应用于空间相机的主动变形镜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间相机在军事侦察与预警、气象观测、资源调查与环境监测、海洋探测、测绘、空间天文等领域发挥着不可替代的重要作用,然而发射过程中的巨大冲击和在轨运行状态时恶劣的空间环境可能造空间相机成像质量的下降,如何控制由温度场和力学冲击造成的波前畸变是保证系统成像质量的重要问题。目前采用的技术手段,如热控措施和离焦补偿装置等,结构复杂,达到的效果有限。
     为了增强空间相机的环境适应性和提升像质,论文研究在空间相机中采用主动变形镜的新技术,通过变形镜校正相机光学系统的像差,使空间相机在轨时保持较高的成像质量,并且降低热控等技术的难度。论文的主要内容包括以下四部分:
     1、变形镜的参数设计
     以某空间相机为例分析了重力释放和热耦合作用下空间相机出现的波前变化,验证其主要形式为离焦、像散和彗差,以此确定了变形镜的校正目标;分析了空间相机中应用变形镜的环境适应性需求。论文将校正目标、环境适应需求与变形镜的基本参数设计方法结合,分析了空间相机中应用的变形镜的设计原则。研究两种促动器排布方式,提出创新的孔径外排布的设计方法,并对模态法中的多项式拟合问题进行了研究。
     2、变形镜的有限元仿真
     首先介绍了有限单元法的基本原理和有限元建模技术的原则和流程;通过数值转换算法解决了有限元结果的处理和传递问题;通过仿真研究了变形镜校像差精度随促动器孔径外排布位置的变化规律,确定了优化的方案;对比了两种排布方式对像差校正精度的比较,设计方案实现了对彗差校正能力的提升。
     3、主动变形镜的结构设计与检测
     主要论述了主动变形镜实验镜的设计、分析、制造和性能检测。变形镜的采用步进电机结合联轴节作为促动器,有效了提高了促动力精度,且具备良好的线性度;采用MPC单元等关键建模技术对变形镜进行了工程分析,验证实验镜的空间环境适应性;通过磁介质辅助抛光方法完成了大径厚比反射镜面的高精度加工,面形达到RMS0.023λ;采用具备空间适应性的milbond胶实现变形镜的集成,并通过数值算法证明了粘胶仅引起镜面微量变化;利用4D干涉仪进行了静态、动态性能检测和像差校正能力测试,测试结果表明变形镜具有良好的静态和动态特性,响应频率达到28HZ,能够高精度的产生离焦、像散和彗差、精度优于λ/30。与OKO公司的37单元变形镜的对比表明,论文设计的9点促动变形镜提高了彗差的校正精度。
     4、主动变形镜在离轴三反系统中的应用研究
     开展变形镜在离轴三反系统中应用的仿真与实验研究。采用仿真方法探讨了变形镜在离轴三反系统中的应用,验证了次镜作为变形镜校正离轴三反系统像差的可行性。将设计的实验镜作为折叠镜融入到某空间相机中进行像差校正实验,该研究在国内外还未见报道。实验结果表明变形镜能够有效的降低系统像差,相机的MTF由0.364提升至0.428。
     本论文的研究工作围绕着应用在空间相机的变形镜技术,从分析空间相机中像差变化的特点、确定研究的变形镜类型开始,开展了主动变形镜的参数设计方法、集成仿真与优化、结构设计与分析等研究,针对彗差这种难于于校正的像差,提出了孔径外排布方式,提升了校正精度;通过工程分析验证了变形镜的环境适应性;采用干涉仪对变形镜的静态、动态特性和像差校正能力进行了检测;最后结合某空间相机的实验平台开展实验研究,实现了空间相机波前像差的有效校正。
It is important to maintain the high image quality of space-borne cameras in orbit, though the environments of space are very risking and the image quality may be degraded because of force and heat reasons. Traditional thermal and misfocus control techniques are very complex with large source reqirements and limited effect.
     In order to improve the environment adaptive ability of space cameras, an active deformable mirror technique is proposed to be applied to space optical systems in this dissertation. The wavefront error can be corrected and the difficulties of thermal control may be reduced through applying the active deformable mirror.
