基于Shack-Hartmann波前传感器的自适应光学系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应光学是一种实时测量和校正波前畸变的光学新技术,目前已广泛应用于天文观测、激光核聚变、人眼视网膜成像等领域,并成为这些研究领域的重点。在大气激光通信(大气层内的激光通信)中,大气湍流的影响成为阻碍其实用化的最主要因素之一。为了抑制大气湍流对激光通信的影响,人们借鉴自适应光学技术在其他领域的成果,开始研究自适应光学对激光通信中光束的质量改善问题。本文紧跟这个研究热点,以大气激光通信应用为背景,开展了自适应光学系统校正波前畸变的理论分析和实验研究。
     本文详细分析了大气湍流对激光传输以及成像系统的影响,根据自适应光学的基本原理,从波前探测、波前重构和波前控制三个方面对自适应光学系统进行了深入研究。在理论分析的基础上,建立了自适应光学系统的数值模型,用于自适应光学系统校正波前畸变的模拟研究。
     为了提高自适应光学系统的校正精度,本文在质心计算和波前重构两个方面,分别提出质心计算的高阶矩方法和最优重构阶数的选取方法,并通过数值模拟验证了两种方法的性能。实验结果证明:在质心计算中使用高阶矩方法可以有效地提高质心位置的精度;在波前重构中使用合适的重构阶数可以使重构误差最小。
     为了满足自适应光学系统的实时性,利用帧内流水线和并行处理的结构设计了波前控制器,并根据双流水线的思想,使波前控制器中的波前斜率计算在CCD图像输出结束时就基本完成了,保证了系统的实时性。
     根据波前补偿原理,建立了一套基于Shack-Hartmann波前传感器和连续面型变形镜的自适应光学实验系统,采用自校正和相对校正两种方法,验证了系统对波前畸变的校正能力。由于实验条件所限,该系统采用计算机作为控制单元,系统的工作带宽较窄,不利于波前的实时校正。但是,该系统可以很好地校正静态的波前畸变。为克服传统控制算法对控制精度的影响,本文提出一种改进的迭代控制算法,使用波前的rms作为判断依据,使经过校正的输出波前逐渐收敛于所预期的参考波前,实验通过开环和闭环校正验证了整个系统的性能。结果表明:该自适应光学平台能够基本消除系统自身带来的波前畸变,使校正之后的光束接近理想的平面波前;对于变形镜校正范围之内的畸变波前,系统可以很好的校正。
Adaptive Optics is a new technology that can measure and correct the distortedwavefront real-time. It has been widely used in many fields, such as astronomicalobservation, laser fusion and human eye retina imaging and become a focus in thesefields. Atmospheric turbulence is one of the main factors that prevent atmosphericlaser communication from practical application. For weakening the influence ofatmospheric turbulence, people utilize the fruits of adaptive optical technologyachieved in other fields, and begin to research how to improve the quality ofwavefront in laser communication using adaptive optical technology. On thebackground of laser communication’s application requirement, the theoretical analysisand experimental study on an aberrated wavefront corrected by adaptive opticalsystem were developed following the hotspot.
     The atmospheric turbulence’influence on laser transmission and optical imagingsystem was analyzed detailedly. Based on the adaptive optical fundamental, thesystem was investigated thoroughly in three main aspects including wavefrontdetection,wavefront reconstruction and wavefront control. Based on the theoryanalyzing, a numerical model of an adaptive optical system was expounded to correctthe aberrated wavefront.
     Then, in order to improve the correction precision of adaptive optical system,thehigher moment algorithm and the optimal reconstruction number’s selection methodwere proposed separately in wavefront detection and wavefront reconstruction, andtheir performance was validated by numerical simulation experiments. The resultsindicated that the higher moment algorithm can improve the precision of the centroid calculation and the appropriate reconstruction number can minimize thereconstruction error.
     In order to meet the real-time of adaptive optics system, the wavefront controllerwas designed according to the inner-frame pipeline and the parallel processing. Basedon the double pipeline method, the wavefront slope calculation was completed in theend of the output of CCD image, which could ensure the real-time of the system.
