新型调制光阱的理论、实验与单分子应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对光镊技术发展的现状、光镊技术的新形势、与光镊技术相关的新技术以及面向应用中出现的新问题进行详细的调研和充分的论述,确定新型调制光阱的理论、实验与单分子应用研究这一主题。在光镊捕获理论方面,利用蒙特卡洛技术对时分复用光镊的有效刚度随光阱切换频率变化关系进行系统地研究;全息光镊理论和实验方面,采用傅里叶光学原理计算全息相位片,探索细胞层次的捕获和旋转,纳米碟的并行操控等;在单分子生物物理方面,搭建了带荧光探测的高精度激光双光镊,系统研究了抑制剂对DNA折叠动力学的影响。
     在全息光镊理论研究中,本文通过对全息光镊所涉及的理论进行一个详细的研究,运用适应算法计算实现全息阵列光镊所需的相位片,并在实验中得到很好的验证。全息光镊实验方面,我们成功实现全息阵列光镊捕获和排布多个粒子、全息涡旋光镊旋转单个或者多个细胞等。全息光镊应用方面,我们采用高性能计算机对全息阵列光镊进行并行标定,有效地提高光阱刚度的标定速度;采用全息涡旋光镊对酵母细胞的旋转动力学特性进行较详细的研究;设计、制备并表征纳米碟,采用全息光镊对纳米碟进行操控和排布实验;设计软物质综合测量系统。
     在时分复用光镊的理论研究方面,我们采用蒙特卡洛模拟技术对不同占空比的时分复用光阱中的粒子运动位置进行模拟,进而计算出光阱的刚度。数值模拟的结果表明,光阱有效刚度随光阱切换频率的变化关系呈指数增长关系,在高频段稳定到一个恒定的值。我们采用旋转玻片法和声光衍射器等形成时分复用光镊,分别在低频段和宽频段有效地验证了数值模拟的结果。
     在调制光镊应用方面,我们将时分复用光镊和单分子荧光探测技术相结合,实现lbp探测精度的基于时分复用光镊的高精度激光双光镊。该光镊可以工作在多种模式,如恒力模式、变力模式、单分子荧光探测、宽场荧光成像等。实验中,我们设计一系列不同长度、不同序列、不同位置的短单链DNA片段作为抑制剂,研究抑制剂对DNA发卡折叠动力学特性的影响。宽场荧光成像方面,我们实现对单个λDNA进行荧光成像。这一系列实验表明,高精度激光光镊在蛋白质折叠、蛋白与DNA相互作用、马达蛋白、染色质结构等方面具有广阔的应用前景。
     在全息光镊工作之前,我们尝试用激光直写技术制作掩模板,再用离子束刻蚀技术加工纯相位型衍射光学元件,成功实现将高斯光束整形成叠加的拉盖尔高斯光束,还对叠加光场的轨道角动量分布作了详细的研究。我们还通过对数字微镜器件特性的详细研究,设计一系列叉形光栅透射到数字微镜上,将高斯光束整形成拉盖尔高斯光束,并研究了整形前后光束的偏振特性。
     新型调制光镊技术本身也是一个比较宽泛的课题。即包括光镊技术本身的设计、搭建,也包括向应用方面深化。如胶体科学、软物质等领域,采用空间光调制器形成的全息光镊可以同时并行操控微纳米粒子的能力,在胶体的自组装,多个胶体粒子相互作用等方面具有广阔的应用前景。在微纳米尺度研究单个生物分子力和伸长的变化关系,有助于人们了解蛋白质/RNA/DNA或他们的复合物等生物大分子的动力学行为,得到与传统基于粗快实验的生物学手段互补的信息。结合单分子荧光的高精度光镊技术可以测量蛋白质和DNA复合物的构象变化并对某个特定的分子进行可视化等。
     本文的新型调制光镊主要涉及时间调制所形成的时分复用光镊和基于液晶空间光调制器的全息光镊。其中时间调制光镊主要在第四章和第五章介绍;空间调制光镊在第二章和第三章介绍;相关的应用主要在第三章和第五章介绍;在全息光镊的早期论证工作中,我们还采用二元相位片和数字微镜器件对光束进行整形,这两部分内容分别在第六章和第七章介绍;第八章对本文的工作进行一个最后的总结并对后续实验室的相关工作做一个展望。
This thesis starts with the current status and situation of optical tweezers, reviews novel techniques combined with optical tweezers and discusses novel problems that people haven't solved in related application area. The main focus of thesis are theory, experiment and application of novel modulated optical tweezers which covers time-sharing optical tweezers and holographic optical tweezers. On the theory of optical trapping, we utilize Monte Carlo technique to simulate the relationship between effective stiffness and trap switching frequency; On holographic optical tweezers, we employ Fourier optics to calculate the hologram for array tweezers, further study the dynamics of cells under vortex tweezers, parallel calibrate array tweezers with high performance computer and manipulate nanoplatelets holographic optical tweezers; On single molecule biophysics, we constructed state-of-art high resolution dual trap optical tweezers with single molecule detection and systematically studied the DNA hairpin dynamics with different oligonucleotide inhibitors.
     Single molecule biophysics is a highly interdisciplinary subject, involving mechanics, electronics, optics, computer science and biochemistry. Typical approaches to study single molecules are atomic force microscope, optical tweezers, magnetic tweezers, single molecule fluorescence localization and single molecule fluorescence detection. For optical tweezers, since its invention in1986, it becomes an important research tool in colloidal science, soft matter and single molecule biophysics. Optical tweezers technique itself has developed with those new requirements, absorbing many new techniques. Time-sharing and spatial light modulation are two commonly utilized methods among those novel techniques.
     This thesis mainly discusses some topics on holographic optical tweezers based on spatial modulation, time-sharing optical tweezers and their related applications in single molecule biophysics. The holograms were calculated through Fourier optics, and the effective stiffness of time-sharing optical tweezers was studied with Monte Carlo technique. Holographic optical tweezers was utilized to capture and rotate cells, to parallel manipulate nanoplatelets.
     On the theory of holographic optical tweezers, we summarize related theories of holographic optical tweezers and utilize the adaptive-additive algorithm to calculate the holograms, and our algorithm is verified in the holographic optical tweezers experiments. On the experimental part, we successfully capture and arrange multiple microscopic particles with array tweezers and rotate single or multiple cells with vortex tweezers; we studied the dynamics of yeast cell in vortex tweezers in more detail; we designed, fabricated, characterized ZrP nanoplatelets and use the holographic optical tweezers to manipulate and arrange them; we design hybrid system based on holographic tweezers and high resolution tweezers for measurement of soft matter.