     There are mainly four contents in this dissertation:
     1. Parameter design of active deformable mirror
     The wavefront variation of a space camaera under gravity release and heat is analysed. The analysis results shows that defocus, astigmatism and coma are the main wavefront error. So defocus, astigmatism and coma are the wavefront errors should be corrected by the designed deformable mirror. Some requests of deformable mirror are analysed in order to apply in space and the basic design principle are determined. Two different support topologies are compared and analysed, and a new topology based on outer effective apteure supporting is proposed. The polynomial fit methods used in modal control are investigated.
     2. Simulation and design of deformable mirror using finite element method
     The main content is how to simulate the deformable mirror by finite element method(FEM). First the finite element principle and basic rules of modeling are introduced; the method of transferring the results of FEM are discussed and programmed; the law of correction accuracy vary with the postions of actuators is studied by simulation, and the scheme of actuator pattern is determined which the coma correction ablity is improved.
     3. Structure design and test of active deformable mirror
     The design, analysis, manufacture and test are discussed. Step motor with spring is used as the actuator. The actuators have high force accuracy and linearity. The MPC elements are used to model the jointing of structure and the deoformable mirror is analysed by FEM. The surface of deformable mirror is processed by magnetortheological polishing mehod, and the RMS of surface error is0.023A. The milbond glue is used to bond the actuator to the mirror, and it is proved that the surface quality error because of bonding is neglectable. The static, dymatic characters of deformable mirror is tested by4D interfereomter, and the response frequency is up to28HZ. Astigmatism, defocus and coma can be generated by the deformable mirror with the accuracy of λ/30. The results of comparison with OKO37channel deformable mirror shows that the designed deformable mirror improved the accuracy of coma.
     4. Research on application of active deformable mirror in off-axis TMA system
     The feasibility of deformable mirror in off-axis TMA system is simulated and discussed, and the system aberration can be corrected by the secondary mirror is proved. The designed mirror is inserted to the TMA system as a folded mirror, and the experiments shows that the deformable mirror can correct the wave front error of system, and the MTF is advanced to0.428from0.364
     The dissertation focuses on the deformable mirror techniques applying to space-borne cameras. The type of deformable mirror is initially determined according to aberration characters of space optical system, and the parameter design method, integrated modeling and optimization, structure design and analysis are developed. The correction ability of coma is improved by a new outer effective aperture actuator pattern. The charaters and application to TMA systems of deformable mirror are experimentally studied, which shows the aberration correction ablity of the deformable mirror.
引文
[1]R. H. Freeman, J. E. Pearson. Deformable mirrors for all seasons and reasons. [J] Applied Optics,1982,21(4):580:588
    [2]Mark A. Ealey and John A. Weliman, Deformable mirrors:design fundamentals, key performance specifications, and parametric trades. Proc. SPIE,1991,1543, 36-51
    [3]F. B. Ray. Active Optics Technology - An Overview Proc. SPIE,1991,1532, 188-206
    [4]J.Feinleib, S.G Lipson, P.F.Cone. Monolithic piezoelectric mirror for wavefront correction.Applied Physics Letters,1974,25(5),311-313
    [5]A.Kokorowski. Analyses of adaptive optical elements made from piezoelectric bimorphs. [J]. J. Opt. Soc. Am,1979,69(1):181-187
    [6]E. Steinlaus, S. G. lipson. Bimorph piezoelectric flexible mirror.[J]. J. Opt. Soc. Am,1979,69(3):478-481
    [7]S. laut, S. Jones, H. Park et al. Bimorph deformable mirror:an appropriate wavefront Corrector for retinal imaging. Proc.SPIE,2005,6007:142 - 156
    [8]宁禹,余浩,周虹等,20单元双压电片变形镜的性能测试与闭环校正实验研究.物理学报,2009,58(7):4717-4723
    [9]宁禹,余浩,周虹等,20单元双压电片变形镜对Zernike像差空间拟合能力的实验研究,光学学报,2009,29(7):1756-1760
    [10]C. Paterson, I. Munro, C. Dainty, A low cost adaptive optics system using a membrane mirror, Optics Express 6,175-185 (2000).
