn after the numerical simulation and experiment studies, that is the ESV has a higher acoustic positioning resolution than the empirical acoustic sound velocity. Based on the ESV in deep water, the ESV in shallow water is developed and brought through. The ESV in shallow water can be computed by the FA acoustic model. In order to satisfy the requirement of the real time character, the ESV in shallow water table building method and table lookup method are used and the numerical simulation studies verifies the correctness of the proposed methods.
     As another part of this dissertation, the quasi-3D mathematical positioning model with known water depth, the redundant terms in the hydrophone networks, etc., are studied. The numerical simulation draws many conclusions. The quasi-3D mathematical positioning model is dominated by the known water depth and the 3D mathematical positioning model should be used first whenever possible. The redundant terms which make the nonlinear equations be over-determined cases can get a higher positioning resolution. Some useful conclusions are obtained by analyzing the ambiguity and non-solution of nonlinear algorithm, the geometric dilution of precision (GDOP). The numerical simulation results are consistent with the theory results. These results are of significance in the application of the technique.
     The shallow water acoustic localization technique is of great importance in the country’s safety and construction affairs. Some theoretic and numerical studies have been taken and the results are helpful to discuss the oceanic detection and exploration, the ocean engineering construction, the ocean environment detection and underwater submersible vehicles localization.
引文
[1]唐劲松等.水声工程的最新进展-欧洲VDT’99观感[J].应用声学,1999,18(5).
    [2]秦臻.海洋开发与水声技术[M].海洋出版社,1998.
    [3] P.H.Milne. Underwater Acoustic Positioning Systems[M]. Houston: Gulf Publishing Company,1983.
    [4] J.A.Catipovic. Performance Limitation in Underwater Acoustic Telemetry[J]. IEEE J.Oceanic.Eng, 1990,15(3):205-216.
    [5] Frank M. Caimi. Laser Light Imaging for Underwater Use[M].Sea Technology,1993,12:22-27.
    [6] Jones R M, Riley J P, Georges T m. HARPO-A Versatile Three Dimensional Hamiltonian Ray Tracing Program for Acoustic Waves in an Ocean with Irregular Bottom[R]. NOAA Wave Propagation Laboratory Report,1986.
    [7]唐俊峰.三维声场声速剖面反演研究[D].哈尔滨工程大学硕士学位论文,2003.
    [8]李启虎.声呐信号处理引论[M].北京:海洋出版社,1985.
    [9]李启虎.水声学研究进展[J].声学学报,2001,26(4):295-301.
    [10]王昭.小基阵高精度声测被动定位的研究[D].西北工业大学博士学位论文,1999.
    [11]田坛,刘国枝,孙大军.声纳技术[M].哈尔滨:哈尔滨工程大学出版社,1999:138-141.
    [12] A.E.Vaas, Refraction of the Direct Monotonic Sound Ray[R]. Technical Memorandum322, Naval Underwater Ordnance Station, Newport, RI,1964.
    [13] L.A.Anderson. Software for Surveying Arrays of Hydrophones and Deep Ocean Transponders,Volume i: User’s Guide[R]. Technical publication TP000041A, Pacific Missile Test Center, Point Mugu, California,1987.
    [14] D.Nguyen and B.Widrow. Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights[J]. International Joint Conference on Neural Networks, 1990,3:21-26.
    [15]王燕,梁国龙.一种适用于长基线水声定位系统的声线修正方法[J].哈尔滨工程大学学报, 2002,23(5):32-34.
    [16] Vincent,H.T, Hu, S.L.J. Generalized Multivariate Error Propagation for Zero Memory Nonlinear Systems[R]. Proceddings of 8th ASCE Specialty Conference onProbabilistic Mechanics and Structural Reliability,2000.
    [17] Vincent,H.T, Hu,S.L.J. Geodetic Position Estimation of Underwater Acoustic Sensors[J]. Journal of the Acoustical Society of America,1997,12.