     On the theoretical part of time-sharing optical tweezers, we utilize Monte Carlo technique to simulate the Brownian motion of microsphere in time-sharing optical tweezers and further calculate the effective trap stiffness. Simulation results demonstrate that the effective stiffness grows exponentially with the trap switching frequency and saturates at higher frequencies. We employ rotating glass plate and acousto-optic deflector to form time sharing optical tweezers and the experimental results confirmed the simulation both in the low frequency range and in a broad frequency range.
     On the application of time-sharing optical tweezers, we combined time-sharing optical tweezers with single molecule fluorescence detection, successfully achieved lbp resolution based on the time-sharing high resolution dual trap optical tweezers. This hybrid tweezers machine can work on different modules, including constant force mode, variable force mode, single molecule fluorescence detection, wide field fluorescent imaging. We designed and synthesized a series of DNA oligunucleotides with different length, different sequence, different position as inhibitor and studied the dynamics change of DNA hairpin induced by the inhibitor. We successfully imaged single λDNA molecule with wide field fluorescent microscopy.
     Novel modulation optical tweezers is a broad research area, involving the design and construction of optical tweezers and the deepened application of this technique. In colloidal and soft matter sciences, holographic optical tweezers based on liquid crystal spatial light modulator with the ability to parallel manipulate nanoparticle will potentially be employed to study the colloidal assembly, multiple particle interaction. The study of force and extension change in microscopic and nanoscopic level helps people understand the dynamics of macromolecules such as protein/RNA/DNA or their complex structure. These information is not obtainable and complementary in traditional approaches based on bulk experiment. High resolution optical tweezers combined with single molecule detection are able to measure the conformational changes and visualize the macromolecule simultaneously.
     The novel modulation tweezers in this thesis includes time sharing optical tweezers with time multiplexing and holographic optical tweezers with liquid crystal spatial light modulator. Time sharing optical tweezers will be introduced in Chapter4with single molecule application in Chapter5; Chapter2and3will introduce the theoretical, experimental and application part of holographic optical tweezers utilizing liquid crystal spatial light modulator; prior to the development of holographic optical tweezers, we fabricated pure phase hologram with ion etching technique and shaped the laser beam into superimposed Laguerre-Gaussian beam which can be found in Chapter6; Chapter7demonstrates another spatial light modulation technique to shape the laser beam with amplitude type modulator, digital micromirror device; Chapter8summarizes the whole project during my PhD thesis and prospectively overview the future work of holographic optical tweezers in our lab.
引文
[1]Liphardt J, Onoa B, Smith SB et al. Reversible Unfolding of Single RNA Molecules by Mechanical Force[J]. Science.2001,292(5517):733-737.
    [2]Chen G, Chang K-Y, Chou M-Y et al. Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of-1 ribosomal frameshifting[J]. Proceedings of the National Academy of Sciences.2009,106(31):12706-12711.
    [3]Anthony PC, Perez CF, Garcia-Garcia C et al. Folding energy landscape of the thiamine pyrophosphate riboswitch aptamer[J]. Proceedings of the National Academy of Sciences.2012.
    [4]Greenleaf WJ, Frieda KL, Foster DAN et al. Direct Observation of Hierarchical Folding in Single Riboswitch Aptamers[J]. Science.2008,319(5863):630-633.
    [5]Qu X, Wen J-D, Lancaster L et al. The ribosome uses two active mechanisms to unwind messenger RNA during translation[J]. Nature.2011,475(7354):118-121.
    [6]郝柏林.生物领域是数理和计算机科学的广阔用武之地[J].科技导报.2010,28(11):3.
    [7]Saha A, Wittmeyer J, Cairns BR. Chromatin remodelling:the industrial revolution of DNA around histones[J]. Nat Rev Mol Cell Biol.2006,7(6):437-447.
    [8]Wang MD, Yin H, Landick R et al. Stretching DNA with optical tweezers[J]. Biophysical journal.1997,72(3):1335-1346.
    [9]Zwanzig R, Szabo A, Bagchi B. Levinthal's paradox[J]. Proceedings of the National Academy of Sciences of the United States of America.1992,89(1):20-22.
    [10]Onuchic JN, Luthey-Schulten Z, Wolynes PG. Theory of protein folding:The Energy Landscape Perspective[J]. Annual Review of Physical Chemistry.1997,48(1): 545-600.
    [11]Onuchic JN, Wolynes PG Theory of protein folding[J]. Current Opinion in Structural Biology.2004,14(1):70-75.
    [12]舒咬根,欧阳钟灿.生物分子马达[J].物理学报.2007,36(10):735-741.
    [13]Sarangapani KK, Yago T, Klopocki AG et al. Low force decelerates L-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan[J]. Journal of Biological Chemistry.2004,279(3):2291-2298.
    [14]Long M, Zhao H, Huang KS et al. Kinetic measurements of cell surface E-selectin/carbohydrate ligand interactions[J]. Annals of Biomedical Engineering. 2001,29(11):935-946.
    [15]Ribeck N, Saleh OA. Multiplexed single-molecule measurements with magnetic tweezers[J]. Review of Scientific Instruments.2008,79(9):094301
    [16]Knoner G, Rolfe BE, Campbell JH et al. Mechanics of cellular adhesion to artificial artery templates [J]. Biophysical Journal.2006,91:3085-3096.
    [17]Stout AL. Detection and characterization of individual intermolecular bonds using optical tweezers[J]. Biophysical Journal.2001,80(6):2976-2986.
    [18]Mitri FG. Radiation force of acoustical tweezers on a sphere:The case of a high-order Bessel beam of quasi-standing waves of variable half-cone angles[J]. Applied Acoustics.2010,71(5):470-472.
    [19]Evans E, Leung A, Hammer D et al. Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force[J]. Proceedings of the National Academy of Sciences of the United States of America.2001,98(7): 3784-3789.
    [20]Neuman KC, Nagy A. Single-molecule force spectroscopy:optical tweezers, magnetic tweezers and atomic force microscopy[J]. Nature Methods.2008,5(6): 491-505.
    [21]Weisel JW, Shuman H, Litvinov RI. Protein-protein unbinding induced by force: single-molecule studies[J]. Current Opinion in Structural Biology.2003,13(2): 227-235.
    [22]Moffitt JR, Chemla YR, Smith SB et al. Recent Advances in Optical Tweezers[J]. Annual Review of Biochemistry.2008,77(1):205-228.