    [11]Martin Booth, Tony Wilson, Hong-Bo Sun, etc. Methods for the characterization of deformable membrane mirrors. APPLIED OPTICS,2005,Vol.44(24), 5131-5139
    [12]李俊.传输型详查相机微小自适应光学系统研究.博士论文.华中科技大学,2006
    [13]R. N. Wilson, F. Franza, L. Noethe. Active Optics I. [J]. Journal of Modern Optics,1987,34(4):485-509
    [14]L. Noethe, F. Franza, P. Giordano, R. N. Wilson, Active Optics II. [J]. Journal of Modern Optics,1988,35(9):1427-1457
    [15]R. N. Wilson, P. Giordano, F. Franza, etc. Active Optics III. [J]. Journal of Modern Optics,1989,36(11):1415-1425
    [16]R. N. Wilson, F. Franza, L. Noethe, etc. Active Optics Ⅳ. [J]. Journal of Modern Optics,1991,38(2):219-243
    [17]E.Wolf. Progress in optics. Vol 43.2002, Elsevier Press.
    [18]杨力,《现代光学制造工程》,科学出版社,2009
    [19]苏定强,崔向群,主动光学-新一代大型望远镜的关键技术,天文学进展,1999,17:1,1-14
    [20]M. Schneerman, X. Cui, D. Enard, L. Noethe and H. Posteme, "ESO VLT Ⅲ: the support system of the primary mirrors", vol.1236, pp.920-928,1990.
    [21]T.Hovsepian, J.Michelin, S.Stanghellini. Design and Tests of the VLT Ml Mirror Passive and Active Supporting System. Proc. SPIE,1998, V 3352,424-435
    [22]Ernst-Dieter Knohi. VLT Primary Support system. Proc. SPIE,1994, Ⅴ 2199, 271-283
    [23]N. Roddier, D. Blanco, L. Goble. The WIYN telescope active optics system. Proc. SPIE,1995, Ⅴ 2479,364-376
    [24]M. Johns and D. Blanco, "The WIYN 3.5 Meter Telescope Project", Advanced Technology Optical Telescopes Ⅴ, vol.2199, SPIE, Kona,1994.
    [25]L. Stepp, N. Roddier, D. Dryden, and M. Cho, "Active Optics System for a 3.5-meter Structured Mirror", Active and Adaptive Optical Systems, vol.1542, SPIE, San Diego,1991.
    [26]L. Stepp, E. Huang, M.Cho. Gemini primary mirror support system Proc. SPIE, 1994, Ⅴ 2199,223-238
    [27]C.M. Mountain, Fred Gillett, Jim Oschmann. The Gemini 8m Telescopes. Proc. SPIE, 1998, Ⅴ 3352,2-13
    [28]M. Mountain, F.Gillett, R. Kurz. The Gemini 8-M Telescopes Project. Proc. SPIE, 1997, Ⅴ 2871,15-23
    [29]M. lye, T.Noguchi, Y. Torii, etc. Active optics experiments with a 62cm thin mirror. Proc. SPIE,1990, Ⅴ 1236,929-939
    [30]Masanori lye and Keiichi Kodaira. Primary mirror support system for the SUBARU telescope. Proc. SPIE,1994, Ⅴ 2199,762-772
    [31]Naruhisa Takato, Tomonori Usudaa, Wataru Tanaka, etc. Performance of active mirror support of Subaru Telescope. Proc. SPIE,2003, Ⅴ 4837, 675-680
    [32]H. M. Martin, S. P. Callahan, B. Cuerden, etc. Active supports and force optimization for the MMT primary mirror. Proc. SPIE,1998, Ⅴ 3352,412-423
    [33]P. L. Schechter, G. Burley, C.L. Hull. Active Optics on the Baade 6.5-m (Magellan Ⅰ) Proc. SPIE,2003, Ⅴ 4837,619-627
    [34]M. W. Johns, "Magellan 6.5-m Telescopes Project:Status Report", Proc. SPIE 2871, pp.49-56,1996.