    [18] Vincent,H.T, Hu,S.L.J. Method and System for Determining Underwater Effective Sound Velocity[P]. United States Patent Application, U.S. Navy Case Number 78160,2000.
    [19] John L.Spiesberger. Geometry of Locating Sounds from Differences in Travel Time: Isodiachrons[J].J.Acoust.Soc.Am,2004,116(5):3168-3177.
    [20] Http://www.xinhuanet.com.
    [21]田坛,刘国枝,孙大军.声纳技术[M].哈尔滨:哈尔滨工程大学出版社,1999:1-18,63-147,192-263.
    [22]殷冬梅.无线电水声浮标阵多目标跟踪定位系统[D].哈尔滨工程大学工学博士学位论文,2003.
    [23]曹全林,关平.超短基线声定位系统[J].声学技术,1995,14(2):61-66.
    [24]生雪莉.被动式三维水声定位技术研究[D].哈尔滨工程大学硕士论文,2001:6-7.
    [25] Clay C S and Li S. Use of Arrays for Acoustic Transmission in a Noisy Ocean[J]. Review of Geophysics,1966,4(4):475-507.
    [26] Hinich M J. Maximum Likelihood Estimation of a Radiating Source in a Waveguide[J]. J.Acoust. Soc. Am, 1979,66(2):480-483.
    [27] Hinich M J. Array Design for Measuring Source Depth in a Horizontal Waveguide[J]. J. Appl. Math, 1977,32(4):800-805.
    [28] Fizell R G. Application of High-resolution Processing to Range and Depth Estimation Using Ambiguity Function Methods[J]. J.Acoust.Soc.Am, 1987,82(2):606-613.
    [29] Baggeroer A B, Kuperman W A and Schmidt H. Matched Field Processing: Source Localization in Correlated Noise as an Optimum Parameter Estimation Problem[J]. J. Acoust. Soc. Am, 1988,83(2):571-587.
    [30] Shang E C, Clay C S and Wang Y Y. Passive Harmonic Source Ranging in Waveguides by Using Mode Filter[J]. J. Acoust. Soc. Am, 1985,78(1):172-175.
    [31] I-Tai Lu. Simultaneous Characterization of Source, Array and Environment Usinga Ray Travel-time Inversion Approach[J]. J. Comp. Acoust, 1997,5(2):193-218.
    [32] I-Tai Lu. Robustness of a Ray Travel-time Inversion Approach[J]. J. Acoust. Soc. Am,1999,106(5):2442-2453.
    [33] Zhang Renhe. Broadband Matched Field Source Localization in East China Sea. ASIAEX International Symposium, Chengdu, China,2002,10.
    [34]孙枕戈.基于声线理论信道模型的匹配被动定位[D].西北工业大学博士学位论文, 1995.
    [35]沈远海.浅海声速剖面反演与匹配场定位技术研究[D].西北工业大学博士学位论文,1999.
    [36] 2003高技术发展报告.北京:科学出版社,2003:195-198.
    [37] Pekeris, C. L. Theory of Propagation of Explosive Sound in Shallow Water[R]. Geol. Soc. Am Memo,1948,127.
    [38] (美)亚.托尔斯特.水声匹配场处理[M].水声匹配场处理翻译组译,第715研究所.
    [39]赵玉芳,何祚镛.声学理论基础[M].国防工业出版社,1981.
    [40] Etter, P. C. Underwater Acoustic Modeling: Principles, Techniques and Applications. Elsevier, London,1991.
    [41] D.S.Ahluwalia and J.B.Keller. Scattering by a slender body[J]. J.Acoust.Soc.Am, 1986,80(6):1782-1792.
    [42] Pierce A D. Extension of the Method of Normal Modes to Sound Propagation in an Almost-stratified Medium[J]. J. Acoust. Soc. Am, 1965,37(1):19-27.
