用户名: 密码: 验证码:
锁模光纤激光器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超短脉冲光源不仅可作为未来超高速、大容量、长距离光纤通信系统的理想光源,而且是研究非线性、超快等现象的重要工具。光纤激光器具有体积小、重量轻、增益特性好、转换效率高、阈值低、输出光束质量好、与现有通信系统相兼容等特点,是目前超短脉冲激光技术领域中的热点研究课题。本论文围绕锁模光纤激光器,以掺Er~(3+)被动锁模激光器为研究重点,对激光器系统中亟待解决的光谱边带和荧光的抑制、耦合输出比与偏振控制器的优化、重复频率的提高和控制、高能量脉冲输出和脉冲稳定性的保持等问题,展开相应的理论和实验研究,并对其在超宽带无线通信中的应用进行了研究,具体工作包括:
     1.对比分析了主动锁模、被动锁模和混合锁模等锁模技术的优缺点,研究了锁模光纤激光器的工作原理。结合速率方程和非线性薛定谔(Nonlinear Schr(o|¨)dinger,NLS)方程,建立了既能描述泵浦光子与信号光子之间的相互作用和粒子数浓度变化,又能分析光纤的色散和各种非线性效应的锁模光纤激光器模型。并基于该模型研究了不同参数下锁模信号、泵浦功率和ASE(Amplified Spontaneous Emission)光功率沿光纤纵向的传输情况。
     2.基于上述模型,结合掺铒光纤中荧光的产生机理,研究了锁模光纤激光器中抑制ASE光和可见荧光的产生,提高泵浦效率、优化激光器的方法。并进行了非线性偏振旋转被动锁模光纤激光器的实验研究,获得了重复速率15.9MHz,单脉冲能量15.75pJ,脉冲宽度约500fs的锁模光脉冲。
     3.通过NPE被动锁模光纤激光器的理论仿真和实验结果的对比分析,详细研究了激光器腔体环长、增益光纤长度、耦合输出比等关键因素对光谱边带的和脉冲稳定性的影响,得出了抑制光谱边带的方法。对比分析了九种耦合输出比的实验结果,得出了使脉冲波动小、谱宽宽和脉冲能量大的各种最佳耦合输出比值。耦合输出比为70%时单脉冲能量达3.86nJ。实验最终获得了光谱边带抑制较好、重复频率15.87MHz、单脉冲能量0.52nJ的稳定脉冲激光。
     4.设计了一种基于磁光晶体法拉第旋光效应的电控式偏振控制器,既继承了电控式偏振控制的优点,又简化了控制电路的复杂性,降低了器件的制造成本,并实验研究了其技术可行性。实验结果表明,该偏振控制器的偏振旋控制能力和线圈电流强度之间并不是一个线性的关系,若要通过此类偏振控制器获得精确到1度的偏振旋转控制,电流源电流强度的调节能力需要精确到0.01A的量级。
     5.实验研究了高耦合输出比下,泵浦功率、耦合输出比与偏振控制器的调制相结合控制重复频率的方法,研究了耦合输出比为40%到90%间时不同谐波锁模状态下锁模光纤激光器光谱和脉冲的变化情况。并研究了耦合输出比为70%、80%和90%时出现的孤子簇现象。
     6.设计了一种基于有源副腔的被动锁模光纤激光器,并进行了无源、有源副腔锁模光纤激光器的实验研究。利用NPE型被动锁模光纤激光器的基阶锁模状态保证脉冲的稳定性,通过主腔与副腔腔长比例的恰当选择,将基阶锁模光脉冲重复频率提高了27倍(从12.9MHz提高到349MHz),并通过主腔谐波锁模与有源副腔的结合获得了GHz级别的被动锁模光脉冲输出。
     7.对被动锁模光纤激光器在超宽带(Ultra-Wide Band(UWB))无线通信中的应用进行了探索性实验研究。基于锁模脉冲色散展宽原理,在不需要使用高速调制器和腔外调制信号的情况下,获得了符合FCC(US Federal CommunicationsCommission)室内UWB无线传输规定的光子超宽带脉冲源。并结合被动谐波锁模技术和有源副腔技术,进行了多重复频率光子超宽带脉冲源的实验研究。
     8.利用啁啾脉冲补偿无线信道色散效应的原理,基于超短脉冲光纤激光器,宽带光电转换器,放大器和Bowtie孔径超宽带天线,进行了UWB室内无线传输实验研究。对应无线传输发射端前加和不加电脉冲放大器的两种情况,经过UWB室内无线传输后分别探测到了高斯单周脉冲(FWHM约150ps)和高斯偶脉冲(FWHM约120ps)。通过分析天线间距,电磁干扰,光脉冲源,以及衰减器和放大器对UWB室内无线传输的影响,得出了这种系统的最佳结构。
The generation of ultra-short pulses is not only the best source of ultra-fast, bigcapacitance, and long distance fiber communication system, but also the front edgeresearch about nonlinear optics and ultrafast optics. Fiber laser offer a number ofadvantages including small volume, light weight, compact structure, high stability, goodgain features, high conversion efficiency, low threshold, high beam quality andcompatibility with fiber-optic communication system. Now it has become one of thehottest topics in the field of the ultra-short pulse lasers. This paper takes Er~(3+) dopedpassively mode-locked fiber laser as the research keystone, made research on thefluorescence and side bands depressing methods, output ratio and polarization controloptimization, repetition rates increase technology, high energy pulse output, stability ofthe pulse and its use in UWB wireless communication, which include
     1. The advantages and disadvantages of actively mode-locking, passivelymode-locking and mixed mode-locking technologies have been analyzed. The physicalmechanism of mode-locking in the fiber laser was investigated. A novel model ofmode-locked fiber laser was developed by combining the rate equation of Er~(3+) dopedfiber and Nonlinear Schr(o|¨)dinger (NLS) equation. Investigation was made on thelongitudinal propagation characteristics of pump, mode-lock signal and AmplifiedSpontaneous Emission (ASE) power along longitudinal fiber with the proposed model,
     2. With the proposed mode and the emission mechanism of the fluorescence in highenergy pulsed fiber laser, the methods of effectively depressing the fluorescence andimprove the pump efficiency have been discussed. The Nonlinear PolarizationEvolution (NPE) passively mode-locked fiber laser experiments have been carried out.Mode-locked pulses with repetition rates of 15.9MHz, single pulse energy of 15.75pJand pulse width of 500fs have been obtained.