    [35]Stephen Shectman, Matt Johns. The Magellan Telescopes. Proc. SPIE,2003, V 4837,910-918
    [36]Hill J. M., et al., "The large binocular telescope," Proc. SPIE 7012(02) (2008).
    [37]D. S. Ashbya, J. Kerna, J. M. Hilla, etc. The Large Binocular Telescope primary mirror support control system description and current performance results. Proc. SPIE,2008, V 7018,70184C-1-70184C-12
    [38]C. Neufeld, V. Bennett, A. Sarnik, G. Ruthven, M. Keane, T. S, V. Krabbendam, “Development of an active optical system for the SOAR Telescope," SPIE 2004.
    [39]C. Neufeld, M.C. Zolcinski-Couet, M. Keane, Gregory Ruthven. The active primary mirror system for the SOAR telescope. Proc. SPIE,2004, V 5489, 870-880
    [40]C.Molfese, P.Schipani, L.Marty. VST telescope primary mirror active optics actuators. Proc. SPIE,2008, V 7019,701926-1-701926-7
    [41]P. Schipani, F. Perrotta, L. Marty. Active optics correction forces for the VST 2.6m primary mirror. Proc. SPIE,2006, V 6273,62733A-1-62733A-12
    [42]German Schumacher, Jack Baldwin, Gabriel Perez, Eduardo Mondaca. Active Optics System for the CTIO 4rn Telescope. Proc. SPIE,1995, V 2479,389-398
    [43]L. Salas, L. Gutierrez, M. H. Pedrayes. Active primary mirror support for the 2.1-m telescope at the San Pedro Martir Observatory. [J] Applied Optics,1997, 36(16):3708-3716
    [44]Xiangqun Cui, Yeping Li, Xiaoyu Ni, etc. The active support system of LAMOST reflecting Schmidt plate. Proc. SPIE,1998, V 3352,400-411
    [45]Dehua Yang*, Fanghua Jiang. Support system design of the sub-mirror cell of the LAMOST Schmidt. Proc. SPIE,2006, V 6273,62731H-1- 62731H-8
    [46]Zhang Shengtao, Zhang Zhenchao, Wang You. Control and network system of force actuators for deformable mirror active optics in LAMOST. Proc. SPIE, 2007 6721, N-1-N-8
    [47]Ding-.qiang Su, Xiangqun Cui, Ya-nan Wang, and ZhengqiuYao. Large Sky Area Multiobject Fiber Spectroscopic. Telescope (LAMOST) and its key technology. Proc. SPIE,1998, V 3352,76-90
    [48]Shou-guan Wang, Ding-qiang Su, Yao-quan Chu, Xiangqun Cui, and Ya-nan Wang, "Special configuration of a very large Schmidt telescope for extensive astronomical spectroscopic observation", Appl. Opt., Vol.35, pp.5155-5161, 1996.
    [49]Ding-qiang Su, Sheng-tao Jiang, Wei-yao Zou, Shi-mo Yang, Shu-ying Yang, Hai-ying Zhang, and Qi-chao Zhu, "Experiment system of thin-mirror active optics", SPIE Vol.2199, Advanced Technology Optical Telescopes V, ed. by L. M. Stepp, pp.609-621,1994.
    [50]Ding-qiang Su, Wei-yao Zou, Zheng-chao Zhang, Yuan-gen Qu. et al, "Experiment system of segmented-mirror active optics", SPIE Vol.4003,
    [51]于洋,曹根瑞,主动光学反射镜面形的校正能力及其优化设计,北京理工大学学报,2003,23:2,229-233
    [52]于洋,苏鹏,曹根瑞.主动光学技术在制造标准大反射镜中的应用,光学技术,2002,28(3):207-212
    [53]李宏壮,王建立等,400 mm薄镜面主动光学实验系统,光学精密工程,2009,17:9,2076-2083
    [54]李宏壮,王建立等,薄反射镜主动光学实验系统,光电工程,2009,36(6):120-125
    [55]倪颖,黄启泰,余景池.超轻超薄反射镜主动支撑方案优化设计[J].光电工程,2008,35(9):22-26.
