乳与乳制品中主要乳清蛋白组分的定量分析检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳清蛋白作为蛋白质源和他特有的生物学功能,被广泛应用于乳制品和配方食品中,在这些食品加工过程中一般会使用不同程度的热处理。而这些热处理过程不可避免地会导致乳清蛋白主要功能性组分α-乳白蛋白、β-乳球蛋白和乳铁蛋白等发生变性,其变性程度在很大程度上依赖于热处理的时间和温度。热处理变性导致乳清蛋白中的生物活性性组分的活性损失甚至丧失,因而会影响人体对乳制品中α-乳白蛋白等主要功能性乳清蛋白组分的生物利用率。现有的检测方法由于操作繁琐检测周期长,且分离度较差不能准确定量,无法对产品中的乳清蛋白组分进行有效准确的评价。因此有必要建立分别可以检测主要功能性乳清蛋白组分的方法,为准确评价乳制品中有效营养价值提供参考依据和准确的检测方法。
     本课题应用超高效液相色谱-质谱联用仪,建立了分别检测乳与乳制品中非变性α-乳白蛋白和非变性β-乳球蛋白的方法,两个方法分别以人乳a-乳白蛋白作为内标和空白基质加标进行定量以尽可能降低基质干扰的影响,分别为以0.1%三氟乙酸水溶液/乙腈溶液作为流动相,经梯度洗脱后,进入质谱采用选择区间扫描方式进行定量检测。其各自的选择扫描区间分别为α-牛乳白蛋白:2357-2368m/z;人乳α-乳白蛋白内标:2340-2350m/z;p-牛乳球蛋白A:1525-1535m/z;p-牛乳球蛋白B:1518-1528m/z。在2-50μg/mL浓度范围内,两个方法都具有良好的线性关系,相关系数均>0.999,两个方法在高、中、低三个浓度水平,其平均回收率分别为95.33-98.67%(RSD%<6.41)、95.14-98.15%(RSD%<7.64)和94.28-98.70%(RSD%<4.53)。将其应用于实际样品检测以进一步检验所建立方法的适用于与有效性结果表明,所建立的方法可适用于婴幼儿食品和乳制品中非变性牛乳α-乳白蛋白和牛乳β-乳球蛋白A和牛乳β-乳球蛋白B的定量测定。
     本研究建立了在肽水平上分别用于检测总a-乳白蛋白、总牛乳铁蛋白和总牛乳p-乳球蛋白的方法。将三种蛋白分别用牛胰蛋白酶酶解后,选择优化其各自的特异标签肽,设计合成适当的内标物,使其具有与蛋白本身相似的酶解效率和色谱质谱行为。通过蛋白与标签肽之间的等摩尔定量关系,实现在肽水平上对蛋白进行准确定量,并对所建立的方法分别进行了方法学验证,三个方法的平均回收率分别在95.8-100.6%(RSD%<5.1%).92.04-100.67(RSD%<8.6%)和92.04-109.91%(RSD%<11.2%)之间。将其应用于实际样品检测以进一步检验其适用于与有效性。本法具有灵敏度和准确度高,重现性好,处理简便的优点,本方法可用于婴幼儿食品和乳制品中总的(热变性和非变性的)牛乳α-乳白蛋白、牛乳铁蛋白和牛乳β-乳球蛋白的定量测定。
Whey protein is widely used in dairy products and formula food industry because of its its nutritional and biological functions. The heat treatment during processing these products will inevitably denature the major components of whey protein, such as bovine α-lactalbumin, β-lactoglobulin, lactoferrin, and so on. The degree of denaturation depends on the temperature and heat time. The active components of whey protein will lose their biological activities when they are denatured. The denatured whey protein will impact on the absorption and utilization. The previous methods can not accurately quantify the major whey protein in dairy products due to their low resolution. Thus, it is necessary to establish the methods to detect the main functional components in whey protein in order to evaluate the effective nutritional value of dairy products.