     Finally, according to the principle of wavefront compensation, a set ofexperimental adaptive optical system was established including a Shack-Hartmannwavefront sensor and a continuous surface deformable mirror. Its performance ofcorrecting abnormal wavefront was validated via two methods, self-correction methodand relative correction method. The experimental system couldn’t correct thewavefront real-time because of tha restriction of experimental conditions; itsbandwidth was limited by the control unit of a computer. But the static aberratedwavefront could be corrected. The improved iterative control algorithm was proposedin order to eliminate the impact of traditional control algorithm on the controlprecision, the wavefront’s rms acted as its estimation criterion, and the correctedoutput wavefront was converged to the expectant reference wavefront gradually. Theperformance of the improved algorithm was validated through open and closed loopexperiments. It indicated that the adaptive optics system used the new controlalgorithm, could mostly eliminate the aberration caused by the self, made thecorrected light beam close to the plane wavefront and could correct the aberratedwavefront in the correction range of the deformable mirror.
引文
[1] Heba Yuksel. Studies of the effects of atmospheric turbulence on free space opticalcommunications [D]. Maryland: University of Maryland,2005:24-26.
    [2] Larry C. Andrews, Ronald L. Phillips. Impact of scintillation on laser communicationsystems: recent advances in modeling [C]∥SPIE,2002,4489:23-34.
    [3]陈纯毅,杨华民,姜会林等.大气光通信中大气湍流影响抑制技术研究进展[J].兵工学报,2009,30(6):779-791.
    [4] Tyson R K. Principles of Adaptive Optics [M].Boston: Academic Press, INC.,1991.
    [5]姜文汉.自适应光学技术[J].自然杂志(特约专稿),2005,28(1):7-146:94-121.
    [6]李欢,张洪涛等.空间激光通信系统中大气湍流的自适应补偿方法[J].长春理工大学学报(自然科学版),2008,31(2):1-3.
    [7]闻传花,李玉权.空间激光通信中的光学系统[J].无线光通信,2003,7:24-27.
    [8]阎吉祥,俞信,张晓芳.湍流对地-空光通信系统性能的影响及自适应光学补偿[J].光学技术,2005,31(2):286-288.
    [9] TYSON R K. Adaptive optics and ground-to-space laser communications[J].J.Opt.Soc.Am.A,1996,35(19):3640-3646.
    [10] TYSON R K. Bit-error rate for free-space adaptive optics laser communications[J].J.Opt.Soc.Am.A,2002,19(4):753-758.
    [11] TYSON R K., CANNING D E. Indirect measurement of a laser communicationsbit-error-rate reduction with low-order adaptive optics [J].Appl.Opt.,2003,42(21):4239-4243.
    [12] YANG Changqi, JIANG Wenhan, RAO Changhui. Bit-error rate for free-space opticalcommunication with tip-tilt compensation [J].Waves in Random and Complex Media,2006,16(3):281-292.
    [13] WILKS S C, MORRIS J R, et al. Modeling of Adaptive Optics-based free-spacecommunications systems[C].Proceedings of SPIE,2002,4821:121-128.
    [14] ANICETO Belmonte, ALEJANDRO Rodríguez. Performance evaluation of an adaptiveoptics, free-space laser communications system from simulation of beam propagation[C].Proceedings of SPIE,2006,6399:639905-1~639905-12.
    [15] VORONTSOV M.A,CARHART G W,PRUIDZE D V, et al.Image quality criteria for anadaptive imaging system based on statistical analysis of the speckle field[J].J.Opt.Soc.Am.A.1996,13(7):1456-1466.
    [16] WEYRAUCH T, VORONTSOV M A. Free-space laser communications with adaptiveoptics: Atmospheric compensation experiments[J].Journal of Optical and Fiber CommunicationsReports,2004,1(4):355-379.
    [17]周仁忠.自适应光学[M].北京:国防工业出版社,1996.
    [18]周仁忠,阎吉祥.自适应光学理论[M].北京:北京理工大学出版社,1996.
    [19] Bifano T,Perreault J,Bierden P.A Micromachined Deformable Mirror for OpticalWavefront Compensation[J].Proc.SPIE,2000,4124:7-14.