    [56]曾春梅,余景池.非球面成形致动器排布方法的研究光学精密工程:2009,17(2),292-300
    [57]曾志革,凌宁,饶学军.能动薄镜面的有限元分析,光电工程,1995,22(2):8-19
    [58]J. H. Burge,etc Lightweight mirror technology using a thin facesheet with active rigid support, SPIE Vol.3356 . 0277-786X
    [59]姜文汉.自适应光学技术自然杂志28(1):7-13
    [60]Mark A. Ealey. Fully Active Telescope Proc. SPIE 2004,5166,19-26
    [61]M.A. Ealey, "Actuators:Design Fundamentals, Key Performance Specifications, and Parametric Trades," Proc SPIE 1543, pp 346-362, (1991).
    [62]J.T. Trauger, D. Moody, B. Gordon, Y. Gursel, M.A. Ealey, and R.B. Bagwell, "Performance of A Precision High Density Deformable Mirror For Extremely High Contrast Imaging Astronomy from Space", Proc SPIE 4851-1,2002.
    [63]Mark A. Ealey. New Developments in PMN Based Multilayer Actuators. Proc. SPIE 2865, pp 42-45 (1996).
    [64]Mark A. Ealey. Low Voltage SELECT Deformable Mirrors. Proc. SPIE 1993, 1920,91-102
    [65]Mark A. Ealey, John A. Wellman. Highly Adaptive Integrated Meniscus Primary Mirrors. Proc. SPIE 2004, V 5166,165-171
    [66]Mark A. Ealey. High Density Deformable Mirrors to Enable Coronagraphic Planet Detection Proc. SPIE 2004, V 5166,172-179
    [67]Maureen L. Mulvihill and Mark A. Ealey. Large Mirror Actuators in the 21st Century Proc. SPIE 2004, V 5166,197-206
    [68]Roberto Biasi, Daniele Gallieni, Piero Salinari, etc. Contactless thin adaptive mirror technology, past, present and future Proc. SPIE 2010, V 7736, 77362B-1-77362B-14
    [69]G.Brusa, A.Riccardi, S.Ragland, S.Esposito, C.del Vecchio, etc. "Adaptive secondary P30 prototype:laboratory results", SPIE proc.3353, pp 764-775,1998
    [70]G.Brusa, A.Riccardi, V.Biliotti, C.Del Vecchio, etc. "The adaptive secondary mirror for the 6.5m conversion of the multiple mirror telescope:first laboratory testing results", SPIE proc.3762, pp 38-49,1999
    [71]F.Wildi, G.Brusa, A.Riccardi, D.Miller, M.Lloyd-Hart, D.Fisher and H.M.Martin, "1st light of the MMT adaptive optics system with deformable secondary", SPIE proc.4839,2002
    [72]A.Riccardi, G.Brusa, M.Xompero, etc. "The adaptive secondary mirrors for the Large Binocular Telescope:a progress report", SPIE 2004-5489-187
    [73]姜文汉等,37单元自适应光学系统。光电工程,1995,22(1):38-45
    [74]凌宁,官春林,王岚等,61单元分立式压电变形反射镜的研制强激光与粒子束,1998,10(4):527-530
    [75]杨平,许冰,姜文汉等.遗传算法在自适应光学系统中的应用.光学学报,2007,27(9):1628-1632
    [76]Mark A. Ealey and John A. Weliman. Fundamaentals of deformable mirror: design and nanlysis. Proc. SPIE,1989, V 1167,66-84
    [77]Miller S, Angel R, Martin B, at al. Fabrication of ultra thin mirrors for adaptive and space optics [J]. SPIE,1998,3126:391-396
    [78]Martin H M, Anderson DS. Techniques for fabrication of 2-mmthick adaptive secondary mirror[J]. SPIE,1997,2534:134-139.