     3. Based on the comparing of numerical emulation and experiments of NPEpassively mode-locked fiber laser, the effects of different EDF lengths, different ringlengths and different output ratios on spectrum sidebands and pulse stability wereanalyzed. The ways of side bands depressing were obtained. Experiments with 9 kinds of output ratios on pulses quality were carried out, on which we summarized the ratioscorresponding to smaller fluctuation, larger single pulse energy, and wider spectrumwidth. And the single pulse energy would be the largest one (about 3.86nJ) whenR=70%. The output pulses with restrained side bands, the repetition rate of 15.87MHz,and the single pulse energy of 0.52nJ have been obtained.
     4. A new polarization control (PC) method was proposed based on Faraday opticsrotation mechanism in opto-magnetism crystal. This PC not only inherits theadvantages of electrical PC but also simplifies the complexity of circuits and save thecost of manufacture apparatus. The technology feasibility of this PC was experimentalcarried out, which prove that the polarization control ability of this PC is not linearitywith current intensity in the loop, the modulation ability of current intensity should beas precise as 0.01 A if we want to get the polarization control ability as precise as 1°.
     5. The ways of repetition rates control based on the modulation of pump power,output ratio and polarization controller were experimental carried out when the outputratios were high. The fiber laser spectrums and pulses in different harmonicmode-locking states were analyzed when the output ratios were between 40% and 90%.The compound bound pulse soliton states of fiber laser were also studied when theoutput ratios were 70%, 80% and 90%.
     6. A novel structure of passively mode-locked fiber laser was presented at highrepetition rates with an active slave ring cavity connected to a NPE master cavity.Based on the stable basic mode-locking state, the NPE mode-locked pulses wereinjected into the active slave cavity, and the ratio of master cavity length and slavecavity length was carefully modulated in order to achieve self-starting injectionmode-locking. Twenty-sevenfold evolution of repetition rates in NPE passivelymode-locking pulse was obtained at the basic mode-locking rank, from 12.9MHz to349MHz. And GHz rates were obtained from the slave cavity based on differentharmonic locking orders of the master cavity.
     7. A novel method for UWB (Ultra-Wide Band) microwave signal generation usinga passively mode-locked fiber laser is proposed and demonstrated. Er~(3+) deeply dopedfiber as long as 3m was used to get enough dispersion of fiber in order to make thepulse width wider to accord with FCC (US Federal Communications Commission)criterion about UWB wireless transportation in door, without using any high speed modulator or signal. Based on the principle of harmonic mode-locking and active slavecavity, 12 different kinds of UWB pulse periods were obtained.
     8. Experiments study of UW over fiber wireless transportation indoor was carriedout based on passively mode-locked fiber laser, technology of UWB optoelectronicconversion, UWB pulse amplifier and Bowtie aperture UWB antenna technology.Corresponding to amplified or not, gauss monocycle pulse (with FWHM of 150ps) ordoublet pulse (with FWHM of 120ps) was detected after UWB wireless transportationindoor. The influences of antennas distance, electromagnetic wave indoor disturbance,optical pulse source, attenuator and amplifier were studied in order to get the beststructure of this kind of system.
引文
[1] 胡庆,王敏琦.光纤通信系统与网络.北京:电子工业出版社,2006,1-10,150-230
    [2] M. Nakazawa, T.Yamamoto, and K.Tamura. Ultra-high-speed OTDM transmission using femto-second pulses. Lasers and Electro-Optics, 2001, 16(1):618-619.
