基于牡蛎糖原硫酸酯结构的多糖构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然多糖具有多种生物活性,包括提高免疫力、抗氧化、抗肿瘤、抗病毒、抗凝血等。经过研究发现许多具备某种特定生理活性的天然多糖,都具有着一定特殊的分子结构。这种特定的分子结构决定着其所具备的生物活性能力。但至今对多糖的结构与活性所对应关系(多糖构效关系)的研究仍然进展缓慢,其主要障碍之一就是缺乏能够作为多糖构效关系研究的模式化合物,这种多聚化合物必须具备单一的可比较的单糖组成、明确且简洁的单糖链接糖苷键型、一致的异头物构型、明确的且取代位置相同的取代基、可有效掌控的分子量大小。找到符合上述条件的模式多糖成为多糖构效关系研究中的无法回避的难点之一。天然多糖结构复杂,组成单糖复杂,连接键型多种多样,取代基种类及取代位置变化多端,不同分子量但具有相同结构的多糖难以获取等等,这一系列的难题使得将某种多糖具备的生理活性与其结构精确对应成为一件难以完成的任务。
     本研究从大连湾牡蛎,学名Ostrea talienwhanensis Crosse体内提取出一种多糖物质,经过分离纯化以及结构鉴定后得到一种纯度良好的糖原物质,此糖原经过硫酸化修饰后得到了一种硫酸取代基专一取代在C-6位置的硫酸化糖原。此种糖原具有简单的单糖组成和异头物构型、一致的糖苷键键型、可控的分子长短、一致且位置确定的硫酸基取代,成为极其优良的可以做为多糖构效关系研究的模型化合物。
     1、为获取纯度良好的牡蛎糖原,本研究采用多糖含量为评价指标优化了牡蛎糖原提取方法,尽可能的去除糖原所共价连接的蛋白成分。最优提取条件为:以胃蛋白酶酶解提取,料液比1:45,加酶量为底物质量的1.5%,pH2.0,温度37℃,酶解时间2h。酶解提取物再经过乙醇醇沉沉淀、DEAE-52阴离子纤维素柱和Sephadex G-100凝胶柱洗脱分离纯化出一种纯度良好的牡蛎多糖聚合物。
     2、对所提取到的多糖物质进行了结构解析。样品通过衍生化经气相色谱和液相色谱方法分别鉴定证明其只含有葡萄糖组成成分,IR扫描结果证明其为多糖类结构物质。样品甲基化后经GC-MS分析发现此提取物具有1-4Glc,1-4,6Glc和1-Glc的链接键型结构,属于典型的糖原特征组成键型,并且还存在有痕量的其他葡萄糖组成键型。且1-4,6Glc与1-4Glc键型在数量上的比例约为1:6.6,说明此糖原结构平均每6.6个葡萄糖存在一次分支。核磁共振谱分析同样证明了此提取物的糖原组成结构。从而证实了该牡蛎提取物为牡蛎糖原,且其分支率较高,平均每6.6个葡萄糖残基中发生一次分支。
     3、对此牡蛎糖原进行硫酸化修饰后,经过分离纯化得到3个组分,分别对其进行分子结构鉴定,发现其中组分SOG的结构为硫酸基特异性取代于单糖残基的C-6羟基位置的硫酸化牡蛎糖原,而组分SOG1的结构为硫酸基取代在糖残基的C-2和C-3羟基位置的硫酸化牡蛎糖原。对此两种糖原进行体外促淋巴细胞增殖能力的研究发现SOG的活性要明显强于SOG1,而其分子结构除硫酸基取代位置因素不同外其他因素基本一致,这证明在多糖的构效关系中,硫酸基取代位点对于其促淋巴细胞增殖能力有着重要影响,且硫酸基在C-6位置取代的结构其活性最佳
     4、通过对硫酸化牡蛎糖原SOG进行高碘酸氧化降解,得到了一个硫酸基含量达到40.6%,分子量为6.3×106的组分SOGF1。将SOGF1与硫酸化修饰后得到的另外3种硫酸酯糖原SOG、SOG1和SOG2编成一研究对照组,构成了一组具有不同硫酸基含量、不同分子质量但结构相似的硫酸酯糖原组,对其进行活性研究表明:此4种硫酸酯糖原均有促淋巴细胞增殖活性,其能力大小关系为SOG>SOGF1>SOG1>SOG2。对照他们的结构与活性之间关系分析发现,多糖结构对促淋巴细胞增殖活性影响因素的强弱顺序为:多糖结构中硫酸基取代位点>多糖中硫酸基含量>硫酸基多糖分子量。
     总之,此多个多糖组分经过结构对应的活性测试可以总结出,多糖中硫酸基的含量与活性间有着线性的平行对应规律,但分子量大小因素并没有非常明确的影响规律。在其他结构因素相同的情况下,C-6位置硫酸基取代对多糖活性的提升具有决定性影响,其次,硫酸酯多糖的活性受结构中硫酸基含量的影响,硫酸基含量越多其活性越强烈。最后,硫酸酯多糖的分子量大小对多糖活性有影响,但无明确的相关关系,只有多糖分子量达到一定值区间时多糖结构才能充分发挥其功能。
Natural polysaccharide has many bioactivities, including immunomudulation, antioxidation, antitumor, antivirus, anticoagulant, etc. Research showed that many natural polysaccharides with specific physiological activity have specific molecular structures. These specific molecular structures determine the bioactivity of the polysaccharides. But up to now, research on the relationship between polysaccharides structure and bioactivity progressed