    [23]Cui Y, Bustamante C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure[J]. Proceedings of the National Academy of Sciences of the United States of America.2000,97(1):127-132.
    [24]Abbondanzieri EA, Greenleaf WJ, Shaevitz JW et al. Direct observation of base-pair stepping by RNA polymerase[J]. Nature.2005,438(7067):460-465.
    [25]Dame RT, Noom MC, Wuite GJL. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation[J]. Nature.2006,444(16):387-390.
    [26]郝柏林.基因组测序永无止境的根本原因[J].科学.2011,63(5):5-10.
    [27]Woodside MT, Behnke-Parks WM, Larizadeh K et al. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins[J],2006,103(16):6190-6195.
    [28]郝柏林.布朗运动理论一百年[J].物理.2011,40(1):1-7.
    [29]Watanabe TM, Iwane AH, Tanaka H et al. Mechanical Characterization of One-Headed Myosin-V Using Optical Tweezers[J]. PLoS ONE.2010,5(8):e12224.
    [30]Dominguez-Espinosa G, Synytska A, Drechsler A et al. Optical tweezers to measure the interaction between poly(acrylic acid) brushes[J]. Polymer.2008,49(22): 4802-4807.
    [31]Mossa A, Huguet JM, Ritort F. Investigating the thermodynamics of small biosystems with optical tweezers[J]. Physica E:Low-dimensional Systems and Nanostructures.2010,42(3):666-671.
    [32]Wu JG, Li YM, Lu D et al. Probing membrane elasticity of red blood cell with osmotic pressures using single optical tweezers[J]. Cryo Lett.2009,30(2):89-95.
    [33]Kruithof M, Chi en F-T, Routh A et al. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber[J]. Nat Struct Mol Biol.2009,16(5):534-540.
    [34]Mauritz J, Esposito A, Tiffert T et al. Biophotonic techniques for the study of malaria-infected red blood cells[J]. Medical and Biological Engineering and Computing.2010,48(10):1055-1063.
    [35]Fuhrmanek A, Sortais YRP, Grangier P et al. Measurement of the atom number distribution in an optical tweezer using single-photon counting[J]. Physical Review A. 2010,82(2):023623.
    [36]Li T, Kheifets S, Medellin D et al. Measurement of the Instantaneous Velocity of a Brownian Particle[J]. Science.2010,328(5986):1673-1675.
    [37]Collin D, Ritort F, Jarzynski C et al. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies[J]. Nature.2005,437(7056): 231-234.
    [38]Ritort F. Fluctuations in open systems[J]. Physics.2009,2(43).
    [39]Mossa A, Lorenzo Sd, Huguet JM et al. Measurement of work in single-molecule pulling experiments[J]. The Journal of Chemical Physics.2009,130: 234116.
    [40]Campisi M, Talkner P, Hanggi P. Fluctuation Theorem for Arbitrary Open Quantum Systems[J]. Physical Review Letters.2009,102(21):210401.
    [41]Li T, Kheifets S, Raizen MG. Millikelvin cooling of an optically trapped microsphere in vacuum[J]. Nat Phys.2011,7(7):527-530.
    [42]Huang R, Chavez I, Taute KM et al. Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid[J]. Nat Phys.2011,7(7): 576-580.
    [43]SchneiderCh, EnderleinM, HuberT et al. Optical trapping of an ion[J]. Nat Photon.2010,4(11):772-775.
    [44]Kaz DM, McGorty R, Mani M et al. Physical ageing of the contact line on colloidal particles at liquid interfaces[J]. Nat Mater.2011, advance online publication.
    [45]Meng B-H, Wu J-G, Li Y-M et al. Aging process of the bond between colloidal particles measured using laser tweezers[J]. Colloids and Surfaces A:Physicochem. and Eng. Aspects.2008,322:253-255.
    [46]高红芳,任煜轩,刘伟伟et al. 酵母细胞在涡旋光阱中的旋转动力学研究[J].中国激光.2011,38(4):0404002.
    [47]Ren Y-X, Li M, Huang K et al. Experimental generation of Laguerre-Gaussian beam using digital micromirror device[J]. Appl. Opt.2010,49(10):1838-1844.
    [48]吴建光,任煜轩,王自强et al.旋转玻片法实现分时复用多光阱[J].中国激光.2009,36(10):2751-2756.
    [49]Ren Y-X, Wu J-G, Chen M et al. Stability of novel time-sharing dual optical tweezers using a rotating tilt glass plate[J]. Chinese Physics Letters.2010,27(2): 028703.
    [50]Ren Y-X, Wu J-G, Zhong M-C et al. Monte Carlo simulation of effective stiffness of time-sharing optical tweezers[J]. Chinese Optics Letters.2010,8(2): 170-172.
    [51]Hough LA, Ou-Yang HD. Viscoelasticity of aqueous telechelic poly(ethylene oxide) solutions:Relaxation and structure[J]. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics).2006,73(3):031802-031808.
    [52]Wei M-T, Zaorski A, Yalcin HC et al. A comparative study of living cell micromechanical properties by oscillatory optical tweezers[J]. Opt. Express.2008, 16(12):8594-8603.
    [53]Moffitt JR, Chemla YR, Izhaky D et al. Differential detection of dual traps improves the spatial resolution of optical tweezers[J]. Proceedings of the National Academy of Sciences.2006,103(24):9006-9011.
    [54]Greenleaf WJ, Woodside MT, Abbondanzieri EA et al. Passive All-Optical Force Clamp for High-Resolution Laser Trapping[J]. Physical Review Letters.2005, 95(20):208102.
    [55]Comstock MJ, Ha T, Chemla YR. Ultrahigh-resolution optical trap with single-fluorophore sensitivity[J]. Nat Meth.2011,8(4):335-340.
    [56]Jauffred L, Richardson AC, Oddershede LB. Three-Dimensional Optical Control of Individual Quantum Dots[J]. Nano Lett.2008,8(10):3376-3380.
    [57]Selhuber-Unkel C, Zins I, Schubert O et al. Quantitative Optical Trapping of Single Gold Nanorods[J]. Nano Lett.2008,8(9):2998-3003.
    [58]Yang AHJ, Moore SD, Schmidt BS et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides[J]. Nature.2009,457(7225): 71-75.
    [59]Wiederhecker GS, Chen L, Gondarenko A et al. Controlling photonic structures using optical forces[J]. Nature.2009,462(7273):633-636.
    [60]Ohlinger A, Deak A, Lutich AA et al. Optically Trapped Gold Nanoparticle Enables Listening at the Microscale[J]. Physical Review Letters.2012,108(1): 018101.