    [3] LAM Huy Quoc, SHUM P., BINH Le Nguyen, et al. Polarization-Dependent Locking in SOA Harmonic Mode-Locked Fiber Laser. IEEE Photonics Technology Letters, 2006, 18(22): 2404-2406
    [4] PFEIFFER T. and VEIH G. 40GHz pulse generation using a widely tunable all-polarisation preserving erbium fibre ring laser. Electron. Lett., 1993, 29(21):1849-185
    [5] Masato Yoshida, Keisuke Kasai, and Masataka Nakazawa. Mode-Hop-Free, Optical Frequency Tunable 40-GHz Mode-Locked Fiber Laser. IEEE Journal of Quantum Electronics, 2007, 43(8):704-707
    [6] 胡智勇,丁永奎,贾东方等.复合腔抑制主动锁模光纤激光器超模噪声的理论与实验研究.天津大学学报,2003,36(S):645-647
    [7] 彭璨,姚敏玉,张洪明等.10GHz主动锁模光纤激光器.中国激光,2003,30(2):101-104
    [8] Deepa Venkitesh, Shriharsh Tendulkar, and R. Vijaya. Performance evaluation of gunn oscillators for active mode-locking of erbium doped fiber ring lasers. Microwave and Optical Technology Letters, 2008, 50(10):2684-2686
    [9] Masataka Nakazawa and Masato Yoshida. Scheme for independently stabilizing the repetition rate and optical frequency of a laser using a regenerative mode-locking technique. Optics Letters, 2008, 33(10): 1059-1062
    [10]宋方,徐文成,申民常等.主动锁模飞秒光纤激光器.中国激光,2008,35(3):347-349
    [11]E. Yoshida and M. Nakazawa. 80-200GHz erbium doped fibre laser using a rational harmonic mode-locking technique. Electron. Lett., 1996, 32(15): 1370-1372.
    [12]LIN Gong-Ru, Chang Yung-Cheng, WU Jung-Rung. Rational Harmonic Mode-Locking of Erbium-Doped Fiber Laser at 40 GHz Using a Loss-Modulated Fabry-P(?)rot Laser Diode. IEEE Photonics Technology Letters, 2004, 16(8): 1810-1812
    [13] Yang Shiquan, Cameron John, Bao Xiaoyi. Stabilized Phase-Modulated Rational Harmonic Mode-Locking Soliton Fiber Laser. IEEE Photonics Technology Letters, 2007, 9(6):393-395
    [14] Gong-Ru Lina, Chao-Kuei Leeb, and Jung-Jui Kangb. Rational harmonic mode-locking pulse quality of the dark-optical-comb injected semiconductor optical amplifier fiber ring laser. Optics Express, 2008, 16(12): 9213-9218
    [15] Wang Tong, Lou Caiyun, Hou Li et al. All optical clock division and multiplication by injection mode-locked laser based on SOA. Optics & Laser Technology, 2003, 35(6):463-469
    [16] Lin Gong-Ru, Chiu I-Hsiang. 110-pJ and 410-fs Pulse at 10 GHz Generated by Single-Stage External Fiber Compression of Optically Injection-Mode-Locked Semiconductor Optical Amplifier Fiber Laser. IEEE Photonics Technology Letters, 2006, 18(9):1010-1016
    [17] Ariel Lipson and Meir Orenstein. Repetition Rate Enhancement and Mode Shaping in Dual-Cavity Stretched Pulse Fiber Laser. IEEE Photonies Technology Leetters, 2006, 18(8):920-922
    [18] H. Sun, H. Dong, and N. K. Dutta. Mode-Locked Erbium-Doped Fiber Ring Laser Using Intracavity Polarization-Maintaining Loop Mirror. IEEE Photonics Technology Lectters, 2006, 18(12):1311-1313
    [19] C. E. Rogers, M. J. Wright, J. L. Carini et al. Generation of arbitrary frequency chirps with a fiber-based phase modulator and self-injection-locked diode laser. J. Opt. Soc. Am. B, 2007, 24(6): 1251-1253
    [20] Ryu H.Y., Lee S.H., Lee W.K. et al. Injection locked DFB laser as an optical frequency reference in the infrared region based on femtoseeond fiber laser comb. 2008 Conference on Precision Electromagnetic Measurements Digest, 2008, 7:290-291
    [21] Tang D. Y., B Zhao. Compound pulse solitons in a fiber ring laser, Physical Review A-Atomic, Molecular, and Optical Physics, 2003, 68(1):013816/1-013816/8,
    [22] S. M. J. Kelly. Characteristic sideband instability of periodically amplified average soliton. Electron. Lett., 1992, 28(8): 806-807
    [23] 叶辉,徐文成,罗智超等.利用光纤激光器光谱边带效应测量光纤色散.光学学报,2008,28(4):648-652
    [24] L. D. Michael and I. N. Dining Ⅲ. Experimental study of sideband generation in femtosecond fiber lasers. IEEE J. Quant. Electron, 1994, 30(6): 1469-1477
    [25] F. M. Mitschke and L. F. Mollenauer. Experimental observation of interaction forces between solitons in optical fibers. Opt. Lett., 1987, 12(3):355-357
    [26] K. Smith, L. F. Mollenauer. Experimental observation of soliton interaction over long fiber path: Discovery of along-range interaction. Opt. Lett., 1989, 12(10): 1284-1286
    [27] L. F. Mollenauer, J. P. Gordon and M. N. Islam. Soliton propagation in long fibers with periodically compensated loss. IEEE J. Quant. Electron, 1986, 22(2): 157-173