     In the present study, the native bovine α-lactalbumin and β-lactoglobulin were quantified at protein level using ultra-high performance liquid chromatography coupled to tandem mass spectrometer, respectively. The accurate quantitation of native bovine a-lactalbumin was achieved by employing human α-lactalbumin as the internal standard. Compared to the previous approaches, the present two independent methods with mass spectrometer under selected area monitoring mode offered shorter analysis time and lower detection limit. The two genetic variants of bovine β-lactoglobulin were successfully separated by employing an Acquity UPLC BEH300C18column under a linear gradient elution. The ranges of mass-to-charge ratio for selected area monitoring were2357-2368m/z,2340-2350m/z and1525-1535m/z,1518-1528m/z for bovine α-lactalbumin, human α-lactalbumin and bovine β-lactoglobulin A, bovine β-lactoglobulin B, respectively. The developed methods for analysis of bovine α-lactalbumin and β-lactoglobulin were extensively validated by determining the linearity (R2>0.99), recovery and repeatability. The recovery rates were95.33-98.67%,95.14-98.15%and94.28-98.70%for bovine α-lactalbumin and β-lactoglobulin, respectively. The repeatability was RSD%<6.41%, RSD%<7.64and RSD%<4.53%for bovine α-lactalbumin and β-lactoglobulin, respectively. The current validated method was successfully applied to the major whey protein quantification of dairy products and infant formulas.
     Three independent reliable ultra-high-performance liquid chromatography-mass spectrometry methods were developed for determination of total bovine α-lactalbumin, bovine lactoferrin or total bovine β-lactoglobulin, respectively. After tryptic digestion, the independent signature peptides of bovine α-lactalbumin, lactoferrin and β-lactoglobulin were selected based on the theoretical tryptic peptide fragments, respectively. Three independent internal standards were successfully designed and synthesized responding to bovine α-lactalbumin, bovine lactoferrin or bovine β-lactoglobulin, respectively. They showed the similar digestion efficiency and chromatographic behavior to the responding whey protein components during the digestion and analysis procedures. The three components of whey protein were quantified at peptide level by employing mass spectrometry operated under multiple reaction monitoring mode. They were determined based on the molar equivalent relationship among the responding protein, internal standard and their signature peptides. The recovery rates were95.8-100.6%,92.04-100.67%, and92.04-109.91%for bovine α-lactalbumin, lactoferrin and β-lactoglobulin, respectively. Their relative standard deviation was RSD%<5.1%, RSD%<8.6%, and RSD%<11.2%, respectively. Comparing with the previous methods for analysis of only native protein, the current independent methods proved to be highly suitable for determination of bovine α-lactalbumin, lactoferrin or β-lactoglobulin in dairy products and infant formulas, avoiding forgoing the thermally induced denatured protein during the different processing.
引文
陈文亮,毛仁淡.牛乳加热前与加热后乳球蛋白之差异.科学新天地,2005,3:64-67.
    高学飞,王志耕.β-乳球蛋白应用研究进展.中国乳业,2005,5:41-44.
    关璐,李跃敏.乳清蛋白与运动营养.四川体育科学,2003,4:17-19.
    李慧,陈敏,李赫,罗永康,戴蕴青.反相高效液相色谱法测定乳清蛋白中的α-乳白蛋白和β-乳球蛋白.色谱,2007,1:116-117.
    李兰会,孙丰梅,黄娟,等.p-乳球蛋白的热变性聚集概述.中国乳品工业,2002,30(6):22-24.
    刘静,吴晓彤.乳清蛋白及其在乳品生产中的应用.内蒙古农业科技,2007,2:92-93.
    秦宜德,邹思湘.乳蛋白的主要组分及其研究现状.生物学杂志,2003,2:5-7.
    任雁,赵丹,张烨,叶舸.乳清蛋白的功能成分及其主要应用.中国食品添加,2007,1:142-146.