slowly. One of the main obstacles is the lack of suitable mode compounds. Such polymeric compounds must have single monosaccharide composition, clear and definite glycosidic bond type and substituent at same substitution positions, consistent anomer configuration, and their molecular weight can be effectively controlled. It's difficult to obtain such polysaccharides as discribed above and this difficulty cannot be easily overcome in the structure-activity relationship studies.
     Natural polysaccharides are of complicated in structure, complex monosaccharide composition, varied connecting type, substituent types and replace position and so on. In addition, polysaccharide with different molecular weight and same structure are hardly to obtain. These problems made the structure-activity relationship research a hard task.
     In this study, polysaccharide was extracted and purified from oyster Ostrea talienwhanensis Crosse. After structure identification, the polysaccharide was proved to be a kind of well purified glycogen from oyster. The oyster glycogen was then sulfated, and the substitution patterns were precisely determined to be C-6in the sulfated oyster glycogen. This kind of glycogen, with simple monosaccharide composition and anomer configuration, consistent glycoside type, ascertain molecular length, consistent and determined position of the sulfuric base, thus can be used as an excellent model compound in the study of structure-activity relationship.
     In order to obtain purified oyster glycogen, the polysaccharide content was used as an indix to optimize the extraction method to remove the conjugated pretein. The optimum extraction conditions were determined:the optimize extraction enzyme is pepsin, the ratio of solid material to liquid is1:45, enzyme percentage is1.5%(m/m, substrate), pH2.0, temperature as37℃, enzymolysis time is2h. Ethanol (v/v) was then added into the enzymatic hydrolysate to obtain the crude oyster polysaccharide. The crude oyster polysaccharide was then purified by a series of column chromatography, including dimethylaminoethyl negion exchange column (DEAE-cellulose-52,2.0cm×40cm) and Sephadex G-100column (1.6cm×70cm). The major fraction was collected, concentrated, desalted by dialysis and then vacuum freeze-dried to obtain the homogeneous polysaccharide.