    [61]Grier DG. A revolution in optical manipulation[J]. Nature.2003,424:810-816.
    [62]Block SM, Goldstein LSB, Schnapp BJ. Bead movement by single kinesin molecules studied with optical tweezers[J]. Nature.1990,348(6299):348-352.
    [63]Ashikin A. Acceleration and trapping of particles by radiation pressure[J]. Phys. Rev. Lett.1970,24(4):156-159.
    [64]Ashkin A, Dziedzic JM, Bjorkholm JE et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Opt. Lett.1986,11(5):288-290.
    [65]Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime[J]. Biophys. J.1992,61:569-582.
    [66]Kaputa DS, Kuzmin AN, Kachynski AV et al. Dynamics of multiple trapping by a single-beam laser tweezer[J]. Appl. Opt.2005,44(19):3963-3968.
    [67]Mio C, Gong T, Terray A et al. Design of a scanning laser optical trap for multiparticle manipulation[J]. Rev. Sci. Instrum.2000,71(5):2196-2200.
    [68]Ren Y-X, Wu J-G, Li Y-M. Application of Monte Carlo Simulation in Optical Tweezers. In:Mordechai S, ed. Applications of Monte Carlo Method in Science and Engineering. Rijeka:Intech; 2011:21-34.
    [69]Ou-Yang HD. Design and Applications of Oscillating Optical Tweezers for Direct Measurements of Colloidal Forces. In:Colloid-Polymer Interactions:From Fundamentals to Practice. New York:John Wiley and Sons; 1999.
    [70]欧阳钟灿.软物质[J].创新科技.2007,(5):44-45.
    [71]陆坤权,刘寄星.软物质物理--物理学的新学科[J].物理.2009,38(7):453-461.
    [72]Lee H, Ferrer JM, Nakamura F et al. Passive and active microrheology for cross-linked F-actin networks in vitro [J]. Acta Biomaterialia.2010,6(4):1207-1218.
    [73]Zhang X, Halvorsen K, Zhang C-Z et al. Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein von Willebrand Factor[J]. Science.2009,324(5932): 1330-1334.
    [74]Gao Y, Sirinakis G, Zhang Y. Highly Anisotropic Stability and Folding Kinetics of a Single Coiled Coil Protein under Mechanical Tension[J]. Journal of the American Chemical Society.2011,133(32):12749-12757.
    [75]Xu S, Sun Z. Progress in coagulation rate measurements of colloidal dispersions[J]. Soft Matter.2011,7; 11298-11308.
    [76]Xu SH, Lou LR, Li YM et al. On the aggregation kinetics of two particles trapped in an optical tweezers[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects.2005,255:159-163.
    [77]Xu S-H, Li Y-M, Lou L-R et al. Computer simulation of the collision frequency of two particles in optical tweezers[J]. Chin. Phys.2005,14(02):382-385.
    [78]Xu SH, Sun ZW. Computer simulation on the collision-sticking dynamics of two colloidal particles in an optical trap[J]. J. Chem. Phys.2007,126:144903.
    [79]Neuman KC, Block SM. Optical trapping[J]. Review of Scientific Instruments. 2004,75(9):2787-2809.
    [80]吴建光,陈晨,朱敏生et aZ.光镊技术研究小鼠细胞膜力学特性.In:中国遗传学会第十届全国激光生物学学术会议;2009;武汉;2009.p.20.
    [81]Harris J, McConnell G. Optical trapping and manipulation of live T cells with a low numerical aperture lens[J]. Opt. Express.2008,16(18):14036-14043.
    [82]Pitzek M, Steiger R, Thalhammer G et al. Optical mirror trap with a large field of view[J]. Opt. Express.2009,17(22):19414-19423.
    [83]Ojala H, Korsback A, Wallin AE et al. Optical position clamping with predictive control[J]. Applied Physics Letters.2009,95(18):181104-181103.
    [84]Jiang H, Powers TR. Curvature-Driven Lipid Sorting in a Membrane Tubule[J]. Physical Review Letters.2008,101(1):018103.
    [85]Evans EA, Waugh R, Melnik L. Elastic area compressibility modulus of red cell membrane[J]. Biophysical Journal.1976,16(6):585-595.
    [86]Bo L, Waugh RE. Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles[J]. Biophysical Journal.1989,55(3): 509-517.
    [87]Derenyi I, Julicher F, Prost J. Formation and Interaction of Membrane Tubes[J]. Physical Review Letters.2002,88(23):238101.
    [88]Cuvelier D, Derenyi I, Bassereau P et al. Coalescence of Membrane Tethers: Experiments, Theory, and Applications[J]. Biophysical Journal.2005,88(4): 2714-2726.
    [89]Ho JS, Baumgartner A. Simulations of Fluid Self-Avoiding Membranes[J]. EPL (Europhysics Letters).1990,12(4):295.
    [90]Roux A, Cappello G, Cartaud J et al. A minimal system allowing tubulation with molecular motors pulling on giant liposomes[J]. Proceedings of the National Academy of Sciences of the United States of America.2002,99(8):5394-5399.
    [91]Nambiar R, McConnell RE, Tyska MJ. Control of cell membrane tension by myosin-I[J]. Proceedings of the National Academy of Sciences.2009,106(29): 11972-11977.
    [92]Bosanac L, Aabo T, Bendix PM et al. Efficient Optical Trapping and Visualization of Silver Nanoparticles[J]. Nano Lett.2008,8(5):1486-1491.
    [93]Moffitt JR, Chemla YR, Smith SB et al. Recent Advances in Optical Tweezers[J]. Annu. Rev. Biochem.2008,77:19.11-19.24.
    [94]Izdebskaya YV, Shvedov VG, Desyatnikov AS et al. Counterpropagating nematicons in bias-free liquid crystals[J]. Opt. Express.2010,18(4):3258-3263.
    [95]Lin T-H, Huang Y, Zhou Y et al. Photo-patterning micro-mirror devices using azo dye-doped cholesteric liquid crystals[J]. Opt. Express.2006,14(10):4479-4485.
    [96]Hu Y, Zhang P, Lou C et al. Optimal control of the ballistic motion of Airy beams[J]. Opt. Lett.2010,35(13):2260-2262.
    [97]Ota T, Kawata S, Sugiura T et al. Dynamic axial-position control of a laser-trapped particle by wave-front modification[J]. Opt. Lett.2003,28(6): 465-467.
    [98]Liesener J, Reicherter M, Tiziani HJ. Determination and compensation of aberrations using SLMs[J]. Optics Communications.2004,233(1-3):161-166.