    燕红,张兰威,朱永军.牛乳清蛋白的性质及其在食品工业上的应用.乳业科学与技术,2002,1:14-17.
    张丹凤.乳清蛋白的营养价值及其应用.新疆畜牧业,2006,6:17-19.
    张丹凤,陆东林.乳铁蛋白及其生理功能.草食家畜,2002,2:3-6.
    张杉,陈敏,李慧SDS-PAGE电泳测定乳清蛋白方法的研究.食品安全与检测,2007,25(1):215-219.
    张智武,许建香.三种电泳方法定量分析牛奶蛋白的比较.中国乳品工业,2005,8:51-53.
    赵海霞,李慧.高效液相色谱法测定乳清蛋白主要成分的研究.食品科技,2007,9:203-206.
    朱晓囡,苏志国.反相液相色谱在蛋白质及多肽分离分析中的应用.分析化学,2004,2:248-254.
    中华人民共和国国家技术监督局.GB 10766-1997中华人民共和国国家标准《婴幼儿配方乳粉Ⅱ、Ⅲ》.北京:中国标准出版社.
    中华人民共和国卫生部.GB10765-2010.食品安全国家标准《婴儿配方食品》.北京:中国标准出版社.
    Aldrich JM, Muller LD, Varga GA. Nonstructural Carbohydrate and Protein Effects on Rumen Fermentation, Nutrient Flow and Performance of Dairy Cows. J dairy Sci,1993,76:1091-1105.
    Alomirah H.F., Alli I. Separation and characterization of β-lactoglobulin and a-lactalbumin from whey and whey protein preparations. Inter Dairy J,2004,14 (5):411-419.
    Annalaura Sabatucci, Patriee Vaehette, Vadim B, et al. Structural Characterization of the Ceruloplasmin: Lactoferrin Complex in Solution. J Mol Bio,2007,371 (4):1038-1046.
    Amelie Mercier, Sylvie F. Gauthier, Ismail Fliss. Immunomodulating effects of whey proteins and their enzymatic digests. Inter Dairy J,2004,14:175-183.
    Bantscheff M., Schirle M., et al. Quantitative mass spectrometry in proteomics:a critical review. Anal Bioanal Chem,2007,389 (4):1017-1031.
    Barnidge D.R., Dratz E.A., et al. Absolute quantification of the G protein-coupled receptor rhodopsin by LC/MS/MS using proteolysis product peptides and synthetic peptide standards. Anal Chem, 2003,75(3):445-451.
    Boehm A.M., Putz S., et al. Precise protein quantification based on peptide quantification using iTRAQ. BMC Bioinformatics,2007,8:214.
    Bordin G., Cordeiro Raposo, et al. Identification and quantification of major bovine milk proteins by liquid chromatography. J Chromatogr A,2001,928(1):63-76.
    Bronstrup M. Absolute quantification strategies in proteomics based on mass spectrometry. Expert Rev Proteomics 2004,1 (4):503-512.
    Brun, V., Masselon C., et al. Isotope dilution strategies for absolute quantitative proteomics. J Proteomics,2009,72 (5):740-749.
    Burks W, Helm R, Stanley S, Bannon GA. Food allergens. Curr Opin Allergy Clin Immunol.2001,1 (3): 243-248.
    Careri M., Bianchi F., et al. Recent advances in the application of mass spectrometry in food-related analysis. J Chromatogr A,2002,970 (1-2):3-64.
    Charles J. Slangen and Servaas Visser. Use of Mass Spectrometry to Rapidly Characterize the Heterogeneity of Bovine a-lactalbumin. JAgric Food Chem,1999,47 (11):4549-4556.
    Christoph Czerwenka, Irene Maier, Natascha Potocnik, Fritz Pittner and Wolfgang Lindner. Absolute Quantitation of β-Lactoglobulin by Protein Liquid Chromatography-Mass Spectrometry and Its Application to Different Milk Products, Analyt Chem,2007,79 (14):5165-5172.