     After derivatization, the structure of oyster polysaccharide polymer was analyzed by gas chromatography and high performance liquid chromatography (HPLC). Results showed that the oyster polysaccharide consisted solely of glucose. IR scan results proved the obtained polymer was polysaccharide. The fully methylated products were analyzed by GC-MS and were affirmed to be a kind of glycogen because of its typical glycogen linkage,1-4Glc,1-4,6Glc and1-Glc. Meanwhile, there exist trace other glycogen linkage type. The ratio of1,4-linkage to1,4,6-linkage was6.6, which indicated that the oyster glycogen chain branched for6.6glucose residues averagely. And it was further confirmed by NMR analysis that the oyster polysaccharide was a kind of glycogen and the oyster glycogen chain branched for6.6glucose residues-averagely.
     The oyster glycogen was chemically sulfated and further purified. Three fractions of sulfated oyster glycogen were collected, named as SOG, SOG1, and SOG2. SOG was sulfate substituted at C-6position. SOG1was sulfate substituted at C-2and C-3positions. SOG showed better activity in promoting spleen lymphocyte proliferation than SOG1. SOG and SOG1shared similar structure properties, except the sulfate position. It's proved that the position of sulfate substitution played an important role in promoting lymphocyte proliferation ability. The polysaccharide with C-6substitution demonstrated the most significant activity.
     After periodate oxidation, SOGF1was obtained by gel chromatography of the degradation products of SOG. The content of sulfate group in SOGF1was40.6%. Molecular weight of SOGF1was determined as6.3×106. Thus SOGF1, SOG, SOG1and SOG2, with different sulfate group content, different molecular weight, but similar structure, could be used as model polysaccharides to research the structure-activity relationship. Activity studies showed that all the above four kinds of glycogens could promote lymphocyte proliferation with an ascending series of SOG>SOGF1>SOG1>SOG2.
     Analysis showed that different structural properties of the polysaccharides played different role in promoting lymphocyte proliferation, with an ascending series of sulfate positon>sulfate content> molecular weight.
     Results showed that there was a proportional relation betrelationship between sulfate content and lymphocyte proliferation activity. But molecular weight did not demonstrate any effect on the bioactivity.
     Results showed that C-6position sulfate substitution has decisive influence on the bioactivity of polysaccharide if other structural properties were similar. The content of sulfuric acid played the second role, more sulfate content, stronger bioactivity. Finally, molecular weight of sulfate polysaccharides also could influence the bioactivity, but there is no clear correlation between them. Perhaps the molecular weight might play some role when reaches a certain value.
引文
[1]曹瑞珍,薛燕,李大力.抗肿瘤多糖研究进展[J].内蒙古民族大学学报(自然科学版).2004,19(6):657-658.
    [2]LonsenyT.尹源明,何国庆.复合食用菌多糖抗肿瘤作用的研究[J].2005,5(2):90-93.
    [3]申淑琦,徐春霞,佟瑞山.牡蛎的营养保健功能及其开发利用[J].河北农业科学.2009,13(10):79-81.
    [4]华岩.牡蛎提取液对小鼠运动耐力、血液生化指标的影响[J].菏泽学院学报.2012,34(2):64-66.
    [5]林海生,曹文红,卢虹玉,章超桦,吕妙兄,席庆.牡蛎酶解产物改善小鼠学习记忆能力的初步研究[J].食品工业科技.2012,33(19):341-345.
    [6]余杰,杨振国,钟炼,张晓辉,高小燕,江晨.酶法制备牡蛎抗氧化肽研究[J].中国海洋药物.2012,31(3):31-36.
    [7]许庆陵,周勇强.牡蛎水解蛋白制备及脱腥技术研究[J].食品研究与开发.2012,33(10):1-5.
    [8]陈达,霍敏晶,黄文芊,刘尊英.牡蛎蛋白酶解物螯合锌的工艺优化[J].农产品加工.2012(10):5-7.
    [9]闫兴丽,张建军,曾凤英.三种牡蛎矿质元素的含量测定与分析[J].中国中医基础医学杂志.2009,15(3):218,233.
    [10]王俊,姚滢,张建鹏.牡蛎多糖的制备和生物学活性研究[J].医学研究生学报.2006,19(3):217.