    [99]Dai HT, Sun XW, Luo D et al. Airy beams generated by a binary phase element made of polymer-dispersed liquid crystals[J]. Opt. Express.2009,17(22): 19365-19370.
    [100]Wang H-T, Wang X-L, Li Y et al A new type of vector fields with hybrid states of polarization[J]. Opt. Express.2010,18(10):10786-10795.
    [101]Dufresne ER, Grier DG. Optical tweezer arrays and optical substrates created with diffractive optics[J]. Rev. Sci. Instrum.1998,69(5):1974-1977.
    [102]Dufresne ER, Spalding GC, Dearing MT et al. Computer-generated holographic optical tweezer arrays[J]. Rev. Sci. Instrum.2001,72(3):1810-1816.
    [103]Reicherter M, Haist T, Wagemann EU et al. Optical particle trapping with computer-generated holograms written on a liquid-crystal display[J]. Opt. Lett.1999, 24(9):608-610.
    [104]Gibson G, Carberry DM, Whyte G et al. Holographic assembly workstation for optical manipulation[J]. J. Opt. A:Pure Appl. Opt.2008,10:044009.
    [105]Melville H, Milne GF, Spalding GC et al. Optical trapping of three-dimensional structures using dynamic holograms[J]. Opt. Express.2003,11(26): 3562-3567.
    [106]Bowman RW, et al. iTweezers:optical micromanipulation controlled by an Apple iPad[J]. Journal of Optics.2011,13(4):044002.
    [107]Kurokawa K, Tamada D, Makita S et al. Adaptive optics retinal scanner for one-micrometer light source[J]. Opt. Express.2010,18(2):1406-1418.
    [108]Shaw M, Hall S, Knox S et al. Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy[J]. Opt. Express. 2010,18(7):6900-6913.
    [109]任煜轩,周金华,吴建光etal.全息光镊一光镊家族中极具活力的成员[J].激光与光电子学进展.2008,45(11):35-41.
    [110]Chang C-M, Shieh H-PD. Design of illumination and projection optics for projectors with single digital micromirror devices[J]. Appl. Opt.2000,39(19): 3202-3208.
    [111]任煜轩,吴建光,周小为 et el.相位片角向衍射产生拉盖尔高斯光束的实 验研究[J].物理学报.2010,59(6):3930-3935.
    [112]Gennes PGd, Prost J, eds. The Physics of Liquid Crystals.2nd ed:Oxford University Press; 1993.
    [113]Lydon J. Chromonic mesophases[J]. Current Opinion in Colloid & Interface Science.2004,8(6):480-490.
    [114]Vieweg N, Jansen C, Shakfa MK et al. Molecular properties of liquid crystals in the terahertz frequency range[J]. Opt. Express.2010,18(6):6097-6107.
    [115]Thurston RN, Berreman DW. Equilibrium and stability of liquid-crystal configurations in an electric field[J]. Journal of Applied Physics.1981,52(1): 508-509.
    [116]Osten S. SLM pluto-vis specifications. In:Ren Y, ed. Hefei:Private communication; 2010.
    [117]Davis JA, Moreno I, Tsai P. Polarization Eigenstates for Twisted-Nematic Liquid-Crystal Displays[J]. Appl. Opt.1998,37(5):937-945.
    [118]Guo C-S, Yue S-J, Wang X-L et al. Polarization-selective diffractive optical elements with a twisted-nematic liquid-crystal display[J]. Appl. Opt.2010,49(7): 1069-1074.
    [119]葛爱明,隋展,徐克口.反射型LCOS器件纯相位调制特性的研究[J].物理学报.2003,52(10):2481-2485.
    [120]Cizmar T, Mazilu M, Dholakia K. In situ wavefront correction and its application to micromanipulation[J]. Nat Photon.2010,4(6):388-394.
    [121]Gerchberg RW, Saxton WO. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik.1972,35:237-246.
    [122]Deng X-Q Li Y-P, Qiu Y et al. Phase-Mixture Algorithm Applied to Design of Pure Phase Elements[J]. Chinese Journal of Lasers.1995, B4(5):447-454.
    [123]杨国桢,顾本源.用振幅-相位型全息透镜实现光学变换的一般理论[J].物理学报.1981,30(3):414-417.
    [124]Seldowitz MA, Allebach JP, Sweeney DW. Synthesis of digital holograms by direct binary search[J]. Appl. Opt.1987,26(14):2788-2798.
    [125]Georgiou A, Wilkinson TD, Collings N et al. An algorithm for computing spot-generating holograms[J]. J. Opt. A:Pure Appl. Opt.2008,10(015306).
    [126]Kirkpatrik S, Gelatt CP, Vecchi MP. Optimization by simulated annealing[J]. Science.1983,220(4598):671-680.
    [127]Bennett AP, Shapiro JL. Analysis of genetic algorithms using statistical mechanics[J]. Phys. Rev. Lett.1994,72(9):1305-1309.
    [128]Leach J, Wulff K, Sinclair G et al. Interactive approach to optical tweezers control[J]. Appl. Opt.2006,45(5):897-903.
    [129]Sun B, Roichman Y, Grier DG. Theory of holographic optical trapping[J]. Opt. Express.2008,16(20):15765-15776.
    [130]Montes-Usategui M, Pleguezuelos E, Andilla J et al. Fast generation of holographic optical tweezers by random mask encoding of Fourier components [J]. Opt. Express.2006,14(6):2101-2107.
    [131]Haist T, Schonleber M, Tiziani HJ. Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays[J]. Opt. Commun.1997, 140:299-308.
    [132]He H, Friese MEJ, Heckenberg NR et al. Direct observation of transfer of angular momentum to absorptive particales from a laser beam with a phase singularity[J]. Phys. Rev. Lett.1995,75(5):826-829.
    [133]Paterson L, MacDonald MP, Arlt J et al. Controlled rotation of optically trapped microscopic particles[J]. Science.2001,292:912-914.
    [134]van der Horst A, Forde NR. Calibration of dynamic holographic optical tweezers for force measurements on biomaterials[J]. Opt. Express.2008,16(25): 20987-21003.
    [135]Farre A, Shayegan M, Lopez-Quesada C et al. Positional stability of holographic optical traps[J]. Opt. Express.2011,19(22):21370-21384.
    [136]Fazal FM, Block SM. Optical tweezers study life under tension[J]. Nat Photon. 2011,5(6):318-321.
    [137]Merrill JW, Sainis SK, Blawzdziewicz J et al. Many-body force and mobility measurements in colloidal systems[J]. Soft Matter.2010,6(10):2187-2192.