    Creusot, N., Gruppen H. Protein-peptide interactions in mixtures of whey peptides and whey proteins. J Agric Food Chem,2007,55 (6):2474-2481.
    Czerwenka C., Maier I., et al. Absolute Quantitation of P-Lactoglobulin by Protein Liquid Chromatography-Mass Spectrometry and Its Application to Different Milk Products. Anal Chem, 2007.79(14):5165-5172.
    Daunert S., Bachas L.G., et al. Continuous on-line monitoring of biomolecules based on automated homogeneous enzyme-linked competitive binding assays. Anal Chem,1990,62 (3):314-318.
    Ebner K.E., Brodbeck U. Biological Role of a-Lactalbumin:A Review. J Dairy Sci,1968,51 (3): 317-322.
    Elfagm A.A., Wheelock J.V. Effect of heat on a-lactalbumin and β-lactoglobulin in bovine milk." J Dairy Res,1977,44 (2):367-371.
    Elgar D.F., Norris C.S., et al. Simultaneous separation and quantitation of the major bovine whey proteins including proteose peptone and caseinomacropeptide by reversed-phase high-performance liquid chromatography on polystyrene-divinylbenzene. J Chromatogr A,2000,878 (2):183-196.
    Elisabeth F. Determination of a-Lactalbumin in Human Milk. J Dairy Sci,1976,59 (1):14-18.
    Groves ML.The isolation of a red protein from milk. J Am Chem Soc,1960,82:3345-3350.
    Hakkak R, Korourian S, Ronis MJ, Johnston JM, Badger TM. Dietary whey protein protects against azoxymethane-induced colon tumors in male rats. Cancer Epidemiol Biomarkers Prev.2001,10 (5):555-558.
    Harvey E. Development and application of an optical biosensor immunoassay for a-lactalbumin in bovine milk. Inter Dairy J,2009,19(1):36-42.
    Hattori M, Numamoto K, Kazuo K, et al. Functional changes in β-lactoglobulin by conjugation with cationic saccharides. JAgric & Food Chem,2000,48 (6):2050-2056.
    Haug A, Hestmark A.T, Harstad O.M. Bovine milk in human nutrition-a review. Lipids Health Dis, 2007,6:25.
    Hahn R., Schulz P.M., et al. Bovine whey fractionation based on cation-exchange chromatography. J Chromatogr A,1998,795 (2):277-287.
    Heine W.E., Klein P.D., et al. The importance of alpha-lactalbumin in infant nutrition. J Nutri,1991, 121 (3):277-283.
    Hiroyuki, Wakabayashi, Koji Yamauchi, et al. Lactoferrin research, technology and applications. Inter Dairy J,2006,16(11):1241-1251.
    Indyk H.E, Filonzi E.L. Determination of lactoferrin in bovine milk, colostrum and infant formulas by optical biosensor analysis. Inter Dairy J,2005,15 (5):429-438.
    Jackson J.G., Janszen D.B., et al. A multinational study of α-lactalbumin concentrations in human milk. J Nutri Biochem,2004,15 (9):517-521.
    Jay R. Hoffman and Michael J. Falvo. Protein-Which is best? J Sports Sci & Med.2004,3:118-130.
    Kamiie J., Ohtsuki S., et al. Quantitative atlas of membrane transporter proteins:development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res,2008,25 (6):1469-1483.
    Kanyshkova TG, Babina SE, Semenov DV, Isaeva N, et al. Multiple enzymic activities of human milk lactoferrin. Euro J Biochem,2003,270 (16):3353-3361.
    Kinghorn N.M., Norris C. S., et al. Comparison of capillary electrophoresis with traditional methods to analyse bovine whey proteins. J Chromatogr A,1995,700 (1-2):111-123.