    [11]王海桃,刘赛.牡蛎糖胺聚糖对损伤的血管内皮细胞功能的影响[J].海洋水产研究.2007,28(5):105.
    [12]冯晓梅,韩玉谦,赵强.牡蛎中糖蛋白成分的分离纯化及其性质研究[J].天然产物研究与开发.2008,20(4):709.
    [13]陈骞,杨瑞金,顾聆琳.牡蛎糖原的研究(II)牡蛎糖原的分子结构[J].食品科学.2005,26(7):43-46.
    [14]Motoko Matsui, Mariko Kakut, Akira Misaki. Fine structural features of oyster glycogen:mode of multiple branching[J]. Carbohydrate Polymers.1996,31(4): 227-235.
    [15]Rui-chang Gao, Li Yuan, Qi Wang, Yong Xue, Hui Feng, Liang Yin, Jing-feng Wang, Chang-hu Xue. Innovative method for determining glycogen content in the Pacific oyster (Crassostrea gigas) by ion chromatography[J]. Journal of Chromatography A.2008,1208(1-2):239-241.
    [16]M.R.Sandhya Rani, Kiyoshi Shibanuma, Susumu Hizukuri. The fine structure of oyster glucogen[J]. Carbohydrate Research.1992,227(6):183-194.
    [17]王展,方积年.高场核磁共振波谱在多糖结构研究中的应用[J].分析化学评述与进展.2000,28(2):240-247.
    [18]Lloyd AG, Dodgson KS, Price RG, Rose FA. Infrared studies on sulphate esters. I. Polysaccharide sulphates. [J]. Biochim Biophys Acta.1961(46):108-115.
    [19]郭琦,孙润广,郭回鸷,焦自明.枸杞多糖分离纯化及其结构光谱分析与显微学观察[J].中草药.2012,43(4):645-648.
    [20].蔡林涛,李萍.原子力显微镜观察虫草多糖分子的结构形貌[J].电子显微学报.1999,18(1):103-105.
    [21].赵雪迎,丁克俭,胡进维.植物多糖的研究进展[J].辽宁中医药大学学报.2008,10(3):140-141.
    [22]Qing-yang Liu, Yong-ming Yao, Yan Yu. Astragalus polysaccharides attenuate postburn sepsis via inhibiting negative immunoregulation of CD4+CD25 T ell[J]. Plos One.2011,6(7):1-9.
    [23]Han SB, Park SK, Ahn HJ. Characterizaion of B cell membrane receptors of polysaccharide isolated from the root of Acanthopanax koreanumn[J]. int Immunopharmacol.2003,3(5):683-691.
    [24]Wei W Q, Cong J B, Xian H. The effect of polysaccharides from sea weed(SPS) on ponicum[J]. phytotherapy Research.1998(12):164-168.
    [25]Wang WT, Zhou JH, Xing ST. Immunomodulating action of marine algae sulfated polysaccharides on normal and immunosuppressed mice[J]. Chin J Pharm Toxicology.1994(8):199-202.
    [26]王学宏,李明春.中药多糖的免疫及抗肿瘤作用研究进展[J].齐鲁医学杂志2000,15(3):230-231.
    [27]吕怀盛,张红梅,张波.枸杞多糖对PG细胞株增殖及凋亡的影响[J].宁夏医学院学报.2002,22(3):368-371.
    [28]Lee C L, Yang X T, Wan J MF. The culture duration affects the immunomodulatory and anticancer effect of polysaccharopeptide derived from Coridlus versicolor[J]. Enzyme Microb Technol.2006,31(1):14-21.
    [29]董永杰,单铁英,袁征.6种中药多糖对诱导树突状细胞成熟及刺激T细胞增殖作用的比较[J].现代预防医学.2010,37(18):3438-3441.
    [30]Shi BJ, Nie XH, Xu HY. Preparation of grifola frondosa polysaccharide sulfate and its antitum or activity[J]. Chin J Pharm Toxicology.2003(8):383-385.
