从灵芝菌丝体中高效分离制备抗肿瘤灵芝酸单体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灵芝酸是名贵药用真菌—灵芝的主要活性成分之一,具有多种重要的药理功能,其中以抗肿瘤作用尤其引起人们的兴趣和重视。然而,随着它的药用价值被广泛揭示的同时,大量高纯度单体的获取成为了阻碍其深入的药理研究和广泛应用的瓶颈。本实验室发明的灵芝两阶段培养是一种高效生产灵芝酸的方法,但相应的高效制备技术及相关理论研究的缺乏依然制约着灵芝酸的深入开发。另外,灵芝酸的稳定性对其分析分离具有重要的影响,但至今只有本实验室报道了7-乙氧基-灵芝酸-O的稳定性,尚未见有关其它灵芝酸的稳定性的报道。本学位论文采用两阶段培养的灵芝菌丝体为材料,分析了其主要灵芝酸的组成,考察了它们的稳定性。在此基础上,开发了一种同时快速制备多种灵芝酸单体的方法,并进一步建立了具有高回收率和高纯度制备灵芝酸T的低压层析技术及其动力学模型。
     本学位论文首先采用硅胶柱层析、薄层层析和半制备高效液相色谱等分离方法,综合运用紫外光谱、红外光谱、质谱、和核磁共振等波谱技术,从灵芝菌丝中分离和鉴定了八个灵芝酸单体,包括I类灵芝酸:Mc, DH,7-乙氧基-灵芝酸O和II类灵芝酸:Mk,S,T,Mf和R。其中,灵芝酸DH为一个未见文献报道的灵芝酸。随后的稳定性实验表明:Ⅰ类灵芝酸在非质子性溶剂中相对稳定,而质子性溶剂下,容易转化相应的II类灵芝酸。II类灵芝酸由于具有稳定的共轭体系,电子云分布比较均匀,在两类溶剂中均稳定。基于以上研究结果,以非质子性的乙腈取代质子性甲醇作为样品溶媒,并建立了一种可以同时检测以上两类灵芝酸的反相高效液相光二极管阵列检测法(RP-HPLC-PAD)。该方法使用C18反相色谱柱,以乙腈和水为流动相进行梯度洗脱。实验结果表明,该方法线性关系好,精密度、准确度和回收率高,可以为灵芝酸的分离制备和代谢调控的研究提供可靠的分析平台。
     粗分离是单体活性物质制备的重要基础。灵芝酸传统的粗分离方法具有操作时间长,回收率低等缺点。本学位论文接着以具有良好抗癌活性灵芝酸Mk和T为模式分子,探索大孔吸附树脂对灵芝酸粗分离的效果。通过静态实验筛选,从六种大孔树脂中确定ADS-8树脂为最佳的粗分离介质。动力学研究表明,准二级方程对吸附数据具有良好的拟合效果(R2>0.999)。通过热力学研究发现,ADS-8树脂对灵芝酸的吸附属于物理吸附,低温有利于吸附。最后,动态实验确定ADS-8树脂分离灵芝酸Mk和T的柱层析条件:上样体积为7.3BV;吸附和洗脱流速均为4BV/h,洗脱程序为先用3BV55%的乙醇洗脱,再用6BV的80%的乙醇洗脱。经单次分离后,灵芝酸Mk和T的含量分别从4.5%和2.2%提高至34.1%和14.5%,回收率分别为90.1%和72.2%。以上结果表明,ADS-8大孔吸附树脂对灵芝酸的粗分离具有回收率高、操作简单和放大容易等特点,在灵芝酸的分离方面具有较大的应用潜力。
     在以上研究基础上,建立一种同时提取和水解的方法用于快速制备四种II类灵芝酸单体(Mk, S, T和R)。该方法可以将四个Ⅰ类灵芝酸(Mc, HD,7-ethyl-O-GA-O和DH)分别转化为相应的Ⅱ类灵芝酸(Mk,S,T和R),大大简化了粗提物中灵芝酸的种类,降低了后续分离纯化步骤的难度。经处理后,产物的得率提高200%-400%。由该方法获得的粗提液无需任何处理,可直接进料至ADS-8大孔树脂层析柱去除蛋白质、多糖等杂质。树脂层析初分离的样品经半制备液相纯化,容易同时获得纯度大于97%的四种单体。该方法克服了灵芝酸的传统分离工艺中不同操作单元之间的衔接性差,分离时间长和产物回收率低等缺陷。
     由于灵芝酸的制备均以费用较高的高效反相液相作为最后的纯化手段,难以大规模生产。另外,相关的层析理论研究尚未报道。因此,本论文最后探索了低压反相层析分离制备灵芝酸T的可行性。结果表明,以灵芝酸T含量为18.4%的粗提物为分离材料,在小柱(14×235mm)和大柱(42×273mm)上均实现了灵芝酸T的高效制备,其纯度和回收率均大于90%;其中在大柱上,首次实现了克级灵芝酸T的单次制备,柱层析时间小于2小时。以上结果表明,低压反相层析完全可以替代高效制备液相用于灵芝酸T的大规模生产。随后,基于低压反相层析相关实验数据,建立灵芝酸T的层析动力学模型。经实验验证,模型计算图谱与实验图谱吻合良好,表明该模型较好地反映了柱层析分离过程。对模型参数的进一步研究发现,所建立的模型对Biot准数不敏感,而Pe准数值仅在小于1000时,色谱峰的扩展对该参数具有较为敏感的响应。另外,颗粒曲折因子和εb对模型计算结果影响显著。其中,εb不但容易改变色谱峰的保留,而且影响峰的扩展。所建立的模型不但为今后灵芝酸T分离过程的优化和放大提供理论指导,也为其它灵芝酸的分离纯化提供良好的借鉴作用。
     综上所述,本学位论文从灵芝菌丝中分离了八个主要的灵芝酸单体,考察了它们的稳定性,建立了它们的分析方法。在此基础上,建立了灵芝酸单体的高效制备方法和相关的层析动力学模型,为灵芝酸进一步的药物研究及临床试验提供了坚实的物质基础。同时相关的研究方法和思路对其它活性天然产物的分离制备也有良好的借鉴作用。
Ganoderic acids (GAs) were one of main bioactive components produced by Ganoderma lucidum, a famous medicinal fungus. They possess a variety of bioactivities such as anticancer. However, pharmacological researches and commercial application of GAs is being severely limited by the unavailability of sufficient mass. The two-stage culture process by combining liquid shaking culture with static culture developed by our lab is an efficient method for the production of GAs. Nevertheless, lack of efficient preparation techniques and related theory still hinders their further clinical research and