    [20] Restaino S R,Andrews J R,Martinez T et al. Adaptive Optics Using MEMS and LiquidCrystal Devices [J].J.OPT.A:Pure Appl.Opt.,2008,10(6):1-5.
    [21] Fried D L.Least-Square Fitting a Wavefront Distortion Estimate to an Array ofPhase-Difference Measurements [J].J.Opt.Soc.Am.,1977,67(3):370-375.
    [22] Cubalchini R.Modal Wave-Front Estimation from Phase Derivative Measurements[J].J.Opt.Soc.Am.,1979,69(7):972-977.
    [23] Jiang W,Li H.Hartmann-Shack Wavefront Sensing and Wavefront ControlAlgorithm[J].Proc.SPIE,1990,1271:82-93.
    [24] Cathey W T,Hayes C L,Davis W C et al. Compensation for Atmospheric Phase Effects at10.6μ[J].Appl.Opt.,1970,9(3):701-707.
    [25] Pearson J E,Bridges W B,Hansen S et al.Coherent Optical Adaptive Techniques: Designand Performance of an18-element Visible Multidither COAT System[J].Appl.Opt.,1976,15(3):611-621.
    [26] Hardy J W, Feinleib J, Wyant J C. Real Time Phase Correction of Optical ImagingSystems[C]//Topical Meeting on Optical Propagation through Turbulence.1974:1-16.
    [27] Buffington A, Crawford F S, Muller R A et al. Correction of Atmospheric Distortionwith an Image-Sharpening Telescope[J].J.Opt.Soc.Am.,1977,67(3):298-303.
    [28] Hardy J W. Adaptive Optics-a Progress Review [J].Proc.SPIE,1991,1542:2-17.
    [29]胡绍云,钟鸣,左研等.自适应光学在固体战术激光武器中的应用[J].激光与光电子进展,2006,43(2):25-28.
    [30]姬寒珊,秦致远,赵东新.国外激光武器发展的经验与前景[J].激光与光电子进展,2006,43(5):14-19.
    [31] Merkle F,Hubin N. Adaptive Optics for the European Very Large Telescope[J].Proc.SPIE,1991,1542:283-292.
    [32] Bonaccini D,Prieto E,Corporon P et al. Performance of the ESO AO System, Adonis,atLa Silla3.6m Telescope[J].Proc.SPIE,1997,3126:589-594.
    [33] Saddlemyer L K,Herriot G,Véran J-P. Design and Current Status of the Reconstructor forAltair: the Gemini North Adaptive Optics System[J].Proc.SPIE,2000,4007:59-68.
    [34] Ragazzoni R,Farinato J,Marchetti E. Adaptive Optics for100m Class Telescopes: NewChallenges Requires New Solutions[J].Proc.SPIE,2000,4007:486-497.
    [35] Bouchez. The Keck Observatory Titan Monitoring Project. KECK Intro,2005,9(18):1-2.
    [36] http://hubblesite.org/gallery/
    [37]姜文汉.自适应光学技术的进展[C]//红外与激光工程编辑部(eds.).现代光学与光子学的进展:庆祝王大珩院士从事科研活动六十五周年专集.天津:天津科学技术出版社,2003:266-284.
    [38] Zhang Y, Ling N, Yang Z et al. An Adaptive Optical System for ICF Application[J].Proc.SPIE,2002,4494:96-103.
    [39] Zhang Y, Yang Z, Duan H et al. Characteristics of Wavefront Aberration in the SingleBeam Principle Prototype of the Next Generation ICF System [J].Proc.SPIE,2002,4825:249-256.
    [40] Sacks R,Auerbach J,Bliss E et al.Application of Adaptive Optics for Controlling the NIFLaser Performance and Spot Size[J].Proc.SPIE,1999,3492:344-354.
    [41] Zacharias R, Bliss E, Feldman M et al. The National Ignition Facility (NIF) WavefrontControl System [J].Proc.SPIE,1999,3492:678-692.
    [42] Haynam C A, Wegner P J, Auerbach J M et al. National Ignition Facility LaserPerformance Status [J]. Appl.Opt.,2007,46(16):3276-3303.