    [31]李颖博,李宇华,王瑞.灵芝多糖对肿瘤细胞与内皮细胞相互作用的影响[J].中国药理学通报.2008,24(2):250-253.
    [32]牛英才,赵学梅,张春.低分子姬松茸多糖对荷瘤小鼠肿瘤组织CD44 mRNA表达的影响[J].辽宁中医杂志.2008,35(10):1482-1484.
    [33]Doctor VM, Lewis D, Coleman M. Anticoagulant properties of semisynthetic polysaccharide sulfates[J]. Thrombosis Research.1991(64):413-425.
    [34]Mulloy B, Mourao P.A.S, Gray E. Structure/function studies of anticoagulant sulphated polysaccharides using NMR[J]. Journal of Biotechnology.2000(77): 123-135.
    [35]Alban S, Kraus J, Franz G. Synthesis of laminarin sulfates with anticoagulant acivity[J]. Arzneimtte Ittelforschung/Drus Research.1992(42):1005-1008.
    [36]Zhu G.J. Zhao Z.F.Fang H.Y. The relationship between structure and function of polysaccharides. Wuxi LightInd Univ,2002,21(2):209-212.
    [37]Hoshino T, Hayashi T, Hayashi K. An antivirally activesulfated polysaccharide from argassum homeri(TIJRNER) C. AGARDH[J]. Biol Pharm Bull.1998(21):730.
    [38]Hayashi K, Hayashi T, Kojima I. A nature sulfated polysaccharide, calcium spirulan,isolated from spirulina platensis:invitro and exvivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. Aids Res Hum Retroviruses.1996(12):1463.
    [39]陈广梅,吴超,刘勇.云芝糖肽对HBV感染者外周血单个核细胞的调节作用[J].江苏中医药.2007,39(9):17-19.
    [40]黄小燕,孔祥峰,王德云,胡元亮.多糖硫酸化修饰和多糖硫酸酯的研究进展[J].天然产物研究与开发.2007,19(355):328-332.
    [41]Yadomae T. Structure and biological activities of fungal β-1,3-glucans[J]. Yakugaku Asshi.2000(120):413-431.
    [42]Deng Chenghua, Yang Xiangliang, Gu Xiaoman. Isolation and component analysis of polysaclharide from the sclerotia of Hunai[J]. CHINESE PHARMACEUT-ICAL JOURNAL.2000,35(5):296-298.
    [43]Olafsdottir E S, Ingolfsdottir K. Polysaccharides from lichens:structural characteristics and biological activity[J]. Planta Med.2001(67):199-208.
    [44]Kulicake W M. Correlation between immuno logical activity, molarmass, and molecular structure of different (1→3)-β-D-glucans[J]. Carbohy d r Res.1997(297): 135-143.
    [45]刘洁,李文香,王文亮,徐同成,刘丽娜,陶海腾,杜方岭.多糖空间结构与生物活性相关性研究进展[J].食品工程.2011(6):153-155.
    [46]NIgi N, Ohno N, Adachi Y. Application of limulus test(G pathway) for the detection of different conformers of (1,3)-β-D-glucans[J]. Biol Pharm Bull.1993,16(9):822-828.
    [47]Bohn J.A, Be Miller,J.N. (1,3)-β-glucan as biological response modifiers:a review of structure-funcional activity relationships. Carbohydrate Polymer. 1995,28(1):3-14.
    [48]Matsuoka H. Lentinan potentiates immunity and prolongs the survival time of some patients. Anticancer Res.1997,17(4):2751-2755.
    [49]Zhang P, Zhang L, Cheng S. Effect of urea and sodium hydroxide on the molecular weight and conformation of β-(1,3)-D-glucan from letinus edodes in aqueous solution[J]. Carbohydr Research.2000,327(2):431-438.
    [50]Young S H, Jacobs R R. Sodiun hydroxide induced conformational change in schizophylan detected by the fluorescencedye, aniline blue[J]. Carbohydr Res. 1998,310(1):91-99.