    [43] Kanabis W G. A Shallow Water Acoustic Model for an Ocean Stratified in Range and Depth. MUSC Tech. Rept. 4887-I,1975,I.
    [44] Kanabis W G. A Shallow Water Acoustic Model for an Ocean Stratified in Range and Depth. MUSC Tech. Rept. 4887-II, 1976, II.
    [45] Pierce A D. Augmented Adiabatic Mode Theory for Upslope Propagation from a Point Source in Variable-depth Shallow Water Overlying a Fluid Bottom[J]. J. Acoust. Soc. Am, 1983, 74(6):1837-1847.
    [46] Arnold J M and Felsen L B. Rays and Local Modes in a Wedge-shaped Ocean[J]. J. Acoust. Soc. Am, 1983,73(4):1105-1119.
    [47] Keller J B and Papadakis J S. Wave Propagation and Underwater Acoustics.Lecture Notes in Physics. New York: Spinger-Verlag,1977,70.
    [48] Henrick R F, Brannan J R, Warner D B and Forney G P. The Uniform WKB Modal Approach to Pulsed and Broadband Propagation[J]. J. Acoust. Soc. Am, 1983,74(5):1464-1473.
    [49] Sachs D A and Silbringer A. Focusing and Refraction of Harmonic Sound and Transient Pulse in Stratified Media[J]. J. Acoust. Soc. Am, 1971,49(3):824-840.
    [50] Brown M G. Application of the WKBJ Green’s Function to Acoustic Propagation in Horizontally Stratified Oceans[J]. J. Acoust. Soc. Am, 1982,71(6):1427-1432.
    [51]张仁和.水下声道中的反转点会聚区(II)广义射线理论[J].声学学报,1982,7(2).
    [52]张仁和.反转点附近声场渐进理论[J].声学学报,1988,13(2).
    [53]张仁和,何怡,刘红.水平不变海洋声信道中的WKBZ简正波方法[J].声学学报,1994,19(1):1-12.
    [54] R.J.尤立克.水声原理[M].哈尔滨船舶工业学院出版社,1990.
    [55]范敏毅.水下声信道的仿真与应用研究[D].哈尔滨工程大学博士学位论文,2000.
    [56] JI. M.布列霍夫斯基赫著.分层介质中的波[M].北京:科学出版社,1983.
    [57] Jones R M, Riley J P and Georges T M. A Versatile Three-dimensional Harmiltonian Ray Tracing Computer Program for Acoustic Wave in the Atmosphere(Ocean)[R]. Wave Propagation Lab, NOAA TECH, Memo, ERL WPL-98,1982.
    [58] Hiroshi Yamamoto, Makoto Tabei, Mitsuhiro Ueda. Acoustic ray tracing in discrete wave velocity by deployed triangle [J]. Trans. Inst. Electron. Inf. Commun. Eng. A, 1990, J73-A (7):1187-1195.
    [59] JIANG Wei, LI Taibao. A three-dimensional sound ray tracing method by deploying regular tetrahedrons[J]. Chinese Journal of Acoustics,2005, 24(1):44-51.
    [60] F A Agelet, A Formella, J M H Rabanos, et al. Efficient Ray-tracing Acceleration Techniques for Radio Propagation Modeling[J]. IEEE Trans. Veh. Technol, 2000,49(6):2089-2104.
    [61]刘海涛,黎滨洪等.并行射线跟踪算法及其在城市电波预测的应用[J].电波科学学报,2004,19(5):581-585.
    [62]杨长春,冷传波,李幼铭.适于复杂地质模型的三维射线追踪方法[J].地球物理学报,1997,40(3):414-420.
    [63]高尔根,徐果明,蒋先艺等.三维结构下逐段迭代射线追踪方法[J].石油地球物理勘探,2002,37(1):11-16.