    [43] Salmon J T,Bliss E S,Long T W et al.Real-Time Wavefront Correction System Using aZonal Deformable Mirror and a Hartmann Sensor[J].Proc.SPIE,1991,1542:459-467.
    [44] Greiner U J, Klingenberg H H. Thermal Lens Correction of a Diode-Pumped Nd:YAGLaser of High TEM00Power by an Adjustable-Curvature Mirror[J].Opt.Lett.,1994,19(16):1207-1209.
    [45] Vdovin G,Kiyko V. Intracavity Control of a200-W Continuous-Wave Nd:YAG Laser bya Micromachined Deformable Mirror[J].Opt.Lett.,2001,26(11):798-800.
    [46]李中吉,凌宁,李明全,姜文汉.激光谐振腔内倾斜误差的自适应校正[J].中国激光,199118(6):409-413.
    [47] Torben Andersen, Arne Ardeberg, Mette Owner-Petersen. EURO50-Design Study of a50m Adaptive Optics Telescope.EURO50publications,2003:1-372.
    [48] Liang J, Williams D R, Miller D T. Supernormal Vision and High-Resolution RetinalImaging through Adaptive Optics[J].J.Opt.Soc.Am.A,1997,14(11):2884-2892.
    [49] Fernández E J, Iglesias I, Artal P. Closed-Loop Adaptive Optics in the Human Eye[J].Opt.Lett.,2001,26(10):746-748.
    [50] Doble N,Yoon G,Chen L et al.Use of a Microelectromechanical Mirror for AdaptiveOptics in the Human Eye[J].Opt.Lett.,2002,27(17):1537-1539.
    [51]凌宁,张雨东,饶学军等.用于活体人眼视网膜观察的自适应光学成像系统[J].光学学报,2004,24(9):1153-1158.
    [52]楚艳华.视网膜细胞分布特征及自适应光学系统对弱视人眼视网膜的研究[D].上海:复旦大学,2004.
    [53]姜春晖.自适应光学系统对活体人眼视网膜的初步观察[D].上海:复旦大学,2003.
    [54]程少园,曹召良,胡立发,穆全全,宣丽.小型化人眼像差校正仪光学系统设计[J].红外与激光工程.2010,39(2):287-291.
    [55] Foy R, Labeyrie A. Feasibility of Adaptive Telescope with Laser Probe[J].Astronomyand Astrophysics,1985,152:L29-L31.
    [56] Liu M C. Astronomical Science with Laser Guide Star Adaptive Optics:A Brief Review,aCurrent Snapshot,and a Bright Future[J].Proc.SPIE,2006,6272:62720H.
    [57] Nisenson P,Barakat R.Partial Atmospheric Correction with Adaptive Optics[J].J.Opt.Soc.Am.A,1987,4(12):2249-2253.
    [58] Lukin V P,Fortes B V.Partial Correction for Turbulent Distortions in Telescopes[J].Appl.Opt.,1998,37(21):4561-4568.
    [59] Beckers J M.Detailed Compensation of Atmospheric Seeing Using MulticonjugateAdaptive Optics[J].Proc.SPIE,1989,1114:215-217.
    [60] Johnston D C,Welsh B M.Analysis of Multiconjugate Adaptive Optics[J].J.Opt.Soc.Am.A,1994,11(1):394-408.
    [61] William D.Cowan. Foundry Microfabrication of Adaptive Optics [D]. Ph.D.thesis,AirForce Institute of Technology,1998.
    [62] Claire Max. Waverfont Correction Deformable Mirrors Lecturt,7[R].UC Santa Cruz,2002.
    [63] Peter Krulevitch,Paul Bierden. MOEMS spatial light modulator development at theCenter for Adaptive Optics[C]. Proc.SPIE2002,Vol.4825.
    [64] Adisorn Tuantranont, Victor M. Bright. Segmented Silicon-MicromachinedMicroelectromechanical Deformable Mirrors for Adaptive Optics[J]. IEEE JOURNAL.2002,8.
    [65]余洪斌,陈海清,竺子民等.基于MEMS技术的一种新型可变形反射镜[J].半导体学报,2004,9(25):1154-1158.