    [51]O lafsdottir E S, Omarsdottir S, Paulsen B S. Rhamnopyranosyl-galactofuran an, a new immunologically active polysaccharide from Tham nolia subuliform is[J]. Phytomedicine.1999,6(4):273-279.
    [52]Huang C H, Li Y, Wang X F. Studies on extraction and analysis of pachyman and its structure[J]. Guang zhou Food Sci Tech.2001,17(3):13-15.
    [53]Misaki A, Kawagnchik K. Structure of pestalotan, a highly branched (1, 3)-β-D-glucan elaborated by Pestlotia sp.815, and the enhancement of its antitumor activity by polyolmodification of the side chains. Carbohydr Res[J].1984,129(1): 209-227.
    [54]陈春锋,杨晓彤.药用真菌β(1,3)-D-葡聚糖构效关系及检测方法研究进展[J].微生物学通报.2006,33(5):150-153.
    [55]Perret J, Bruneteau M, M icheal G. Effect of grow thconditions on the st ructure of β-D-gluca[19] Perret J, Bruneteau M, M icheal G. Effect of grow thconditions on the st ructure of β-D-glucans from Phytophthorap arasitica Dastur, a phytoph thogenic fungus. Carbohydrate Polymers[J].1991,17(2):231-236.
    [56]方唯硕.具有抗HIV活性的天然产物[J].国外医药·植物药分册.1993,8(2):65-69.
    [57]黄卉,王弘,刘欣.多糖的构效关系研究进展[J].广州食品工业科技.2004,20(3):158-161.
    [58]Galanzans GM T, Lima R C, Franca F P. Molecular weight and antitumor activity of Zymonaonas mobilis Levans[J]. Int J Biol Macromol.2000,27(1):245-247.
    [59]Wang CY, Guang HS. Advances in studies of antiviral activity of polysaccharide2.antiviral activity of sulfated polysaccharide[J]. Advances of Biological Project.2000(2):3-8.
    [60]谢好贵,陈美珍,张玉强.多糖抗肿瘤构效关系及其机制研究进展[J].食品科学.2011,32(11):329-333.
    [61]吴琼,代永刚.磷酸酯化修饰碱溶性银耳多糖的研究[J].食品科技.2010(3):75-77.
    [62]徐扬,杨保伟,柴博华.超声波一酶法提取海带多糖及其抑菌活性[J].农业工程学报.2010,26(1):356-362.
    [63]Qi H, Zhang Q, Zhao T. Invitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulvapertusa(Chlorophyta). Bioorganic and Medicinal Chemistry Letters.2006,16(9):2441-2445.
    [64]Huang F YW, M eng YW. Studies on polysaccharies with biological activity. Nat Prod Res Dev.1999,11(5):90-98.
    [65]林秀珠,罗志敏,马秀玲.烷基化普鲁兰多糖的制备及性质[J].福建师范大学学报(自然科学版).2007,23(2):62-66.
    [66]王爱勤,俞贤达.烷基化壳聚糖衍生物的制备与性能研究[J].功能高分子学报.1998,11(1):83-86.
    [67]王雁,杨祥良,邓成华.羧甲基化虎奶多糖的制备及抗氧化性研究[J].生物化学与生物物理进展.2000,27(4):411-414.
    [68]Paulsen B S, Zhang Q B, Wang J. In vitro antioxidant activities of acetylated, phosphorylated and benzoylatied derivatives of porphyran extracted from Porphyra haitanensis[J]. Carbohydrate Polymer.2009,78(3):449-453.
    [69]Liang Z Y, Miao C Y, Zhang Y S. Influence of chemical modified structures on antitumor activity of polysaccharides from Clitopilus caespitosus[J]. Chin Pharm J. 1996,31(10):613-615.
    [70]田庚元,冯宇澄.多糖类免疫调节剂的研究和应用[J].化学进展.1994,6(2):114-124.