    [28] E. Snitzer. Proposed fiber cavities for optical laser. J.Appl. Phys, 1961, 32:36-39
    [29] C.J.Koester, E.Snitzer. Amplification in a fiber laser. Appl. Opt., 1964, 3:1182-1186
    [30] Polynkin A. Polynkin P. Panasenko D. et al. Short-cavity, passively modelocked fibre laser oscillator at 1.5 um with 550MHz repetition rate and high average power. Electronics Letters, 2006, 42(3):41-42
    [31] Andy Chong, William H. Renninger, and Frank W. Wise Environmentally stable all-normal-dispersion femtosecond fiber laser. Optics Letters, 2008, 33(10): 1071-1073
    [32] Rasmus K. Olssona, Thomas V. Andersenb, Lasse Leickb. Femtosecond all- polarization-maintaining fiber laser operating at 1028 nm. Prec. of SPIE, 7022:70221E-1-4
    [33] B. Orta(?), A. Hideur, T. Chartier, et al. Generation of bound states of three ultrashort pulses with a passively mode-locked high-power Yb-doped double-clad fiber laser. IEEE Photonics Technology Letters, 2004, 16(5):1274-1276
    [34] 王肇颖,王永强,林冉等.亚皮秒自起振被动锁模掺铒光纤激光器.光电子·激光,2004,15(3):295-298.
    [35] 赵德双,刘永智,王秉中等.高能量飞秒脉冲掺Er~(3+)光纤激光器.光电子·激光,2006,16(8):922-925
    [36] Shian Zhou. Passive harmonic mode-locking of a soliton Yb fiber laser at repetition rates to 1.5 GHz. Optics Letters, 2006, 31(8): 1041-1043
    [37] Zhao L. M., Tang D. Y., Cheng T. H. et al. Passive harmonic mode locking of soliton bunches in a fiber ring laser, CLEO/Pacific Rim, 2007, 1: 1-2
    [38] Axel Rueh, Vincent Kuhn, DieterWandt et al. Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ. Optics Express, 2008, 16(5): 3130-3035
    [39] I. N. Duling Ⅲ. All fiber ring solution laser mode locked with a nonlinear mirror. Opt. Lett., 1991, 16(4):539-541
    [40] D. J. Richardson, R. I. Laming, et al. Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch. Electron Lett., 1991, 27(6): 542-544.
    [41] W. S. Wong, S. Namiki, M. Margalit, et al. Self-switch of optical pulses in dispersion-unbalanced nonlinear loop mirrors. Electron Lett., 1997, 22(15): 1150-1152.
    [42] 王肇颖,王永强,李智勇等.基于色散不对称光纤环形镜的锁模光纤激光器.光学学报,2004,24(5):645-650
    [43] Li Zhan, Zhaochang Gu, Jianwen Zhang et al. Critical behavior of a passively mode-locked laser: rational harmonic mode locking. Optics Letters, 2007, 32(16): 2276-2278
    [44] M. Salhi, A. Haboucha, H. Leblond et al. Theoretical study of figure-eight all-fiber laser, Physical Review, 2008, 033828: 033828-1-9
    [45] Ibarra-Escamilla B., Pottiez O., Kuzin E.A et al. Experimental investigation of a passively mode-locked fiber laser based on a symmetrical NOLM with a highly twisted low-birefringence fiber. Mexico Laser Physics Laser Phys., 2008, 18(7): 914-919
    [46] Yang Shiquan, Bao Xiaoyi. Repetition-Rate-Multiplication in Actively Mode-Locking Fiber Laser by Using Phase Modulated Fiber Loop Mirror. IEEE Journal of Quantum Electronics, 2005, 41(10): 1285-1292
    [47] Tang W. W. Shu C. 100-nm Tuning Range, Picosecond Pulse Generation Employing a PM Fiber Loop Filter in a Mode-Locked SOA Ring Laser. Optical Fiber Communication Conference, 2005, 5: 3-5
    [48] E. S. Boncristiano, L. A. M. Saito, and E. A. De Souza. 396 fs Pulse from an asynchronous mode-locked erbium fiber laser with 2.5-12GHz repletion rate. Microwave and Optical Technology Letters, 2008, 50(11):2994-2995
    [49] Khanh Kieu and Masud Mansuripur. All-fiber bidirectional passively mode-locked ring laser College of Optical Science. Optics Letters, 33(1):64-68
    [50] N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara et al. All- polarization- maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber. Optics Express, 2008, 16(13):9429-9433
    [51] Amos Martinez, Kaiming Zhou, Ian Bennion et al. In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing. Optics Express,2008,16(20): 15425-15428
    [52] A. V. Tausenev, E. D. Obraztsova, A. S. Lobach et al. 177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes. Applied Physics Letters, 2008, 92: 171113-1-171113-5
    [53] R. Hayashi, S. Yamashita, and T. Saida. 16-Wavelength 10-GHz Actively Mode-Locked Fiber Laser With Demultiplexed Outputs Anchored on the ITU-T Grid. IEEE Photon. Techn. Lett., 2003, 15(12): 1692-1694.