    [138]Brown AT, Kotar J, Cicuta P. Active rheology of phospholipid vesicles[J]. Physical Review E.2011,84(2):021930.
    [139]Tassieri M, Gibson GM, Evans RML et al. Measuring storage and loss moduli using optical tweezers:Broadband microrheology[J]. Physical Review E.2010,81(2): 026308.
    [140]周炳琨,高以智,陈倜嵘et al, eds.激光原理.第6版ed.北京:国防工业出版社;2009.
    [141]Volke-Sepulveda K, Garces-Chavez V, Chavez-Cerda S et al. Orbital angular momentum of a high-order Bessel light beam[J]. J. Opt. B:Quantum Semiclass. Opt. 2002,4 S82-S89.
    [142]Allen L, Beijersbergen MW, Spreeuw RJC et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys. Rev. A. 1992,45(11):8185-8189.
    [143]蔡田,张晓波,叶芳伟 et al.产生拉盖尔-高斯模的全息光栅实验研究[J].光学学报Acta Optica Sinica.2005,25(11):1457-1460.
    [144]Friese MEJ, Enger J, Rubinsztein-Dunlop H et al. Optical angular-momentum transfer to trapped absorbing particles[J]. Physical Review A.1996,54(2):1593.
    [145]Keen S, Leach J, Gibson G et al. Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers[J]. J. Opt. A:Pure Appl. Opt.2007,9:S264-S266.
    [146]Gibson GM, Leach J, Keen S et al. Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy[J]. Opt. Express.2008,16(19):14561-14570.
    [147]Saunter CD. Quantifying Subpixel Accuracy:An Experimental Method for Measuring Accuracy in Image-Correlation-Based, Single-Particle Tracking[J]. Biophysical Journal.2010,98(8):1566-1570.
    [148]van der Horst A, Forde NR. Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth[J]. Opt. Express.2010,18(8):7670-7677.
    [149]Gong Z, Chen HT, Xu SH et al. Monte-Carlo simulation of optical trap stiffness measurement[J]. Opt. Commun.2006,263:229-234.
    [150]Wong WP, Halvorsen K. The effect of integration time on fluctuation measurements:calibrating an optical trap in the presence of motion blur[J]. Opt. Express.2006,14(25):12517-12531.
    [151]Gao H-F, Ren Y-X, Gong L et al. Parallel calibration of multiple trap stiffness in holographic optical tweezers[J]. Chinese Physics Letters.2012, submitted.
    [152]Zhong M-C, Zhou J-H, Ren Y-X et al. Rotation of birefrigent particles in optical tweezers with spherical aberration[J]. Appl. Opt.2009,48(22):4397-4402.
    [153]Sun L, Boo WJ, Sue H-J et al. Preparation of [small alpha]-zirconium phosphate nanoplatelets with wide variations in aspect ratios[J]. New Journal of Chemistry.2007,31(1):39-43.
    [154]任煜轩,龚雷,高红芳et al, inventors;基于新型杂化光镊的软物质综合测量系统.中国.2011 12.6.
    [155]McCann LI, Dykman M, Golding B. Thermally activated transitions in a bistable three-dimensional optical trap[J]. Nature.1999,402:785-787.
    [156]Joykutty J, Mathur V, Venkataraman V et al. Direct Measurement of the Oscillation Frequency in an Optical-Tweezers Trap by Parametric Excitation[J]. Physical Review Letters.2005,95(19):193902.
    [157]Kubo R. Brownian Motion and Nonequilibrium Statistical Mechanics[J]. Science.1986,233(4761):330-334.
    [158]Wang GM, Sevick EM, Mittag E et al Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales[J]. Physical Review Letters.2002,89(5):050601.
    [159]Li T, Kheifets S, Medellin D et al Measurement of the Instantaneous Velocity of a Brownian Particle[J]. Science.2010:1189403.
    [160]Li T, Kheifets S, Raizen MG Millikelvin cooling of an optically trapped microsphere in vacuum[J]. Nat Phys.2011, advance online publication.
    [161]Helfer E, Harlepp S, Bourdieu L et al. Microrheology of Biopolymer-Membrane Complexes[J]. Physical Review Letters.2000,85(2):457.
    [162]Jeney S, Lukic B, Kraus JA et al. Anisotropic Memory Effects in Confined Colloidal Diffusion[J]. Physical Review Letters.2008,100(24):240604.
    [163]Franosch T, Jeney S. Persistent correlation of constrained colloidal motion[J]. Physical Review E.2009,79(3):031402.
    [164]Eduardo de Oliveira Rodrigues J, Dickman R. Asymmetric exclusion process in a system of interacting Brownian particles[J]. Physical Review E.2010,81(6): 061108.
    [165]Huang R, Chavez I, Taute KM et al. Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid[J]. Nat Phys.2011, advance online publication.
    [166]Sasaki K, Koshioka M, Misawa H et al. Pattern formation and flow control of fine particles by laser-scanning micromanipulation[J]. Opt. Lett.1991,16(9): 1463-1465.
    [167]Liao G-B, Bareil PB, Sheng Y et al. One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells[J]. Opt. Express. 2008,16(3):1996-2004.
    [168]Ito S, Toitani N, Yamauchi H et al. Evaluation of radiation force acting on macromolecules by combination of Brownian dynamics simulation with fluorescence correlation spectroscopy[J]. Physical Review E.2010,81(6):061402.
    [169]Yuan X, Zhang Y, Cao R et al. Dynamic steering beams for efficient force measurement in optical manipulation[J]. Chin. Opt. Lett.2011,9(3):031201.
    [170]Deng Y, Bechhoefer J, Forde MR. Brownian motion in a modulated optical trap[J]. J. Opt. A:Pure Appl. Opt.2007,9:S256-S263.
    [171]Seol Y, Visscher K, Walton DB. Suppression of Noise in a Noisy Optical Trap[J]. Physical Review Letters.2004,93(16):160602.
    [172]Box GEP, Lucas HL. Design of experiments in non-linear situations [J]. Biometrika.1959,46:77-90.
    [173]Biebricher A, Wende W, Escude C et al. Tracking of Single Quantum Dot Labeled EcoRV Sliding along DNA Manipulated by Double Optical Tweezers[J]. Biophysical Journal.2009,96(8):L50-L52.
    [174]Lin B, Yu J, Rice SA. Direct measurements of constrained Brownian motion of an isolated sphere between two walls[J]. Physical Review E.2000,62(3):3909.