    [71]Rusnati M, Cohrini D, Oreste P. Interation of HIV-1 tat protein with heparin. Role of the backbone structure, sulfation, and size[J]. J Biol Chem.1997,272(17): 11313-11320.
    [72]Clercq E D. Strategies in the design of antiviral drugs. Nature Reviews Drug Discovery[J].2002,45(1):13-25.
    [73]Nakashima H, Kido Y, Kobayashi N. Purification and characterization of all avian myeloblastosis and human immunodeficiency virus reverse transcriptase inhibitor, sulfated polysaccharides extracted from ea algae[J]. Antimicrob Agents Chemother.1987,31(10):1524-1528.
    [74]王长云,管华诗.多糖抗病毒作用研究进展Ⅱ硫酸多糖抗病毒作用[J].生物工程进展.2000,20(2):3-8
    [75]Witvrouw M, De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs[J]. Gen Pharmacol.1997(29):497-511.
    [75]Hemmingson JA, Falshaw R, Furneaux RH, Thompson KJ. Structure and antiviral activity of the galactofucan sulfates extracted from Undaria pinnatifida (Phaeophyta)[J]. J Appl Phycol.2006,18(2):185-193.
    [77]Bergefall K, Trybala E, Johansson M, Uyama T, Naito S, Yamada S, Kitagawa H, Sugahara K, Bergstr. Chondroitin Sulfate characterised by the E-disaccharide unit is a potent inhibitor of Herpes Simplex Virus infectivity and provides the virus binding sites on gro2C cells. JBiolChem[J].2005,280(37):32193-32199.
    [78]Copeland R, Balasubramaniam A, Tiwari V, Zhang F, Bridges A, Linhardt RJ, ShuklaD, Liu J. Using a 3-O-sulfated heparin octasaccharide to inhibit the entry of herpes simplex virus type 1[J]. Biochemistry.2008(47):5774-5783.
    [79]张水华.食品分析.2004..
    [80]张惟杰.糖复合物生化研究技术(第二版).浙江大学出版社.1999.
    [81]Staub AM. Removal of proteins-Sevagmethod.Methods in Carbohydrate. New York, Chemistry. Academic Press,1965.
    [82]张芳,尹鸿萍,王旻.硫酸酯化螺旋藻酸性多糖的气相色谱中不同衍生化方法比较[J].药物生物技术.2002,9(5):278-280.
    [83]林雪,王仲孚,黄琳娟.改进的PMP柱前衍生化方法用于单糖的组成分析[J].高等学校化学学报.2006,27(8):1456-1458.
    [84]徐晗,章蕴毅,张建文.天然产物中的抗补体活性成分[J].中国天然药物.2007,5(5):322-332.
    [85]CATHERINE B, ELIZABETH F, CATHERINE B V. Inhibition of complement activation by natural sulfated polysaccharide(Fucans) from brown seaweed[J]. Molecular Imnunology.1994,31(4):247-253.
    [86]FABIAN B, MARIA C, MARIAC CM. Neatral polysaccharide from Cedrela tubiflora with anticomplementary activity[J]. Phytochemsitry.1999(50):57-62.
    [87]MASASHI T, NAOKO O, RYOKO G An acidic polysaccharide having immunological activities from the rhizome of Cnidium offtcinale[J]. Chemical and Pharmaceutical Bulletin.1992,40(11):2025-2029.
    [88]Barker S.A, Bourne E.J, Stacey M, Whien D.H. Infrared spectra of carbohydrates. Part I. Some derivatives of D-glucopyranose[J]. Journal of the Chemical Society. 1954:171-176.
    [89]de Bruin, AH.Parolis, H.Parolis, LA.The capsular antigen of Escherichia coli serotype O8:K102:H-.Carbohydr Research.1992.235.235
    [90]Stevens AN, Iles RA, Morris PG, Griffiths JR. Detection of glycogen in a glycogen storage disease by 13C nuclear magnetic resonance[J]. FEBS Lett. 1982(150):489-493.