    [66]凌宁.自适应光学波前校正器[J].光学技术,1998,6(5):441-447.
    [67]凌宁.官春林,王岚等.61单元分立式压电变形反射镜的研制[J].强激光与粒子束,1998,10(4):527-530.
    [68] Hongbin Yu, Haiqing Chen and Sai Fu. A versatile micromirror with multi-movementmode[J].Applied Optics,2005,44:1178-1181.
    [69] Hongbin Yu, Haiqing Chen, Jun Li and Chao Wang. An in situ growth method forproperty control of LPCVD polysilicon film[J].Chinese optics letters,2004,2(8):489-492.
    [70]饶学军,凌宁,王成,姜文汉.哈特曼-夏克传感器在非球面加工中的应用[J].光学学报,2002,22(4):491-494.
    [71]沈峰,张学军,姜文汉.像增强器的光生背景噪声对微光目标质心探测精度的影响及其抑制方法[J].强激光与粒子束,2002,14(4):557-562.
    [72]王春红,李梅,李安娜.帧频2900Hz的高速实时波前处理机[J].光电工程,1998,25(6):25-28.
    [73]王春红,李梅,李安娜.高帧频Shack-Hartmann探测的波前处理技术研究[J].强激光与离子束,1999,11(5):579-582.
    [74]周璐春,王春红,李梅,石强.基于FPGA技术的波前斜率处理方法[J],光电工程,2002,29(3):28-31.
    [75]姜文汗.自适应光学技术进展[M].四川:四川科学技术出版社,2007:18-146.
    [76]李俊.传输型详查相机微小自适应光学系统研究[D].武汉:华中科技大学,2006.
    [77]李晓峰.星地激光通信链路原理与技术[M].国防工业出版社,2007.
    [78] Heba Yuksel, Christopher C Davis. Aperture averaging analysis and aperture shapeinvariance of received scintillation in free space optical communication links[C]∥SPIE,2006,6304:63041E-1-63041E-11.
    [79] Heba Yuksel, Christopher C. Davis. Aperture averaging for studies of atmosphericturbulence and optimization of free space optical communication links[C]∥SPIE,2005,5892:58920P-1-58920P-13.
    [80] Heba Yuksel, Stuart Milner, Christopher C. Davis. Aperture averaging for optimizingreceiver design and system performance on free-space optical communication links[J]. Journal ofOptical Networking,2005,4(8):462-475.
    [81] Zhu Xiaoming, Kahn J M. Maximum-likelihood spatial-diversity reception on correlatedturbulent free-space optical channels[C]∥IEEE Global Communication Conference,2000,2:1237-1241.
    [82] S. Mohammad Navidpour, Murat Uysal, Mohsen Kavehrad. BER performance offree-space optical transmission with spatial diversity[J]. IEEE Trans. on Wireless Communications,2007,6(8):2813-2819.
    [83] Karmran Kiasaleh. On the scintillation index of a multiwave-length Gaussian beam in aturbulent free-space optical communi-cations channel[J]. J. Opt. Soc. Am. A,2006,23(3):557-566.
    [84] Jaime AAnguita, Mark A Neifeld, Bane V Vasic. Spatial correlation and irradiancestatistics in a multiple-beam terrestrial free-space optical communication link [J]. Appl. Opt.,2007,46(26):6561-6571.
    [85] Avner Peleg, JeromeV. Moloney. Scintillation reduction by use of multiple Gaussianlaser beams with different wavelengths[J].IEEE Photonics Technology Letters,2007,19(12):883-885.
    [86] Pavel Polynkin, Avner Peleg, Laura Klein, et al. Optimized multiemitter beams forfree-space optical communications through turbulent atmosphere [J]. Optics Letters,2007,32(8):885-887.
    [87] Sugianto Trisno, Igor I Smolyaninov, Stuart D Milner, et al. Characterization of timedelayed diversity to mitigate fading in at-mospheric turbulence channels [C]∥SPIE,2005,5892:589215-1-589215-10.