    [64] Langan R T, Lerche I, Culter R T. Tracing of rays through heterogenous media: Am accurate and efficient procedure[J].Geophysics,1985,50:1456-1465.
    [65] A sakaw a E, Kaw anaka T. Seismic Ray Tracing Using Linear Traveltime Interpolation[J]. Geophysical Prospecting, 1993,41(1):99-111.
    [66]聂建新,杨慧珠.地震波旅行时二次/线性联合插值法[J].清华大学学报(自然科学版),2003,43(11):1495-1498.
    [67]赵爱华,张中杰,彭苏萍.复杂地质模型转换波快速射线追踪方法[J].中国矿业大学学报,2003,32(5):513-516.
    [68]徐广民,王华忠,范华等.复杂介质常梯度射线追踪方法研究[J].石油地球物理勘探,2004,39(3):265-270.
    [69]王辉,常旭.基于图形结构的三维射线追踪方法[J].地球物理学报,2000,43(4):534-541.
    [70]高尔根,徐国明,李光品等.任意界面下的整体迭代射线追踪方法研究[J].声学学报,2002,27(3):282-287.
    [71]种衍文,江柳,黄天锡.三区分划射线追踪法研究及其应用[J].武汉大学学报(理学版),2003,49(5):663-666.
    [72]赵爱华,张中杰.三维复杂介质中转换波走时快速计算[J].地球物理学报,2004,47(4):702-707.
    [73]高尔根,徐国明.二维速度随机分布逐步迭代射线追踪方法[J].地球物理学报,1996,39(Supp):302-308.
    [74] (美)保罗C.艾特.水声模拟-原理、技术和应用[M].水声模拟翻译组译,第715研究所.
    [75] Keller, J. B. Papadakis, J. S. Wave Propagation and Underwater Acoustics. Lecture Notes in Physics, 1977, 70.
    [76] Spofford, C. W. The Ball Laboratories Multiple-profile Ray-tracking Program,Bell Telephone Labs, 1973.
    [77]朴胜春.抛物方程方法中的海底边界条件处理的改进研究[D].哈尔滨工程大学博士学位论文,1999.
    [78] Lee D and McDaniel S T. Ocean Acoustics Propagation by Finite Difference Methods. Oxford: Pergamon Oxford, 1988.
    [79]陈新华.矢量阵信号处理技术研究[D].哈尔滨工程大学博士学位论文,2003.
    [80] Thomas E. Woodruff, Nashua, N.H. Underwater Direction Finding System[P]. United States Patent, 3987404, Oct.19,1976.
    [81] Pekeris, C. L. Theory of Propagation of Explosive Sound in Shallow Water. Geol. Soc. Am Memo, 1948,127.
    [82] Jensen, F.B. Numerical Models of Sound Propagation in Real Ocean. Proc. MTS/IEEE Oceans82 Conf, 1982:147-154.
    [83] Tindle,F.D. Improved Ray Calculations in Shallow Water[J]. J.Acoust.Soc.Am, 1981, 70(3):813-819.
    [84] Lawrence.M.W. Ray Theory Modeling Applied to Low-Frequency Acoustic Interaction with Horizontally Stratified Ocean Bottoms[J]. J.Acoust.Soc.Am,1985,78(2):125-133.
    [85] Westwood,E.K.,Vidmar,P.J. Eigenray Finding and Time Series Simulation in a Layered-Bottom Ocean[J]. J.Acoust.Soc.Am,1987,81(4):912-914.
    [86] Ziomek,L.J. Sound-Pressure Level Calculations Using the RRA Algorithm for Dimensional Speeds of Sound[J]. IEEE JOE,1993,18(1):25-30.
    [87] Wang Yan,Liang guolong.Correction of Sound Velocity in Long Baseline Acoustic Positioning System[J]. Journal of Harbin Engineering University,2002,23(5):32-34.
    [88]李剑锋.无源时差(TDOA)定位技术及其应用研究[D].成都理工大学硕士学位论文,2004.