    [175]Zhou M, Yang H, Di J et al. Manipulation on human red blood cells with femtosecond optical tweezers[J]. Chin. Opt. Lett.2008,6(12):919-921.
    [176]Moh KJ, Yuan X-C, Tang DY et al. Generation of femtosecond optical vortices using a single refractive optical element[J]. Appl. Phys. Lett.2006,88: 091103.
    [177]Zhang Z, Peng L-Y, Gong Q et al. Momentum space analysis of multiphoton double ionization of helium by intense attosecond xuv pulses[J]. Opt. Express.2010, 18(9):8976-8989.
    [178]Chen J, Itakura R, Nakajima T. Characterization of attosecond XUV pulses utilizing a broadband UV~VUV pumping[J]. Opt. Express.2010,18(3):2020-2035.
    [179]Tirlapur UK, Konig K. Cell biology:Targeted transfection by femtosecond laser[J]. Nature.2002,418(6895):290-291.
    [180]Shane JC, Mazilu M, Lee WM et al. Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers[J]. Opt. Express.2010, 18(7):7554-7568.
    [181]Kozawa Y, Sato S. Demonstration and selection of a single-transverse higher-order-mode beam with radial polarization[J]. J. Opt. Soc. Am. A.2010,27(3): 399-403.
    [182]Arlt J, Garces-Chavez V, Sibbett W et al. Optical micromanipulation using a Bessel light beam[J]. Opt. Commun.2001,197:239-245.
    [183]Leach J, Gibson GM, Padgett MJ et al. Generation of achromatic Bessel beams using a compensated spatial light modulator[J]. Opt. Express.2006,14(12): 5581-5587.
    [184]Morris JE, Mazilu M, Baumgartl J et al. Propagation characteristics of Airy beams:dependence upon spatial coherence and wavelength[J]. Opt. Express.2009, 17(15):13236-13245.
    [185]Wang F, Xiao M, Sun K et al. Generation of radially and azimuthally polarized light by optical transmission through concentric circular nanoslits in Ag films[J]. Opt. Express.2010,18(1):63-71.
    [186]Zhang Y, Ding B, Suyama T. Trapping two types of particles using a double-ring-shaped radially polarized beam[J]. Physical Review A.2010, 81(Copyright (C) 2010 The American Physical Society):023831.
    [187]Quy HQ, Luu MV, Hai HD et al. Simulation of stabilizing process of dielectic nanoparticle in optical trap using counter-propagating pulsed laser beams[J]. Chin. Opt. Lett.2010,8(3):332-334.
    [188]Ren Y, Chen M, Wu J et al. Effective stiffness of rotating-glass-plate time-sharing multiple optical tweezers. In:Optical trapping and microscopic imaging. Shanghai:SPIE; 2009:750703.
    [189]Song Q, Wen C, Zhang Y et al. Calibration of optical tweezers based on acousto-optic deflector and field programmable gate array[J]. Chin. Opt. Lett.2008, 6(8):600-602.
    [190]Richardson AC, Reihani SNS, Oddershede LB. Non-harmonic potential of a single beam optical trap[J]. Opt. Express.2008,16(20):15709-15717.
    [191]Rohrbach A. Stiffness of optical traps:quantitative agreement between experiment and electromagnetic theory[J]. Phys. Rev. Lett.2005,95:168102.
    [192]Zhou R, Schlierf M, Ha T. Force-Fluorescence Spectroscopy at the Single-Molecule Level. In:Nils GW, ed. Methods in Enzymology:Academic Press; 2010:405-426.
    [193]Zhou R, Kunzelmann S, Webb MR et al. Detecting Intramolecular Conformational Dynamics of Single Molecules in Short Distance Range with Subnanometer Sensitivity[J]. Nano Letters.2011,11(12):5482-5488.
    [194]Zhou R, Kozlov Alexander Q Roy R et al. SSB Functions as a Sliding Platform that Migrates on DNA via Reptation[J]. Cell.2011,146(2):222-232.
    [195]Hu H, Liu Y, Wang M et al. Structure of a CENP-A-histone H4 heterodimer in complex with chaperone HJURP[J]. Genes & Development.2011,25(9):901-906.
    [196]Sirinakis G, Clapier CR, Gao Y et al. The RSC chromatin remodelling ATPase translocates DNA with high force and small step size[J]. EMBO J.2011,30(12): 2364-2372.
    [197]Balci H, Arslan S, Myong S et al. Single-Molecule Nanopositioning: Structural Transitions of a Helicase-DNA Complex during ATP Hydrolysis[J]. Biophysical Journal.2011,101(4):976-984.
    [198]Ha T, Myong S. A single-molecule view of chaperonin cooperativity[J]. Proceedings of the National Academy of Sciences.2011,108(41):16865-16866.
    [199]Casjens SR. The DNA-packaging nanomotor of tailed bacteriophages[J]. Nat Rev Micro.2011,9(9):647-657.
    [200]Killian JL, Li M, Sheinin MY et al. Recent advances in single molecule studies of nucleosomes[J]. Current Opinion in Structural Biology.2012,22(1):80-87.
    [201]Sun B, Johnson DS, Patel G et al. ATP-induced helicase slippage reveals highly coordinated subunits[J]. Nature.2011,478(7367):132-135.
    [202]Finer JT, Simmons RM, Spudich JA. Single myosin molecule mechanics: piconewton forces and nanometre steps[J]. Nature.1994,368(6467):113-119.
    [203]Lee G, Yoo J, Leslie BJ et al. Single-molecule analysis reveals three phases of DNA degradation by an exonuclease[J]. Nat Chem Biol.2011,7(6):367-374.
    [204]Guo H, Xu C, Liu C et al. Mechanism and Dynamics of Breakage of Fluorescent Microtubules[J]. Biophysical Journal.2006,90(6):2093-2098.
    [205]Baumann CG, Bloomfield VA, Smith SB et al. Stretching of Single Collapsed DNA Molecules[J]. Biophysical Journal.2000,78(4):1965-1978.
    [206]Sirinakis G, Ren Y, Gao Y et al. High-resolution optical tweezers with passive force clamp, combined with single-molecule fluorescence detection[J]. Biophysical Journal.2012, submitted.
    [207]Xi Z, Gao Y, Sirinakis G et al. Single-molecule observation of helix staggering, sliding, and coiled coil misfolding[J]. Proceedings of the National Academy of Sciences.2012, Accepted.
    [208]Moffitt JR, Chemla YR, Izhaky D et al. Differential detection of dual traps improves the spatial resolution of optical tweezers[J]. Proceedings of the National Academy of Sciences of the United States of America.2006,103(24):9006-9011.