    [54] J. Vasseur, M. Hanna, J. Dudley et al. Alternate Multiwavelength modelocked Fiber Laser.IEEE Photon. Techn. Lett., 2004,16(8):1816-1818.
    [55] IIyong Yoon, Yong Wook Lee, Jaehoon Jung, et al. Tunable Multiwavelength Fiber Laser Employing a Comb Filter Based on a Polarization-Diversity Loop Configuration. Journal of Lightwave Technology, 24(4): 1805-1811
    [56] X.H. Feng, H.Y. Tam, H.L. Liu et al. Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror. Optics Communications, 2006,268 (2006): 278-281
    [57] Gong-Ru Lin, Hai-Han Lu, and Jun-Yuan. Chang Wavelength Tunability of a Coupler and Air-Gap Etalon Controlled High-Efficiency L-Band Mode-Locked Erbium-Doped Fiber Laser. IEEE Photonics Technology Letters, 2006,18(21):2233-2335
    [58] D. Chen, S. Qin, S. Gao et al. Wavelength-spacing continuously tunable multiwavelength erbium-doped fibre laser based on DSF and MZI. Electronics Letters, 2007,43(9):524-525
    [59] S.L Zhao, X.F. Yu, W. Lou et al. Dispersion-tuned multiwavelength actively mode-locked fiber laser using a hybrid gain medium. Optics and Laser Technology, 2008,40(6):854-857
    [60] Zu Xing Zhang, Kun Xu, Jian Wu et al. Lin Two Different Operation Regimes of Fiber Laser Based on Nonlinear Polarization Rotation: Passive Mode-Locking and Multiwavelength Emission. IEEE Photonics Technology Letters, 2008,20(12):979-981
    [61] A. Hideur, T. Chartier, S Louis, et al. High power double-clad Yb-doped fiber laser. Proceedings of SPIE-The International Society for Optical Engineering, 2002,4751:510-520.
    [62] A. Albert, V. Couderc. High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design. IEEE Photon. Techn. Lett., 2004, 16(2):416-418
    [63] Seungin B., Sookyonyng R., et al. Experimental Demonstration of Enhancing Pump Absorption Rate in Cladding-Pumped Ytterbium-Doped Fiber Lasers Using Pump-Coupling Long-Period Fiber Gratings. IEEE Photonics Technol. Lett., 2006, 18(5): 700-702
    [64] Robert Herda, Samuli Kivist(?), OLeg G. Okhotnikov et al. Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber. IEEE Photonics Technol. Lett., 2008,20(3):217-220
    [65] C. Lecaplaina, A. Hideura, C. Che'dota et al. Mode-locked Yb-doped large-mode-area microstructure fiber laser. Proc. of SPIE, 2008,6998:699809-1 -6
    [66] Fekete, J. Cserteg, A. Varallyay, Z. et al. Passively mode-locked ytterbium fiber laser with integrated hollow-core photonic bandgap fiber. 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS, 2008,4551787: 1-5
    [67] C. Lecaplaina, C. Chedota, A. Hideura, B. et al. High-average power femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser. Proc. of SPIE, 2008, 6873:68730S-1-5
    [68] C. Lecaplaina, A. Hideura, C. Che'dota et al. Mode-locked Yb-doped large-mode-area microstructure fiber laser. Proc. of SPIE, 2008, 6998:699809-1-6
    [69] 候询.超短脉冲激光及其应用.深圳大学学报(理工版),2001,18(2):1-2
    [70] Zhichao Deng and Jianping Yao. Photonic Generation of Microwave Signal Using a Rational Harmonic Mode-Locked Fiber Ring Laser. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(2):763-765
    [71] Fei Zeng and Jianping Yao. Ultrawideband Impulse Radio Signal Generation Using a High-Speed Electrooptic Phase Modulator and a Fiber-Bragg-Grating-Based Frequency Discriminator. IEEE Photonics Technology Letters, 2006, 18(19):2062-2064
    [72] Fei Zeng and Jianping Yao. An Approach to Ultrawideband Pulse Generation and Distribution over Optical Fiber. IEEE Photonics Technology Letters, 2006, 18(7):823-836
    [73] L. Goldberg, H. F. Taylor, J. F. Weller et al. Microwave signal generation with injection locked laser diodes. Electron. Lett., 1983 19(13):491-493
    [74] Z. Fan and M. Dagenais. Optical generation of a mHz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop. IEEE Trans. Microw. Theory Tech., 1997, 45(8): 1296-1300
    [75] R. T. Ramos, P. Gallion, D. Erasme, et al. Optical injection locking and phase-lock loop combined systems. Opt.Lett., 1994, 19(1):4-6
    [76] J. J. O'Reilly, P. M. Lane, R. Heidemann et al. Optical generation of very narrow linewidth millimeter wave signals. Electron.Lett., 1992, 28(25):2309-2311
    [77] P. Shen, N. J. Gomes, P. A. Davies et al. High-purity millimeter-wave photonic local oscillator generation and delivery. Proc. Int. Topical Microw. Photon. Meeting, 2003, 1:189-192.