development. Additionally, the stability of GAs has an important effect on their separation and analysis. So far, only our lab reported the stability of7-O-ethyl-GA-O, the stability of other GAs was still remained unclear. In this dissertation, the GAs from G. lucidum were purified and identified. Their stability was subsequently explored. Based on that information, a novel method was developed for the simultaneous preparation of four GAs. Furthermore, a low-pressure liquid chromatography methodology and a general rate model were established for the separation of GA-T.
     In this dissertation, by employing silica gel column chromatography, thin layer chromatography and semi preparative high performance liquid chromatography, eight GAs were separated and purified. They were identified as ganoderic acid Mc, DH,7-ethyl-O-GA O (Type Ⅰ), Mk, S, T, Mf and R (Type Ⅱ) by UV, IR, MS and NMR techniques. Among them, GA-DH was a new GA. Subsequently, the stability of the two types of GAs was studied and the results showed that Type Ⅰ GAs were stable in aproptic solvents, while not in proptic sovents. Owing to the stable conjugated system and uniform distribution of electron cloud, Type Ⅱ GAs were stable in both types of solvents. Based on these results, an RP-HPLC-PAD was developed for the simultaneous determination of those two types of GAs. The HPLC operating conditions were optimized and the chromatographic separation was performed on a C18column with a gradient acetonitrile-water as mobile phase. With the good linear relationship, precision, accuracy and recovery, the method could be a reliable analytical platform for the separation and investigation of biosynthesis and regulation of GAs.
     Pre-separation has significant impact on the subsequent purification. Traditional pre-separation method for GA preparation is tedious and inefficient. In this part, using GA-Mk and-T as model molecules, we explore the performance of MARs on the separation of GAs. By static experiments, ADS-8was selected as ideal separation media among the six resins. The results of kinetics experiments showed that the adsorption data could be well fitted by the peso-second order model. Thermodynamic analysis indicated the exothermic and spontaneous nature of the adsorption process. Dynamic adsorption tests were performed on an ADS-8resin-packed column to obtain optimal parameters for recovering GA-Mk and-T from G. lucidum extract. Under optimized conditions, a laboratory scale-up preparation of GA-Mk and GA-T was carried out. The contents of GA-Mk and GA-T were increased from4.5and2.2%in the crude extract to34.1and14.5%in the final product with recovery yields of90.1and72.2%, respectively. These results demonstrated that ADS-8resin chromatography could act as a useful approach for obtaining ganoderic acids from G. lucidum.