    [89] Aapo Hyvarinen and Erkki Oja. Independent Component Analysis: A Tutorial. Helsinki University of Technology Laboratory of Computer and Information Science,1999.
    [90] P.C.Ching. Two Adaptive Algorithms for Multipath Time Delay Estimation[J].IEEE Journal of Oceanic Engineering,1999,19(3):458-463.
    [91] Bell B M, Ewart T E. Separating Multipath by Global Optimization of a Multidimensional Matched Filter[J]. IEEE Trans. Acoust. Speech Signal Processing, 1986:1029-1037.
    [92] Lanniello J P. High Resolution Multipath Time Delay Estimation for Broad-band Random Signals[J]. IEEE Trans on ASSP,1998,36(3):320-327.
    [93] Vaccaro R J, Ramalingam C S, Tufts D W. Least-squares Time-delay Estimation for Transient Signals in a Multipath Environment[J]. J. Acoust. Soc. Am,1992,92:210-218.
    [94]薛帅兵.浅海水声信号多途时延估计[D].西北工业大学硕士学位论文,2003.
    [95]蒋德军,胡涛.时延估计技术及其在多途环境中的应用[J].声学学报,2001,26(1):34-40.
    [96] Ali Olfat and Said Nader Esfahani. High Resolution Direction of Arrival Estimation.
    [97] Yung-Yi Wang, Jiunn-Tsair Chen. TST-MUSIC for Joint DOA-delay Estimation[J]. IEEE Transactions on Signal Processing,2001,49(4).
    [98] Jiunn-Tsair Chen, Arogyaswami Paulraj. Multichannel Maximum-likelihood Sequence Estimation(MLSE) Equalizer for GSM Using a Parametric Channel Model[J]. IEEE Transactions on Communications,1999,47(1).
    [99]何子述,黄振兴,向敬成.修正MUSIC算法对相关信号源的DOA估计性[J].通信学报,2000,21(10).
    [1] Robert J. Urick. Principles of Underwater Sound[M]. 3d edition, McGraw-Hill Book Company,1983.
    [2] Daniel B.Kilfoyle and Arthur B.Baggeroer. The State of the Art in Underwater Acoustic Telemetry[J]. IEEE J. Oceanic.Eng.,2000,25(1):4-24.
    [3] Arthur B.aggeror. Acoustic Telemetry-an Overview[J]. IEEE J.Oceanic Eng.,1984,9(4):229-235.
    [4] Milica Stojanovic. Recent Advances in High-speed Underwater Acoustic Communications[J]. IEEE J. Oceanic Eng.,1996,21(2):125-136.
    [5]许肖梅,粘宝卿,刘志鑫等. ZTY-1型海床基水下系统状态监测仪的研制[J].海洋科学,2002,26(6):14-18.
    [6]许克平,许天增,许茹等.基于水声的水下无线通讯研究[J].厦门大学学报,2001,40(2):311-319.
    [7]钱祖文.声学反演法分析海中气泡的有关系数[J].声学学报,1999,22(4):352-356.
    [8]列.布列霍夫斯基赫等.海洋声学基础[M].海洋出版社,1985.
    [9] Paul C.Etter. Underwater Acoustic Modeling:Principles, Techniques and Applications.Elsevier Applied Science, New York,1991.
    [10]许肖梅.浅海水声数据传输技术研究[D].厦门大学博士学位论文,2002.
    [11]高天斌.地声模型[R]. 2001海底取样技术研讨会,北京,2001.
    [12]惠俊英编著.水下声信道[M].国防工业出版社,1992.
    [13]张仁和.中国海洋声学研究进展[J].中国科学(物理),1996,23(9):513-518.
    [14]刘伯胜,雷家煜.水声学原理[M].哈尔滨:哈尔滨工业大学出版社,1993.