    [78] G. Qi, J. P. Yao, J. Seregelyi et al. Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator. J. Lightw. Technol., 2005, 23(9):2687-2695
    [79] M. Hyodo, M. Tani, S. Matsuura et al. Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser. Electron. Lett., 1996, 32(17): 1589-1591
    [80] M. Brunel, N. D. Lai, M. Vallet et al. Generation of tunable high-purity microwave and terahertz signals by two-frequency solidstate lasers. Proc. SPIE-Int. Soc. Opt. Eng., 2004, 5466:131-139
    [81] Wang and J. Yao. UWB doublet generation using nonlinearly biased electro-optic intensity modulator. Electronics Letters, 2006, 42(22): 1304-1306
    [82] Govind P.Agrawal.非线性光纤光学原理及应用.贾东方等译,北京:电子工业出版社,2002,26-35,64-80,94-100,164-170,381-391,421-425
    [83] R. Hayashi and S. Yamashita. Multiwavelength Actively mode-locked polarization maintaining fiber laser at 10GHz. OFC'03, 2003, 6:239-240.
    [84] G. T. Harvey and L. F. Mollenauer. Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission. Opt. Lett., 1993, 18(2): 107-109.
    [85] H. Takara, S. Kawanishi, M. Saruwatari et al. Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er~(3+)-doped fibre lasers with an all-polarisation maintaining ring cavity. Electronics Letters, 28(22):1992
    [86] 胡智勇,丁永奎,贾东方等.复合腔抑制主动锁模光纤激光器超模噪声的理论与实验研究,天津大学学报,2003,36(5):645-647
    [87] Carruthers, Thomas F. Horowitz, Moshe. A Dispersion-Managed, Harmonically Mode-Locked Fiber Soliton Laser. Conference Proceedings-Lasers and Electro-Optics Society Annual Meeting-LEOS, 1999,2:774-775
    [88] B. Bakhshi and P. A. Andrekson. 40GHz actively modelocked polarization maintaining erbium fiber ring laser. Electron. Lett., 2000, 36(5):411-413
    [89] 杨祥林,温扬敬.光纤孤子通信理论基础.北京:国防工业出版社,2000,110-125
    [90] 曹顺湘,沈才良,王发强等.非线性偏振旋转光纤环形孤子激光器的分析.中国激光,1997,24(10):1072-1076
    [91] A. Cucinotta, S. Dallargine, S. Selleri et al. Modeling of erbium doped fiber ring laser. Optics Communications, 1997, 141:21-24
    [92] C. Randy Giles and Emmanuel Desurire. Modeling Erbium-doped fiber amplifiers. J Lightwave Techn. 1991, 9(2): 271-283.
    [93] C. Barnard, P Myslinski, J. Chrostowski et al. Analytical model for rare-earth-doped fiber amplifiers and lasers. IEEE J. Quant. Electron, 1994, 30(8): 1817-1829.
    [94] H. A. Haus. Mode-Locking of Lasers. IEEE J. Selected Topics Quant. Electron., 2000, 6(6): 1173-1185
    [95] K. S. Abedin, N. Onodera, and M. Hyodo. Repetition-rate multiplication in actively mode-locked fiber lasers by higher-order FM mode locking using a hig-finesse Fabry-Perot filter. Appl. Phy. Lett. 1998, 73(10):1311-1313.