    Kippen A.D., Cerini F., et al. Development of an isotope dilution assay for precise determination of insulin, C-peptide, and proinsulin levels in non-diabetic and type Ⅱdiabetic individuals with comparison to immunoassay. J Bio Chem,1997,272 (19):12513-12522.
    Kontopidis G, Holt C, Sawyer L. Invited review:Beta-lactoglobulin:Binding properties, structure and function. Dairy Sci,2004,87 (4):785-796.
    Krissansen GW. Emerging health properties of whey proteins and their clinical implications. J Am Coll Nutr.2007,26 (6):713S-723S.
    Konrad, G. and Kleinschmidt T. A new method for isolation of native a-lactalbumin from sweet whey. Inter Dairy J,2008.18(1):47-54.
    Kuzyk M.A., Smith D., et al. Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol Cell Proteomics,2009,8 (8):1860-1877.
    Lange V., Picotti P., et al. Selected reaction monitoring for quantitative proteomics:a tutorial. Mol Sy.st Biol,2008,4:222.
    Larson B.L. and Hageman E.C. Determination of a-Lactalbumin in Complex Systems.J Dairy Sci, 1963,46(1):14-18.
    Levin Y., Wang L., et al. Real-time evaluation of experimental variation in large-scale LC-MS/MS- based quantitative proteomics of complex samples. J Chromatogr B-Anal Tcchnol in the Biomed & Life Sci,2009,877 (13):1299-1305.
    Lien E.L. Infant formulas with increased concentrations of alpha-lactalbumin. American J din Nittri, 2003,77(6):1555S-1558S.
    Linscheid M.W., Ahrends R.. et al. Liquid chromatography-mass spectrometry-based quantitative proteomics. Methods Mol Biol,2009,564:189-205.
    Lonnerdal, B., Lien E. L.. Nutritional and physiologic significance of alpha-lactalbumin in infants. Nutri Rev,2003,61 (9):295-305.
    Lopez-Ferrer D., Heibeck T. H., et al. Rapid sample processing for LC-MS-based quantitative proteomics using high intensity focused ultrasound. J Proteome Res,2008,7 (9):3860-3867.
    Lucia H.L.M.L.M. Santos, Isabel M.P.L.V.O. Ferreira. Quantification of a-lactalbumin in human milk: Method validationand application. Analyt Biochem,2007,362:293-295.
    Luhovyy BL, Akhavan T, Anderson GH. Whey proteins in the regulation of food intake and satiety. J American College of Nutr.2001,26,6:704S-712S.
    Lyster R.L.J. The denaturation of α-lactalbumin and β-lactoglobulin in heated milk. J Dairy Res,1970, 37 (2):233-243.
    Maekawa T, Fujihara M, Ohtsuki K. Characterization of human lactoferricin as a potent protein kinase CK2:activator regulated by A-kinase in vitro. Biol & Pharm Bull,2002,25 (1):118-121.
    Marshall K. Therapeutic applications of whey protein. Alternative Medicine Review.2004,9 (2): 136-156.
    Moore SA, Anderson BF. The structure of bovine lactoferrin:X-ray diffraction analysis. J Mol Biul, 1997,274:222-236.
    Mueller L.N., Brusniak M.Y., et al. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res,2008.7 (1):51-61.
    Nicki M. Kinghorn, Carmen S. Norris, Geoff R. Paterson and Don E. Otter. Comparison of capillary electrophoresis with traditional methods to analyse bovine whey proteins. J Chromatogr A,1995, 700:111-123.
    N'Negue M.A., Miclo L., et al. Proteolysis of bovine a-lactalbumin by thermolysin during thermal denaturation. Inter Dairy J,2006,16(10):1157-1167.
    Ng-Kwai-Hang K.F., Kroeker E. M. Rapid Separation and Quantification of Major Caseins and Whey Proteins of Bovine Milk by Polyacrylamide Gel Electrophoresis. J Dairy Sci,1984,67 (12): 3052-3056.