    [91]Photis D, Arthur S.P. High-field,13C-N.M.R. spectroscopy of β-D-glucans, amylopectin, and glycogen[J]. Carbohydrate Research.1982(100):103-116.
    [92]Agrawal, PK. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides[J]. Phytochemistry.1992(31).
    [93]李斌,庞杰,廖永诚,谢笔钧.魔芋葡甘聚糖-硼复合物结构表征研究[J].农业工程学报.2004,20(7):225-228.
    [94]宫春宇,潘迎捷.硫酸钡比浊法对龙须菜多糖中硫酸基含量的测定[J].天然产物研究与开发.2009(21):402-405.
    [95]WU Qiong, Cheng Zheng, Zhengxiang Ning. Modification of low molecular weight polysaccharides from Tremella fuciformis and their antioxidant activity in vitro[J]. International Journal of Molecular Sciences.2007(8):670-679.
    [96]Lu, Y, Wang DY, Hu YL, Huang XY, Wang JM. Sulfated modification of epimedium polysaccharide and effects of the modifiers on cellular infectivity of IBDV[J]. Carbohydrate Polymer.2008(71):180-186.
    [97]Mosman T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays[J]. Journal of Immunological Methods. 1983(65):55-63.
    [98]Sun LM, Zhu BW, Li DM, Wang LS, Dong XP, Murata Y, Xing R, Dong Y. Purification and bioactivity of a sulphated polysaccharide conjugate from viscera of abalone Haliotis discus hannai Ino[J]. Food and Agricultural Immunology.2010(21): 15-26.
    [99]Wang L, Huang H, Wei Y, Li X, Chen Z. Characterization and anti-tumor activities of sulfated polysaccharide SRBPS2a obtained fromdefatted rice bran[J]. Int J Biol Macromol.2009(45):427-431.
    [100]Zvyagintseva TN, Shevchenko NM, Nazarova Ⅳ, Scobun AS, Luk'yanov PA, Elyakova LA. Inhibition of complement activation by water-soluble polysaccharides of some far-eastern brown seaweeds[J]. Comp Biochem Physiol C Toxicol Pharmacol.2000(126):209-215.
    [101]Yang J.H, Du Y.M, Huang R.H, Wan Y.Y, Wen, Y. The structure-anticoagulant activity relationships of sulfated lacquer polysaccharide Effect of carboxyl group and position of sulfation[J]. International Journal of Biological Macromolecules. 2005(36):9-15.
    [102]Chen T, Li B, Li Y.Y, Zhao C.D, Shen J.M, Zhang H.X. Catalytic synthesis and antitumor activities of sulfated polysaccharide from Gynostemma pentaphyllum Makino[J]. Carbohydrate Polymers.2011(83):554-560.
    [103]Liu Y.H, Liu C.H, Tan H.N, Zhao T, Cao J.C, Wang F.S. Sulfation of a polysaccharide obtained from Phellinus ribis and potential biological activities of the sulfated derivatives[J]. Carbohydrate Polymers.2008(77):370-375.
    [104]Richter A, Wagenknecht W. Synthesis of amylose acetates and amylase sulfateswith high structural uniformity. Carbohydrate Research[J].2003(338):139 7-1401.
    [105]Leung MY, Liu C, Zhu LF, Hui YZ, Yu B, Fung KP. Chemical and biological characterization of a polysaccharide biological response modifier from Aloe vera L var. chinensis (Haw.) Berg[J]. Glycobiology.2004(14):501-510.
    [106]Tasneem Islam, Melissa Butler, Sulthan A.Sikkander, Toshihiko Toida. Further evidence that periodate cleavage of heparin occurs primarily through the antithrombin binding site[J]. Carbohydrate Research.2002(337):2239-2243.
    [107]田庚元,陈晓明,张健.牛膝多糖衍生物制备方法和用途.2003-02-19中国专利02110987.7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700