     Based on the above results, a new extraction/hydrolysis method using50%aqueous ethanol system containing50mmol/1HCl as extractant was developed for the recovery of four type Ⅱ GAs (GA-Mk, T, S and R) from the mycelia of G. lucidum. This simple and integrated process did not efficiently enhance the yields of type Ⅱ GAs by conversion of type I GAs, but also considerably improve the subsequent purification. This one-pot extraction/hydrolysis process increased the yield of the four GAs to200-400%, compared to a raw sample without hydrolysis. In addition, the use of aqueous ethanol as extactant for GAs extraction was important, because it allows that without any conditioning step, the GAs could be recovered by macroporous adsorption resin. Hence, the drawbacks of traditional separation method of GAs were eliminated by using the current method.
     Currently, the final purification of GA-T was almost by HPLC, which is costly and difficult for scale-up. In addition, the related chromatographic theory was a void. Herein, the performance of low-pressure LC for the preparative separation of GAs was studied. The result that showed highly efficient GA-T preparation can be achieved by low-preesure LC. Its purity and recovery were all over90%. For the first time, gram scale preparation of GA-T was achieved on the column with dimension42×273mm in one run, with chromatographic time less2hours. Thses results clearly demonstrate that could take the place of HPLC for the preparation of GA-T. Subsequently, based on the data from low-pressure LC, a general model was established for the characterization of the separation of GA-T on low-pressure LC. The results showed the calculated profile was well fitted to the eluton curve of GA-T, which suggested the established model could well characterize the chromatographic separation process. Further study on the parameters of the model revealed that the model was not sensitive to the Biot number, while sensitive to the Pe number when it was less1000. The tortuosity factor and bed void fraction εb has a significant influence on the calculated resulted. Among them,εb only easily change the retention time of chromatographic peak, but also affect ipeak width. The developed model could be used for the separation optimization and scale-up of GA-T and other GAs.
     Taken together, in this work eight GAs were separated and identified from G. lucidum. Their stability was studied and simultaneous quantitative analysis method was developed. Based on these results, the efficient preparation method of individual GA and related chromatographic model were developed, which it is making the sufficient supply of high-purity GA required for its pharmacological studies possible in the future. Moreover, this work could be also helpful for the preparation of other natural products.
引文
[1]Dudley, H.W., Williams, M.J.S., Peter, R.H., Shirley, K.R. Why are secondary metabolites (natural products) biosynthesized? J. Nat. Prod.1989,52:1189-1208.
    [2]潘瑞炽.植物生理学.高等教育出版社.2012.
    [3]王镜岩,朱圣庚,徐长法.生物化学.高等教育出版社.2002.
    [4]Conway B-AD, Venu V., Speert, D.P. Biofilm formation and acyl homoserine lactone production in Burkholderia capacia complex. J. Bacteriol.2002,184:5678-5685.
    [5]Deziel. E., Lepine, F., Milot, S., He, J., Mindrinos, M.N., Tompkins R.G., et al. Analysis of Pseudomona aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communications. Proc. Nat. Acad. Sci. U.S.A 2004,101:1339-1344.
    [6]Wang, L.H., He, Y., Gao, Y., Wu, J.E., Dong, Y.H., He, C., et al. A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol. Microbiol.2004, 51:903-912.
    [7]杨秀伟.天然药物化学发展的历史变迁.北京大学学报(医学版).2004,36:9-11.
    [8]Gordon, M.C., David, J.N., Kenneth, M.S. Natural products in drug discovery and development. J. Nat. Prod.1997,60:52-60.
    [9]David, J.N., Gordon, M.C., Kenneth, M.S. Natural products as sources of new drugs over the period 1981-2002.2003,66:1022-1037.
    [10]Kin, S.L. New aspects of natural products in drug discovery. Trends in Microbiol.2007, 15:279-289
    [11]David, J.N., Gordon, M.C. Natural Products as Sources of New Drugs over the last 25 years. J. Nat. Prod.2007,70:461-477.