    [96] C.-J. Chen, P. K. A. Wai, and C. R. Menyuk. Self-starting of passively mode-locked lasers with fast saturable absorbers. Optics Letters, 1995, 20(4):350-353
    [97] 赵德双,刘永智,张长命.飞秒被动锁模光纤激光器的稳定性研究.应用光学,2005,26(4):26-29
    [98] Tom G. Ryan, Stuart D. Jackson. Cooperative luminescence and absorption in ytterbium doped aluminosilicate glass optical fibres and performs. Opt. Commun., 2007, 273:159-161
    [99] Junjie Zhang, Shixun Dai, Guonian Wang et al. Investigation on upconversion luminescence in Er~(3+)/Yb~(3+) codoped tellurite glasses and fibers. Phys. Lett. A, 2005, 345:409-414
    [100] A.V. Kir'yanov, V.P. Minkovich, et al. Multi-wavelength visible up-converted luminescence in novel heavily doped Ytterbium-Holmium silica fiber under low-power IR diode pumping. J. Lumin., 2005, 111: 1-8
    [101] V. Dierolf, T. Morgus, Z. Fleischman et al. Characterization of highly erbium-doped fibers using confocal luminescence microscopy. Optical Fiber Communication Conference, OFC, 2004, 2:23-27
    [102] Yong Gyu Choi, Yong Beom Shin, Hong SeokSeo et al. Spectral evolution of cooperative luminescence in an Yb3t-doped silica optical fiber. Phys. Lett., 2002, 364:200-205
    [103] S. Magnea, Y. Ouerdaneb, M. Druettab et al. Cooperative luminescence in an ytterbium-doped silica fibre. Opt. Commun. 1994, 111:310-316
    [104] Quimby RS, Minisclcow J and Thompson B. Up-conversion and 980-nm excited-state absorption in erbium-doped glass. SPIE. Proc., 1992, 1789:50-57
    [105] Jian Zhang, Shiwei Wang, Liqiong An et al. Infrared to visible upconversion luminescence in Er~(3+):Y_2O_3 transparent ceramics. Journal of Luminescence, 2007, 122(123):8-10
    [106] Piotr Myslinski, Dung Nguyen and Jacek Chrostowski. Effects of Concentration on the Performance of Erbium-Doped Fiber Amplifiers. J. Ligtwave Technol, 1997, 15:112-118
    [107] J. L.Wagener, P. F. Wysocki, M. J. F. Digonnet et al. Effects of concentration and clusters in erbium-doped fiber lasers. Opt. Lett., 1993, 18:2014-2016
    [108] 华一敏,李劬,陈英礼.掺Er~(3+)石英光纤中频率上转换的实验研究.光学学报,1992,12(3):261-264
    [109] L. F. Mollenauer, J. P. Gordon and M. N. Islam. Soliton propagation with periodically compensated loss. IEEE J. Quant. Electron., 1986, 22(2): 157-173
    [110] G. Q. Chang, A. Galvanauskas, H. G. Winful et al.Dependenee of parabolic pulse amplification on stimulated ram an scattering and gain bandwidth. Opt. Lett., 2004,29(22):2647-2649
    [111] 宋方,徐文成,陈伟成等.78fs被动锁模掺Er~(3+)光纤激光器.中国激光,2007,34(9):1174-1177
    [112] 申民常,徐文成,陈伟成等.单偏振控制器环形腔光纤激光器实验研究.光学学报,2007,27(11):2003-2007
    [113] 冯杰,徐文成,叶辉.偏振控制锁模光谱边带偏移量的计算及实验验证.中国激光,2008,35(9):1333-1336
    [114] Zhiyong Dai, Deshuang Zhao, Yongzhi Liu. Research on the Passively Mode-locked Er~(3+)-doped Fiber Laser. Proc. of SPIE Passive Components and Fiber-based Devices Ⅲ, 2006, 6351: 63513R-1-4
    [115] Gong-Ru Lin and Jun-Yuan Chang. Femtosecond mode-locked Erbium-doped fiber ring laser with intra-cavity loss controlled full L-band wavelength tenability. Optics Express, 2007, 15(1): 97-103
    [116] V. Tzelepis, S. Markatos, S. Kalpogiannis. Analysis of a Passively Mode-Locked Self-starting All-Fiber Soliton Laser. Journal of Lightwave Technology, 1993, 11(11): 1729-7135
    [117] M. Salhi, A. Haboucha, H. Leblond et al. Theoretical study of figure-eight all-fiber laser. Physical Review A, 2008, 77(3):033828-1-033828-9
    [118] Fekete, J. Cserteg, A. Varallyay, Z. et al. Passively mode-locked ytterbium fiber laser with integrated hollow-core photonic bandgap fiber. CLEO/QELS, 2008, 4551787:1-6
    [119] C. Lecaplaina, C. Chedota, A. Hideura et al. High-average power femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser. Proc. of SPIE, 2008, 6873:68730S-1-5
    [120] C. Lecaplaina, C. Chedota, A. Hideura et al. Mode-locked Yb-doped large-mode-area microstructure fiber laser. Proc. of SPIE, 2008, 6998: 699809-1-6
    [121] Deshuang Zhao, Yongzhi Liu, Bingzhong Wang. Generation of 1.2-nJ Pulse with 19.4-nm rectangle-shaped spectrum from erbium fiber laser without using dispersion compensation. Microwave and Optical Technology Letters, 2005, 47(3):254-255
    [122] F. Heismann. Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems. J. Lightwave. Technol., 1994, 12(4):690-699
    [123] Laurent Dupont, Thierry Sanasoni, Jean-Loouis, et al. Endless smectic A liquid crystal polarization controller. Opt. Commun. 2002, 209:101-106
    [124] Katsuhiko Hirabayashi, Chikara Amano. Feed-forward continuous and complete polarization control with a PLZT rotatable-variable waveplate and inline polarimeter. J. Lightwave Technol. 2003, 21(9): 1920-1932
    [125] 周蓓明,王标,毛涵芬.TG28磁光玻璃.中国激光.1996,23(9):857-860.