    [79]Menikoff, A.,1991:Actuator influence functions of active mirrors, Applied Optics,30,833
    [80]J. Nelson, J. Lubliner, T. S. Mast. Telescope mirror supports:plate deflections on point supports. SPIE,1982,332,212-228
    [81]L. Arnold. Optimized axial support topologies for thin telescope mirrors. [J] Optical Engineering,1995,34(2):567-574
    [82]D. S. Wan, J. R. P. Angel, R. E. Parks. Mirror deflection on multiple axial supports. [J] Applied Optics,1989,28(2):354-362
    [83]L. Arnold. Uniform-load and actuator influence functions of a thin or thick annular mirror:application to active mirror support optimization. [J] Applied Optics,1996,35(7):1095-1106
    [84]杨春.解最优化问题的模式搜索算法.[D]:[硕士学位论文].南京:南京航空航天大学,2003
    [85]Matlab 2012b. Product Help.
    [86]邢文训,谢金星.现代优化计算方法.[M].北京:清华大学出版社,2005.77-105
    [87]Gleb Vdovin, Oleg Soloviev, Correction of low order aberrations using continuous deformable mirrors. [J] Optics Express,2008,16 (5):2859-2866
    [88]M. Loktev, D.W. De Lima Monteiro, and G. Vdovin, "Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortions," [J] Opt. Commun.2001,192,91
    [89]J. Y. Wand and D. E. Silva, " Wavefront interpretation with Zernike polynomials," Appl. Opt.19,1510-1518(1980).
    [90]V. N. Mahajan,Zernike polynomials and optical aberrations," Appl. Opt.34, 8060-8062 (1995).
    [91]鄢静舟,雷凡,周必方,高志强.用Zern ike多项式进行波面拟合的几种算法.光学精密工程,1999,7(5):119-128
    [92]惠梅,牛憨笨运用泽尼克多项式进行物面波前数据拟合光子学报,1999,28(12):1113-1116
    [93]单宝忠,王淑岩,牛憨笨,刘颂豪Zernike多项式拟合方法及应用光学精密工程,2002,10(3):318-323
    [94]张伟,刘剑峰,龙夫年,王治乐.基于Zernike多项式进行波面拟合研究光学技术,2005,31(5):675-678
    [95]解滨,肖志宏,余景池.利用Zernike多项式分析超薄镜热变形.光学精密工程,2007,15(2):173-179
    [96]杜平安,甘娥忠,于亚婷.有限元法-原理、建模及应用.[M].北京:国防工业出版社,2006
    [97]李邦国,路华鹏,胡仁喜等Patran2006与Nastran2007有限元分析实例指导教程.[M].北京:机械工业出版社.2008
    [98]Doyle K B, Genberg V L, Michels G J. Integrated optomechanical analysis [M]. Washington:Publication of SPIE,2002:50-61.
    [99]李贤辉.光机集成有限元分析光学面形后处理研究与实现.[D].[硕士学位论文].长春:中科院长春光机所,2004
    [100]刘家国,李林.光机热集成分析中数据转换接口研究.北京理工大学学报,2007,27(5):427-431
    [101]Zemax Corporation. Zemax Use's Guide.2005
    [102]Genberg, V. L., Michels, G. J., and Doyle, K. B., "Orthogonality of Zernike polynomials", in Optomechanical Design and Engineering 2002, A. E. Hatheway, ed., Proc. SPIE 4771, pp.276-286,2002.
    [103]Juergens, R. C, and Coronato, P. A. " Improved method for transfer of FEA results to optical codes", Proc. SPIE 5174,2003
    [104]Patrick A. Coronato* and Richard C. Juergens.Transferring FEA results to optics codes with Zernikes:a review of techniques Proc. SPIE 5174,2003, Vol 5176:1-8
    [105]陈新东,郑立功,张学军.一种新型的变形镜促动器排布-设计与分析.中国 光学年会&中国激光,2011,38(s1),s116007
    [106]陈新东,郑立功,罗霄,张学军.校正低阶像差的9点促动变形镜一设计与实验.《光学学报》,2012,32(3),0322001
    [107]黎发志.计算全息图在离轴光学元件检测及离轴光学系统装调中的应用的研究.博士论文.中国科学院研究生院.2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700