    [12]Anchel, M. Structure of diatretyne 2, an antibiotic polyacetylenic nitrile from Clitocybe diatreta. Science.1955,121:607-608
    [13]Berg, A., Dorfelt, H., Kiet T.T., Schlegel, B., Grafe, U. Agrocybolacton, a new bioactive metabolite from Agrocybe sp. HKI 0259. J. Antibiot.2002,55:818-820.
    [14]Kawagishi, H., Ishiyama, D., Mori, H., Sakamoto, H., Ishiguro, Y., Furukawa, S. Dictyophodnes A and B, two stimulators of NGF-synthesis from the mushroom Dictyophora indusiata. Phytochem.1997,45:1203-1205.
    [15]Hirokazu, K., Atsushi, S., Satoshi, H., Hironobu, M., Hideki, S., Yukio, I., et al. Erinacines E, F, and G, stimulators of nerve growth factor(NGF)-synthesis, from the mycelia of Hedcium erinaceum. Tetra. Lett.1996,37:7399-7402.
    [16]Park, I.H., Jeon, S.Y., Lee, H.J., Kim, S.I., Song, K.S. A beta-secretase (BACEI) inhibitor hispidin from the mycelial cultures of Phellinus linteus. Planta Med.2004,70: 143-146.
    [17]Umezawa, H., Takeuchi, T., Linuma, H., Suzuki, K., Ito, M. A new microbial product, oudenone, inhibiting tyrosine hydroxylase. The journal of antibiotics.1970,23:514-518.
    [18]Anke, T., Werle, A., Bross, M., Stegtich, W. Antibiotics from basidiomycetes. ⅩⅩⅩⅢ. Oudemansin X, a new antifungal E-beta-methoxyacrylate from Oudemansiella radicata (Relhan ex Fr.) Sing. J. Antibiot.1990,43:1010-1011.
    [19]Mo, S., Wang, S., Zhou, G., Yang, Y., Li, Y., Chen, X., et al. Phelligridins C-F:cytotoxic pyrano[4,3-c][2]benzopyran-1,6-dione and furo[3,2-c]pyran-4-one derivatives from the fungus Phellinus igniarius. J. Nat. Prod.2004,67:823-828.
    [20]Lauer, U., Anke, T., Hansske, F.2-Methoxy-5-methyl-1,4-benzoquinone, a thromboxane A2 receptor antagonist from Lentinus adhaerens. J. Antibiot.1991,15:44-46.
    [21]Lin, J.T., Liu, W.H. O-orsellinaldehyde from the submerged culture of the edible mushroom Grifola frondosa exhibits selective cytotoxic effect against Hep3B cells through apoptosis. J. Agric. Food Chem.2006,54:7564-7569.
    [22]David G.I.K. Modern natural products drug discovery and its relevance to biodiversity conservation. J. Nat. Prod.2011,74:496-511.
    [23]Li, S.G., Fu, Y.J., Zu, Y.G., Sun, R., Wang, Y., Zhang, L., Luo, H., Gu, C.B., Efferth, T. Determination of paclitaxel and other six taxoids in Taxus species by high-performance liquid chromatography-tandem mass spectrometry J. Pharm. Biomed. Anal.2009,49: 81-89.
    [24]孙彦.生物分离工程(第二版).化学工业出版社.2005.
    [25]Roush, D.J., Hwang, L.Y., Antia, F.D. Influence of mobile phase composition and thermodynamics on the normal phase chromatography of echinocandins. J. Chromatogr. A.2005,1098:55-65.
    [26]Leandro G.A., Karim, K., Iordan, N., Krasimir, D. Ultrasound assisted extraction of polyphenols from black chokeberry. Sep. Purif. Technol.2012,93:42-47.
    [27]Martin, W. Isolation of solasodine and other steroidal alkaloids and sapogenins by direct hydrolysis-extraction of Solanum plants or glycosides therefrom. Phytochem.2001:58: 501-508.
    [28]Jake, L.R., Siepmann, J.I., Mark, R.S. Mobile phase effects in reversed-phase liquid chromatography:A comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation. J. Chromatogr. A.2011:1218:2203-2213.
    [29]Wei, M.C., Wang, S.Z., He, Y.M., Fang, Y.L., Chen, Y.J. Separation of structurally similar nocathiacin analogues by reversed phase chromatography. J. Chromatogr. A. 2010,1217:3038-3043.