    [15] Xu Tianzeng and Xu Keping. Research on High Data Transmission in Shallow Acoustic Channel[M. Shallow water Acoustics, Beijing:China Ocean Press,1997:585-589.
    [16] R.Coates. Underwater Acoustic Communication[R]. Sea Technology,1994:41-47.
    [17] Jones R M, Riley J P, Georges T m. HARPO-A Versatile Three Dimensional Hamiltonian Ray Tracing Program for Acoustic Waves in an Ocean with Irregular Bottom[R]. NOAA Wave Propagation Laboratory Report,1986.
    [18]唐俊峰.三维声场声速剖面反演研究[D].哈尔滨工程大学硕士学位论文,2003.
    [19] Porter M B and Bucker H P. Gaussion Beam Tracing for Computing Ocean Acoustic Field[J]. J. Oceanic Eng.,2000,25(3):337-346.
    [20] Jensen F B, Kuperman W A, Porter W B and Schmidt H. Computational Ocean Acoustic[M]. New York: AIP Press,1994.
    [21]王辉.基于声线理论的水声信道传播特性研究[D].西北工业大学硕士学位论文,2003.
    [22]蒋宗礼,姜守旭.形式语言与自动机理论[M].北京:清华大学出版社,2003.
    [23] Vincent et al. Method and system for determining underwater effective sound velocity: United States Patent, Patent No.: US 6388948B1[P]. Date of Patent: May 14, 2002.
    [1] A.E.Vaas, Refraction of the Direct Monotonic Sound Ray[R]. Technical Memorandum322, Naval Underwater Ordnance Station, Newport, RI,1964.
    [2] L.A.Anderson. Software for Surveying Arrays of Hydrophones and Deep Ocean Transponders,Volume i: User’s Guide[R]. Technical publication TP000041A, Pacific Missile Test Center, Point Mugu, California,1987.
    [3] D.Nguyen and B.Widrow. Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights[J]. International Joint Conference on Neural Networks, 1990,3:21-26.
    [4]王燕,梁国龙.一种适用于长基线水声定位系统的声线修正方法[J].哈尔滨工程大学学报, 2002,23(5):32-34.
    [5] Vincent,H.T, Hu, S.L.J. Generalized Multivariate Error Propagation for Zero Memory Nonlinear Systems[R]. Proceddings of 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability,2000.
    [6] Vincent,H.T, Hu,S.L.J. Geodetic Position Estimation of Underwater Acoustic Sensors[J]. Journal of the Acoustical Society of America,1997,12.
    [7] Vincent,H.T, Hu,S.L.J. Method and System for Determining Underwater Effective Sound Velocity[P]. United States Patent Application, U.S. Navy Case Number 78160,2000.
    [8]马大猷编著.声学手册[M].北京:科学出版社,1983.
    [9]李迎春,吴德明.短基线平面阵形双曲面定位系统的声线修正[J].声学学报,1992(5):340-334.
    [10] A.E.Vaas. Refraction of the Direct Monotonic Sound Ray[M]. Technical Memorandum 322, Naval Underwater Ordnance Station , Newport, 1964.
    [11] L.A.Anderson. Software for Surveying Arrays of Hydrophones and Deep Ocean Transponders[M]. User’s Guide,California,1987.
    [1] B.Hofmann-Wellenhof, H.Lichtenegger, and J.Collins. GPS Theory and Practice[M]. Third, revised edition,U.S.A,1992.
    [2] John L.Spiesberger. Geometry of Locating Sounds from Differences in Travel Time: Isodiachrons[J].J.Acoust.Soc.Am,2004,116(5):3168-3177.
    [3]陈晓忠,梁国龙,王逸林,赵羽.非同步水声定位技术及其性能评价[J].声学学报,2003,28(4):357-362.
    [4] John L.Spiesberger. Probability Distributions for Locations of Calling Animals, Receivers, Sound Speeds, Winds, and Data From Travel Time Differences[J]. J.Acoust. Soc.Am,2005,118(3):1790-1800.