    [88] Jennifer C. Ricklin, Frederic M. Davidson. Point-To-Point wireless communicationusing partially coherent optical fields[C]∥SPIE,2002,4489:156-165.
    [89] Zhu Xiaoming, Kahn Joseph M. Communication techniques and coding for atmosphericturbulence channels [J]. J. Opt. Fiber.Commun. Rep.,2007,(4):363-405.
    [90] Zhu Xiaoming, Joseph M. Kahn, Fellow, Wang Jin. Mitigation of turbulence-inducedscintillation noise in free-space optical links using temporal-domain detection techniques [J].IEEE Photonics Technology Letters,2003,15(4):623~625.
    [91] Zhu Xiaoming, Joseph M Kahn. Markov chain model in maxi-mum-likelihood sequencedetection for free-space optical commu-nication through atmospheric turbulence channels [J].IEEE Trans. on Communications,2003,51(3):509-516.
    [92] Michael Cole, Kamran Kiasaleh. Signal intensity estimators for free-space opticalcommunications through turbulent atmosphere [J]. IEEE Photonics Technology Letters,2004,16(10):2395-2397.
    [93] Nader Namazi, Ray Burris, G. Charmaine Gilbreath. Analytical approach to calculationof probability of bit error and optimum thresholds in free-space optical communication [C]∥SPIE,2005,5892:58920T-1-58920T-15.
    [94] Mukai R, Arabshahi P, Yan T Y. An adaptive threshold detector and channel parameterestimator for deep space optical communications [C]∥Global Telecommunications Conference,2001,1:50-54.
    [95] Tomas Weyrauch, Mikhail A. Vorontsov. Free-space laser communications with adaptiveoptics: atmospheric compensation experiments [J]. J. Opt. Fiber. Commun. Rep.,2004,(1):355-379.
    [96] YANG Chang-qi, JIANG Wen-han, RAO Chang-hui. Bit-error rate for free-space opticalcommunication with tip-tilt compensa-tion[J]. Waves in Random and Complex Media,2006,16(3):281-292.
    [97] Graves J Elon, Drenker Steve. Advancing free-space optical communications withadaptive optics[J]. Lightwave,2002,19(9):105-106+113.
    [98] Tuan Truong, Gary Brack, Mitchell Troy, et al. Real-time wavefront processors for thenext generation of adaptive optics systems: a design and analysis[C]∥SPIE,2003,4839:911-922.
    [99] Rahual M Khandekar, Vladimir V Nikulin. Mitigation of dynamic wavefront distortionsusing a Nematic liquid crystal spatiallight modulator and simplex optimization[C]∥SPIE,2006,6105:61050Q-1-61050Q-10.
    [100] Jaime A. Anguita, Ivan B. Djordjevic, Mark A. Neifeld, et al.High-rate error-correctioncodes for the optical atmospheric channel[C]∥SPIE,2005,5892:58920V-1-58920V-7.
    [101] Zhu Xiaoming, Joseph M Kahn. Performance bounds for coded free-space opticalcommunications through atmospheric turbulence channels [J]. IEEE Trans. Commun.,2003,51(8):1233-1239.
    [102] Hennes Henniger, Bernhard Epple, Dirk Giggenbach. Mobi FSO activities in europeand fading mitigation approaches[C]∥17th International Conference Radioelektronika,2007:4234201.
    [103] Cai Y, Chen Y, Eyyuboglu H T, et al. Propagation of laser array beams in a turbulentatmosphere [J]. Appl. Phys. B,2007,88:467-475.
    [104] Jaime A Anguita, Mark A Neifeld, Bane V Vasic. Multi-beam space-time coded systemsfor optical atmospheric channels[C]∥SPIE,2006,6304:63041B.
    [105]马东堂,魏急波,庄钊文.大气激光通信中多光束传输性能分析和信道建模[J].光学学报,2004,24(8):1020-1023.
    [106] Greg Gbur. Simulating partially coherent fields and other special beam classes inturbulence[C]∥SPIE,2007,6457:64570I-1-64570I-10.
    [107] Berman Gennady P, Bishop Alan R, Chernobrod Boris M. Suppression of intensityfluctuations in free space high-speed optical communication based on spectral encoding of apartially coherent beam[J]. Opt. Commun.,2007,280(2):264-270.