    [30]Zhang, F., Chu, X.G., Wang, X.J., Yang, M.L., Ling, Y., Sun, L., Li,X.Q., Wei Y. Preparative argentation reversed-phase high performance liquid chromatography. J. Chromatogr. A.2008,1213:176-180.
    [31]Budanova, N., Shapovalova, E., Lopatin, S. Heptakis (6-amino-6-deoxy)-β-cyclodextrin as a chiral selector for the separation of anionic analyte enantiomers by capillary electrophoresis. Electrophor.2004,25:2795.
    [32]David, S.H., Jeanethe, A.A., Bi, C., Li, R., Matsuda, R., Papastavros, E., Pfaunmiller, E., Vargas, J., Zheng, X.W. Pharmaceutical and biomedical applications of affinity chromatography:Recent trends and developments. J. Pharm. Biomed. Anal.2012,69: 93-105.
    [33]Mohamad Ibrahim, M.N., Sipaut, C.S., Mohamad Yusof, N.N. Purification of vanillin by a molecular imprinting polymer technique. Sep. Purif. Technol.2009,66:450-456.
    [34]Kan, S.D., Li, J.A., Huang, W.Y., Shao, L., Chen, D.J. Microsphere resin chromatography combined with microbial biotransformation for the separation and purification of salvianolic acid B in aqueous extract of roots of Salvia multiorrihza Bunge. J. Chromatogr. A.2009,1216:3881-3886.
    [35]Cascaval, D., Galaction, A.I., Nicuta, N., Blaga, A.C. Selective separation of gentamicins from the biosynthetic mixture by reactive extraction. Sep. Purif. Technol.2007,57: 264-269.
    [36]Tswett, M. S., Protok, Tr., Varshav, obshch, Estesvoispyt. Otd. Biol.1903,14.
    [37]卢佩章,戴朝政,张祥民.色谱理论基础(第二版).科学出版社.1989.
    [38]Li, J., Chase, H.A. Development of adsorptive (non-ionic) macroporous resins and their uses in the purification of pharmacologically-active natural products from plant sources. Nat. Prod. Rep.,2010,27:1493-1510.
    [39]Ahamed, T., Nfor,B.K., Verhaert, P.D.E.M., Dedem, G.W.K.V., Wielen, L.A.M. V.D., Eppink, M.H.M., Sandt, E.J.A.X. V.D., Ottens, M. pH-gradient ion-exchange chromatography:An analytical tool for design and optimization of protein separations. J. Chromatogr. A.2007,1164:181-188.
    [40]Waksmundzka-Hajnos, M., Petruczynik, A., Hawryl, A. Comparison of chromatographic properties of cyanopropyl-, diol- and aminopropyl-polar-bonded stationary phases by the retention of model compounds in normal-phase liquid chromatography systems. J. Chromatogra. A.2001,919:39-50.
    [41]Perera, A., Appleton, D., Ying, L.H., Elendran, S., Palanisamy, U.D. Large scale purification of geraniin from Nephelium lappaceum rind waste using reverse-phase chromatography. Sep. Purif. Technol.2012,98:145-149.
    [42]Islas-Flores, C.A., Buenrostro-Gonzalez, E., Lira-Galeana, C. Fractionation of petroleum resins by normal and reverse phase liquid chromatography. Fuel.2006,85:1842-1850.
    [43]Sutherland, I.A. Recent progress on the industrial scale-up of counter-current chromatography. J. Chromatogr. A.2007,1151:6-13.
    [44]Sutherland, I.A., Hawes, D., Ignatova, S., Janaway, L., Wood, P. Review of progress toward the industrial scale-up of CCC. J. Liquid Chromatogr. Related Technol.2005,28: 1877-1891.
    [45]Pauli,G.F., Pro, S.M., Friesen, J.B. Countercurrent separation of natural products. J. Nat. Prod.2008,71:1489-1508.
    [46]Cao, X.L., Xu, Y.T., Zhang, G.M., Xie, S.M., Dong, Y.M., Ito, Y. Purification of coenzyme Q10 from fermentation extract:High-speed counter-current chromatography versus silica gel column chromatography. J. Chromatogr. A.2006,1127:92-96.
    [47]Chen, L.J., Zhang, Q., Yang, G.L., Fan, L.Y., Tang, J., Garrard, I., Ignatova, S., Fisher, D., Sutherland, I.A. Rapid purification and scale-up of honokiol and magnolol using high-capacity high-speed counter-current chromatography. J. Chromatogr. A.2007,1142: 115-122.