    Piereead. Molecular cloning and sequence analysis of bovine lactotransterrin. Euro J Bioehem,1991, 169:177-184.
    Pouliot Y., Guy M.M., et al. Isolation and characterization of an aggregating peptide from a tryptic hydrolysate of whey proteins. JAgric Food Chem,2009,57 (9):3760-3764.
    Putz S., Reinders J., et al. Mass spectrometry-based peptide quantification:applications and limitations. Expert Rev Proteomics,2005,2 (3):381-392.
    Qian ZY, Joll P, Migllore-samour D, et al. Isolation and characterization of sheep lactoferrin, inhibitor of platelet aggregation and comparison with human lactoferrin. Biochim Biophys Acta,1995,1243: 25-32.
    Rabiller-Baudry, Bernard Chaufer, Murielle. Specific adsorption of phosphate ions on proteins evidenced by capillary electrophoresis and reversed-phase high-performance liquid chromatography. J Chromatogr B,2001,753:67-77.
    Raphael G.D., Davis J.L., Fox P.C., et al. Glandular secretion of lactoferrin in a patient with neutrophil lactoferrin deficiency. JAller & Clin Immun,1989,84:914-919.
    Ren-Kun Chen, Li-Wen Chang, Ya-Yun Chung, Ming-Hsung Lee and Yong-Chien Ling.Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionization mass spectrometry. Rapid Commun Mass Spec,2004,18:1167-1171.
    Sakai K, Sakurai K, Sakai M, et al. Conformation and stability of thiol-modified bovine beta-lactoglobulin. Protein Sci,2000,9 (9):1719-1729.
    Santos L.H.L.M.L.M., Ferreira I.M.P.L.V.O. Quantification of a-lactalbumin in human milk:Method validation and application. Anal Biochem,2007,362 (2):293-295.
    Stanciuc N., Rapeanu G. An overview of bovine a-lactalbumin structure and functionality. Annals of the University Dunarea Je Jos of Gulati, 2010,34 (2):82-93.
    Strange, E. D., Malin E. L., et al. Chromalographic and elcctrophoretic methods used for analysis of milk proteins. J Chromatogr A,1992.624 (1-2):S1-102.
    Uchida Y., Kamiie J., et al. Quantitative Expression Profile of 29 Membrane Transporters in Caco-2 Cells Based on Quantitative Targeted Proteomics by LC-MSMS. Drug Metabolism Rev,2008,40: 109-110.
    Vincent E. Turula, Randall T. Bishop, Robert D. Ricker, James A. de Haseth. Complete structure elucidation of a globular protein by particle beam liquid chromatography-Fourier transform infrared spectrometry and electrospray liquid chromatography-mass spectrometry Sequence and conformation of β-Lactoglobulin. J Chromatogr A,1997,763:91-103.
    Vogel HJ, Sehlbli DJ, Jing W, etal. Towards a structure-function analysis of bovine lactoferrin and related tryptophan and arginine-containing peptides. Biochem J,2002,80:49-63.
    Wal J.M. Bovine milk allergenicity. Ann. Allergy Asthma Immunol.2004,93 (5 Suppl 3):S2-11.
    Xiao R, Carter JA, Linz AL, Ferguson M, Badger TM, Simmen FA. Dietary whey protein lowers serum C-peptide concentration and duodenal SREBP-lc mRNA abundance, and reduces occurrence of duodenal tumors and colon aberrant crypt foci in azoxymethane-treated male rats. J Nutr Biochem. 2006,17 (9):626-634.
    Yiping Ren, Zhen Han, Xiaojun Chu, Jingshun Zhang, Zengxuan Cai, Yongjiang Wu. Simultaneous determination of bovine α-lactalbumin and β-lactoglobulin in infant formulae by ultra high-performance liquid chromatography tandem mass spectrometry. Analyt Chim Acta,2010,667: 96-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700