    [108] Xiao Xi-feng, Voelz David. Toward optimizing partial spatially coherent beams for freespace laser communications[C]∥SPIE,2007,6709:67090P-1~67090P-8.
    [109]彭仁军,吴健.多模光纤产生用于大气光通信的部分相干光源[J].强激光与粒子束,2005,17(6):813-816.
    [110]谢永杰,赵学庆,王立君,等.液晶散射法产生部分相干光实验[J].强激光与粒子束,2001,13(2):191-194.
    [111] K.Creath. Phase-measurement interferometry techniques [J].Prog.Opt.,1998,9(26):349-393.
    [112]廖延彪.物理光学.电子工业出版社,1996
    [113]付赛.基于DSP技术的自适应光学系统信号处理系统[D].武汉:华中科技大学.
    [114]柳丛.一种波前畸变校正系统得建模分析与实验研究[D].西安:中国科学院研究生院西安光机所.2009.
    [115]凌宁,官春林.变形反射镜的发展[J].光电工程,1995,22(1):14-22.
    [116] Dayton D, Sandven S, Gonglewski J et al. Adaptive Optics Using a Liquid CrystalPhase Modulator in Conjunction with a Shack-Hartmann Wave-Front Sensor and Zonal ControlAlgorithm[J].Opt.Exp.,1997,1(11):338-346.
    [117] Restaino S R, Dayton D, Browne S et al. On the use of dual frequency nematic materialfor adaptive optics systems: first results of a closed–loop experiment [J].Opt.Exp.,2000,6(1):2-6.
    [118] Bifano T, Perreault J, Bierden P et al. Micromachined Deformable Mirrors for AdaptiveOptics[J].Proc.SPIE,2002,4825:10-13.
    [119]候静.自适应光学波前探测新概念研究[D].长沙:国防科学技术大学,2002.
    [120]王春鸿.61单元自适应光学系统实时波前处理研究[D].成都:电子科技大学,2008.
    [121] Noll. Zernike polynomials and atmospheric turbulence [J]. JOSA,1976,66(3):207-211.
    [122] L.N.Thibos.HANDBOOK OF VISUAL OPTICS:Draft Chapter on Standards forReporting Aberrations of the Eye[Z].Indian University,1999.
    [123] Xinyang Li, Chunhong Wang, Hao Xian. Zernike modal compensation analysis for anadaptive optics system using direct-gradient wavefront reconstruction algorithm[J]. AdaptiveOptics Systems and Technology.USA: SPIE,1999.116-124.
    [124] David Russell Luke. Analysis of Optica lWavefront Reconstruction and Deconvolutionin Adaptive optics [D].Ph.D.thesis, Department of Electrical Engineering, University ofWashington,2001.
    [125] Fang Shi,Douglas MacMartin,Mitchell Troy. Local Wavefront Reconstruction:Simulations,Experiments and Predictions[Z].California Institute of Technology.2002.
    [126] Marcel Dekker, Robert K.Tyson. Adaptive Optics Engineering Handbook [M].Caliofrnia:Academic Press,2000.
    [127] Hudgin R H. Optimal wavefront estimation [J].JOSA,1977,67(3):378-382.
    [128] Hudgin R h. Wavefront reconstruction. For compensated imaging [J].JOSA,1977,67(3):375-378.
    [129] Fried D L.Least-square fitting a wavefront distortion estimate to an array ofphase-difference measurements [J].JOSA,1977,67(3):370-375.
    [130] Southwell WH. Wavefront estimation from wavefront slope measurement [J]. JOSA,1980,70(8):998-1006.
    [131]杨振刚.内腔自适应光学系统补偿激光畸变研究[D].武汉:华中科技大学.2007.
    [132] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth,et al. Equationsof state calculations by fast computing machines[J]. Journal of Chemistry Physics,1953,21(6):1087-1092.
    [133] S.Kirkpatrick, C.D.Gelatt, M.P.Vecchi. Optimization by Simulated Annealing [J].Science,1983,220(4598):671~680
    [134]李捷.微变形镜内腔补偿激光畸变研究:[D].武汉:华中科技大学,2007
    [135] Moore, K.L. Artificial neural networks[J]. Digital Object Identifier,1992,11(1):23-28.