    [209]Willig KI, Rizzoli SO, Westphal V et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature.2006, 440(7086):935-939.
    [210]Willig KI, Harke B, Medda R et al. STED microscopy with continuous wave beams[J].Nat Meth.2007,4(11):915-918.
    [211]Huang B, Jones SA, Brandenburg B et al Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution[J]. Nat Meth. 2008,5(12):1047-1052.
    [212]Kim H, Tang G-Q, Patel SS et al. Opening-closing dynamics of the mitochondrial transcription pre-initiation complex[J]. Nucleic Acids Research.2012, 40(1):371-380.
    [213]Wang W, Wang L, Zou Y et al. Cooperation of Escherichia coli Hfq hexamers in DsrA binding[J]. Genes & Development.2011,25(19):2106-2117.
    [214]Woodside MT, Behnke-Parks WM, Larizadeh K et al. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins[J]. Proceedings of the National Academy of Sciences.2006,103(16): 6190-6195.
    [215]Woodside MT, Anthony PC, Behnke-Parks WM et al. Direct Measurement of the Full, Sequence-Dependent Folding Landscape of a Nucleic Acid[J]. Science.2006, 314(5801):1001-1004.
    [216]Liu F, Ou-Yang Z-c. Monte Carlo Simulation for Single RNA Unfolding by Force[J]. Biophysical Journal.2005,88(1):76-84.
    [217]He H, Heckenberg NR, Rubinsztein-Dunlop H. Optical Particle Trapping with Higher-order Doughnut Beams Produced Using High Efficiency Computer Generated Holograms[J]. Journal of Modern Optics.1995,42(1):217-223.
    [218]Curtis JE, Koss BA, Grier DG. Dynamic holographic optical tweezers[J]. Opt. Commun.2002,207:169-175.
    [219]Heckenberg NR, McDuff R, Smith CP et al. Laser beams with phase singularities[J]. Opt. and Quantum Electron.1992,24:S951-S962.
    [220]Mair A, Vaziri A, Weihs G et al. Entanglement of the orbital angular momentum states of photons[J]. Nature.2001,412(6844):313-316.
    [221]Hickmann JM, Fonseca EJS, Soares WC et al. Unveiling a Truncated Optical Lattice Associated with a Triangular Aperture Using Light's Orbital Angular Momentum[J]. Physical Review Letters.2010,105(5):053904.
    [222]Jack B, Padgett MJ, Franke-Arnold S. Angular diffraction[J]. New J. Phys. 2008,10(103013).
    [223]Haroutyunyan HL, Nienhuis G. Diffraction by circular optical lattices[J]. Phys. Rev. A.2004,70:063408.
    [224]Curtis JE, Grier DG. Structure of Optical Vortices[J]. Phys. Rev. Lett.2003, 90(13):133901.
    [225]Syouji A, Kurihara K, Otomo A et al. Diffraction-grating-type phase converters for conversion of Hermite-Laguerre-Gaussian mode into Gaussian mode[J].
    Appl. Opt.2010,49(9):1513-1517. [226] McGloin D, Garces-Chavez V, Dholakia K. Interfering Bessel beams for optical micromanipulation[J]. Opt. Lett.2003,28(8):657-659.
    [227]Cizmar T, Dholakia K. Tunable Bessel light modes:engineeringthe axial propagation[J]. Opt. Express.2009,17(18):15558-15570.
    [228]Paterson L, Papagiakoumou E, Milne G et al. Light-induced cell separation in a tailored optical landscape[J]. Applied Physics Letters.2005,87(12): 123901-123903.
    [229]Lorenz RM, Edgar JS, Jeffries GDM et al. Vortex-trap-induced fusion of femtoliter-volume aqueous droplets[J]. Anal. Chem.2007,79(1):224-228.
    [230]王大鹏,韦穗.数字微镜器件的相位调制性质[J].光学学报.2007,27(7):1255-1260.
    [231]Lu Y, Chen S. Direct write of microlens array using digital projection photopolymerization[J]. Appl. Phys. Lett.2008,92:041109.
    [232]Krohne I, Pfeifer T, Bitte F et al. New method for confocal microscopy and its endoscopic application[J]. Proc. of SPIE.2003,5143:281-288.
    [233]Liang M, Stehr RL, Krause AW. Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination[J]. Opt. Lett.1997,22(11): 751-753.
    [234]Riza NA, Ghauri FN. Super-resolution variable fiber optic attenuator instrument using digital micromirror device (DMDTM)[J]. Rev. Sci. Instrum.2005,76: 095102.
    [235]Collins DR, Sampsell JB, Hornbeck LJ et al. Deformable mirror device spatial light modulators and their applicability to optical neural networks[J]. Appl. Opt. 1989,28(22):4900-4907.
    [236]Wagner EP, Smith BW, Madden S et al. Construction and evaluation of a visible spectrometer using digital micromirror spatial light modulator[J]. Appl. Spectroscopy.1995,49(11):1715-1719.
    [237]聂永名,胡文华,李修建 et al.数字微镜器件在光学矢量矩阵乘法器中的特性及应用分析[J].光学与光电技术.2009,7(1):12-16.
    [238]Adeyemi AA, Barakat N, Darcie TE. Application of digital micro-mirror devieces to digital optical microscope dynamic range enhancement[J]. Opt. Express. 2009,17(3):1831-1843.
    [239]Born M, Wolf E. Principles of Optics:Electromagnetic theory of propagation, interference and diffraction of light. Cambrige:Cambridge University Press; 1999.
    [240]Schulz LG. The optical constants of silver, gold, copper, and aluminum. Ⅰ. the absorption coefficient k[J]. Journal of the Optical Society of America.1954,44(5): 357-362.
    [241]Schulz LG, Tangherlini FR. Optical constants of silver, gold, copper, and aluminum. Ⅱ. The index of refraction n[J]. Journal of the Optical Society of America. 1954,44(5):362-368.
    [242]Ren Y-X, Gong L, Huang K et al. Optimized computer-generated holograms for optical micromanipulation with ideal array Gaussian beam[J]. Chinese Physics Letters.2012, (In preparation).
    [243]Ren Y, Liu W, Li Z et al. Micromanipulation of ZrP nanoplatelets with holographic optical tweezers[J]. Nanotechnology.2012, (In preparation).
    [244]刘伟伟,任煜轩,高红芳et al.泽尼克多项式校正全息阵列光镊像差的实验研究[J].物理学报.2012,61(18)Accepted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700