    [5] H.T.Vincent. Models, Algorithms and Measurement for Underwater Acoustic Positioning[D].Doctor Degree Dissertation,2001.
    [6] R.O.Schmidt. A New Approach to Geometry of Range Difference Location[J].IEEE Transactions on Aerospace and Electronic Systems,1972:821-835.
    [7] P.S.Noe, K.A.Myers, and T.K.Wu. A Navigation Algorithm for a Low Cost GPS Receiver[J]. Navigation, 25(2),1978:258-264.
    [8] S.Bancroft. An Algebraic Solution of the GPS Equations[J]. IEEE Transactions on Aerospace and Electronic Systems,1985:56-59.
    [9] J.Hoshen. The GPS Equations and the Problem of Apollonius[J]. IEEE Transactions on Aerospace and Electronic Systems,1996:1116-1124.
    [10] I.Biton, M.Koifman, and I.Y.Bar-Itzhack. Improved Direct Solution of the Global Positioning System Equations[J]. Journal of Guidance, Control, and Dynamics,1998:45-49.
    [11]褚晓勇,宋国乡.一种求解非线性方程的新算法[J].西安电子科技大学学报(自然科学版),2001,28(6):785-788.
    [12]惠娟.水下多目标跟踪定位算法研究[D].哈尔滨工程大学学位论文,2004.
    [13] B.Hofmann-Wellenhof, H. Lichtenegger, and J.Collins.GPS Theory and Practice[M].New York,3rd edition,1994.
    [14]李庆扬,莫孜中.非线性方程的数值解法[M].北京:科学出版社,1992.
    [15]张小凤,赵俊渭等.双基地加权最小二乘估计算法定位精度研究[J].兵工学报,2004,25(6):761-765.
    [16]张云鹏,僇栋,杨小冈,吴强.镜像映射法及递推最小二乘法在GPS伪距导航定位解算中的应用[J]. GNSS World of China,2004:44-47.
    [1]李启虎.水声学研究进展[J].声学学报,2001,26(4):295-301.
    [2] A.B.Baggeroer, W.A.Kuperman, P.N.Mikhalevsky.An Overview of Matched-field Methods in Ocean Acoustic[J].IEEE J.Ocean.Eng,1993,18(4):401-424.
    [3]盛继业.现代测量定位技术在水下工程中的应用[D].上海海运学院学位论文,2003.
    [4]王庆天,邢志刚,刘伯胜.智能水下机器人水声精确定位技术的研究[J].海洋工程,1999,17(4):95-100.
    [5]吴永亭,周兴华,杨龙.水下声学定位系统及其应用[J].海洋测绘,2003,123(4):18-21.
    [6]生雪莉.矢量反转镜时空滤波技术及其在水声中的应用[D].哈尔滨工程大学博士学位论文,2005.
    [7] Harold T.Vincent II. Models, Algorithms and Measurements for Underwater Acoustic Positioning[D]. A Dissettation for the Degree of Doctor of Philosophy in Ocean Engineering,2001.
    [8]郑洲顺,普乐.非线性最小二乘问题的一种迭代解法[J].数学理论与应用,2002,22(1):43-45.
    [9]张正明,杨绍全,张守宏.平面时差定位精度分析[J].西安电子科技大学学报(自然科学版),2000,27(1):13-16.
    [10]张小凤,赵俊渭.单/多基地声纳定位性能比较[J].探测与控制学报,2003,25(3):48-61.
    [11]王大成,郭丽华,etc.高精度水下定位的一种实现方案[J].海洋技术,2004,23(3):34-38.
    [12]王先华.长基线水下导航定位系统测阵校阵[D].哈尔滨工程大学学位论文,2004.
    [13] P.H.Milne. Underwater Acoustic Positioning Systems[M]. Gulf Publishing Company,PO Box 2608,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700