    [136] Wang, Hadaegh. Computation of static shapes and voltages for micromachineddeformable mirrors with nonlinear electrostatic actuators[J]. Journal of Microelectromechanicalsystem,1996,5(3):205-220.
    [137]饶伏波.基于MEMS技术的微自适应光学系统的建模及关键技术研究[D].西安:西北工业大学,2005.
    [138] Noll. Zernike polynomials and atmospheric turbulence[J]. JOSA,1976,66(3):207-211.
    [139] Nicolas Roddier. Atmospheric wavefront simulation using Zernike polynomials[J].Optical Engineering,1990,29(10):1174-1180.
    [140]曹召良,穆全全,胡立发.600mm望远镜液晶自适应系统成像光路设计[J].光学学报,2007,27(6):1147-1150.
    [141]杨平,许冰,姜文汉.遗传算法在自适应光学系统中的应用[J].光学学报,2007,27(9):1628-1632.
    [142]薛丽霞,绕学军,王成.人眼高阶像差校正和视觉分析系统[J].光学学报,2007,27(5):893-897.
    [143] Seifert L, Liesener J, Tiziani H J. The adaptive Shark-Hartmann sensor[J]. OpticsCommunications,2003,216(4):313-319.
    [144]姜文汉,鲜浩,沈锋. Shack-Hartmann波前传感器的探测误差[J].量子电子学报,1998,15(2):193-199.
    [145] Cao Genrui,Yu Xin. Accuracy analysis of a Hartmann-Shack wavefront sensoroperated with a faint object[J]. Optical Engineering,1994,33:2331-2335.
    [146] Kyung-Wan Roh, et al. Noise-Insensitive Centroiding Algorithm for a Shack-HartmannSensor[J]. Journal of the Korean Physical Society,2008,52(1):160-169.
    [147]梁春,廖文和,沈建新,周宇. Hartmann-Shack波前传感器的自适应质心探测方法[J].中国激光,2009,2(36):430-434.
    [148] Otsu N. Discriminant and least Square Threshold Selection[M]. Proc4IJCPR,1978,592-596.
    [149]夏明亮,李抄,刘肇南等. Shack-Hartmann波前传感器图像自适应阈值的选取[J].光学精密工程,2010,18(2):334-340.
    [150]任剑峰,饶长辉,李明全.一种Hartmann-Shack波前传感器图像的自适应阈值选取方法[J].光电工程,2002,29(1):1-5.
    [151]李新阳,姜文汉.哈特曼-夏克传感器的泽尼克模式波前复原误差[J].光学学报,2002,22(10):1236-1240.
    [152]李新阳,姜文汉.哈特曼传感器对湍流畸变波前的泽尼克模式复原误差[J].强激光与粒子束,2002,14(2):243-249.
    [152]张强,姜文汉,许冰.利用Zernike多项式对湍流波前进行波前重构[J].光电工程,1998,25(6):15-19.
    [153]李新阳,姜文汉,王春红,鲜浩.湍流大气中哈特曼传感器的模式波前复原误差I[J].强激光与粒子束,2000,12(2):145-148.
    [154]李新阳,姜文汉等.湍流大气中哈特曼传感器的模式波前复原误差II[J].强激光与粒子束,2000,12(3):319-323.
    [155] Roggermann M C,Welsh B M. Imaging through turbulence[C]. Boca Raton:CRC Press,USA,1995.
    [156] Dai Guang-ming. Modal compensation of atmospheric turbulence with the use ofZernike polynomials and Karhunen-Loeve functions [J].J Opt Soc Am A,1995,12(10):2182-2193.
    [157] Silbaugh E E, Welsh B M, Roggermann M C. Characterization of atmosphericturbulence phase statistics using wavefront slop measurements [J]. J Opt Soc Am A,1996,13(12):2453-460.
    [158] Sarazin M, Roddier F. The ESO differential image motionmonitor[J].Astron Astrophys,1990,227:294-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700