    [126] A. B. Grudinin and S. Gray. Passive harmonic mode locking in soliton fiber lasers. J. Opt. Soc. Am. B, 1997, 14(1):144-154
    [127] 刘东峰,杜戈果,陈国夫等.自起振被动锁模掺Er~(3+)光纤环形腔孤子激光器的实验研究.中国科学(A辑),1999,29(7):656-661.
    [128] D. Y Tang, W. S. Man and H. Y. Tam. Observation of bound states of solitons in a passively mode-locked fiber laser. Phys. Rev. A, 2001, 64(033814): 1-3.
    [129] L. M. Zhao, D. Y. Tang, F. Lin and B. Zhao. Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity. Opt. Exp., 2004, 12(19):4573-4578
    [130] T. C. Teyo, V. Sinivasagam, M.K. Abdullah et al. An injection-locked erbium-doped fibre ring laser, Optics & Laser Technology. 1999, 31:493-496
    [131] Gong-Ru Lin, Shih-Kai Lee. A feedback-injected Fabry-Perot laser diode filtering technique for side-mode suppression and linewidth reduction of erbium-doped fiber lasers. Optics Communications, 2003, 223:67-74
    [132] 于晋龙,马晓红,杨天新等.20GHz注入锁模光纤激光器实验.光学学报,2002,22(2):254-256
    [133] 朱利凯,于晋龙,王耀天等.注入连续光实现锁模光纤激光器的波长稳定.中国激光,2006,33(2):150-152
    [134] 张欣,张韬,陈伟等.注入锁定掺铒光纤环形腔激光器及波长调谐技术.半导体学报,2007,28(2):258-262
    [135] Moti Margalit, Meir Orenstein, and H. A. Haus. Injection Locking of a Passively Mode-Locked Laser. IEEE Journal of Quantum Electronics, 1996, 32(1): 155-161
    [136] Jeong, Y., Jung, S., and Liu, J A. CMOS impulse generator for UWB wireless communication systems. Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), 2004, 6: 126-129
    [137] Kim, H., Park, D., and Joo, Y. All-digital low-power CMOS pulse generator for UWB system. Electron Lett., 2004, (40): 1534-1535
    [138] Chao Wang, Fei Zeng, and Jianping Yao. All-Fiber Ultrawideband Pulse Generation Based on Spectral Shaping and Dispersion-Induced Frequency-to-Time Conversion. IEEE Photonics Technology Letters, 2007, 19(3): 137-139
    [139] Mohammad Abtahi, Mehrdad Mirshafiei, Sophie LaRochelle et al. All-Optical 500-Mb/s UWB Transceiver: An Experimental Demonstration. Journal of Lightwave Technology, 2008, 26(15):2795-2780
    [140] Yitang Dai and Jianping Yao, et al. Optical Generation of Binary Phase-Coded Direct-Sequence UWB Signals Using a Multichannel Chirped Fiber Bragg Grating. Journal of Lightwave Technology, 2008, 26(15):2513-2518
    [141] 樊祥宁.超宽带无线通信关键技术研究:[博士学位论文].南京:东南大学,2005,70-76
    [142] Hongwei Chen, Minghua Chen, Ciyuan Qiu et al. A Novel Composite Method for Ultra-Wideband Doublet Pulses Generation. IEEE Photonics Technology Letters, 2007, 24(19):2021-2023
    [143] Hongwei Chen, Tiliang Wang, Mo Li et al. Optically tunable multiband UWB pulse generation. Optics Express, 2008, 16(10):7447-7449
    [144] A. aszubowska-Anandarajah and L.P. Barry. UWB system based on Gain-Switched Laser. Microwave Photonics, 2006 MWP'06. International Topical Meeting, 2006, 4153804:1-4
    [145] A. Saeed, Sabira Khatun. Borhanuddin Mohd. et al. Ultra-Wideband Interference Mitigation using Cross-layer Cognitive Radio. IEEE Wireless and Optical Communications Networks, 2006 IFIP International Conference 2006, 1:1-5
    [146] Jason D. McKinney and Andrew M. Weiner. Compensation of the Effects of Antenna Dispersion on UWB Waveforms via Optical Pulse-Shaping Techniques. IEEE Transactions on Microwave Theory and Techniques. 2006, 4(54): 1681-1683
    [147] Pozar D. M. Waveform optimizations for ultrawideband radio systems. IEEE Trans. Antennas Propag, 2003, 9(51):2335-2345
    [148] Le Guennec, Y., Lourdiane, M., Cabon, B. et al. Technologies for UWB-Over-Fiber Lasers. IEEE Electro-Optics Society, 2006, 1:518-519
    [149] Win, M.Z.; Scholtz, R.A. Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Transactions on Communications, 2004, 8(4):679-689

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700