    [48]Lavison-Bompard, G., Bertoncini, F., Thiebaut, D., Beziau, J.F., Carraze, B., Valette, P., Duteurtre, X. Hypernated supercritical fluid chromatography:Potential application for car lubricant analysis. J. Chromatogr. A.2012,1270:318-323.
    [49]Perrenoud, A.G.G., Veuthey, J.L., Guillarme, D. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the analysis of pharmaceutical compounds. J. Chromatogr. A.2012,1266:158-167.
    [50]Poole, C.F. Supercritical fluid extraction and chromatography. J. Chromatogr. A.2012, 1250:1.
    [51]Wilson, J.N. A theory of chromatography. J. Am. Chem. Soc.1940,60:1583-1591.
    [52]Martin, A.J.P., Synge, R.L.M. A new form of chromatogram employing two liquid phases. Biochem. J.1941,35:1358.
    [53]Amundson, N.R., Lapidus, L.J. Mathematics of adsorption in beds. Phys. Chem.1952, 56:984.
    [54]Ruthven, D.M. Principles of adsorption and adsorption processes. Wiley, New York. 1984
    [55]Gu. T., Zheng, Y. A study of the scale-up of reverse-phase liquid chromatography. Sep. Purif. Technol.1999,15:41-58.
    [56]Morbidelli, M., Servida, A., Storti, G, Carra, S. Simulation of multicomponent adsorption beds, model analysis and numerical solution. Ind. Eng. Chem.1982,21: 123-131.
    [57]Golshan-Shirazi, S., Guiochon, G. The equilibrium-dispersive model of chromatography. Theoretical advancement in chromatography and related separation techniques. Dondi, F. and Guiochon, G. eds., Kluwer,1992.
    [58]Guido, D., Sebastian, E., Achim, E., Felix, H., Andreas, J., Karsten-Ulrich, K., Henner, S.T. Model-based control of batch chromatography. AIChE J.2001,47:2493-2502.
    [59]J(?)rgen, M.M., Thomas, B.H., Steffen, K., Lars, S., Arne, S. Development, modelling, optimisation and scale-up of chromatographic purification of a therapeutic protein. Fluid Phase Equilib.2007,261:133-139.
    [60]Marcus, D., Niklas, J., Bernt, N. Constrained optimization of a preparative ion-exchange step for antibody purification. J. Chromatogr. A.2006,1113:92-100.
    [61]Kaczmarski, K., Antos, D., Sajonz, H., Sajonz, P., Guiochona, G. Comparative modeling of breakthrough curves of bovine serum albumin in anion-exchange chromatography. J. Chromatogr. A.2001,925:1-17.
    [62]Liu, X.D., Kaczmarski, K., Cavazzini, A., Szabelski, P., Zhou, D.W., Guiochon, G. Modeling of preparative reversed-phase HPLC of insulin. Biotechnol. Prog.2002,18: 796-806.
    [63]Niklas, J., Marcus, D., Emelie, S., Bernt, N. Model based robustness analysis of an ion-exchange chromatography step. J. Chromatogr. A.2007,1138:109-119.
    [64]Gu, T., Hsu, K.H., Syu, M.J. Scale-up of affinity chromatography for purification of enzymes and other proteins. Enzyme Microbial Technol.2003,33:430-437.
    [65]Wu, D.J., Ma, Z., Au, B.W., Wang, N.H.L. Recovery and purification of paclitaxel using low-pressure liquid chromatography. AIChE J.1997,43:232-242.
    [66]Xie, Y., Sandt, E.V.D., Weerd, T.D., Wang, N.H.L. Purification of adipoyl-7-amino-3-deacetoxycephalosporanic acid from fermentation broth using stepwise elution with a synergistically adsorbed modulator. J. Chromatogr. A.2001,908: 273-291.
    [67]Kang, S.H., Kim, J.H., Mun, S.Y. Optimal design of a tandem simulated moving bed process for separation of paclitaxel,13-dehydroxybaccatin Ⅲ, and 10-deacetylpaclitaxel. Process Biochem.2010,45:1468-1476.
    [68]罗俊,林志彬.灵芝三萜类化合物药理作用研究进展.药学学报.2002,37:574-578.
    [69]卯晓岚.中国大型真菌.河南科学技术出版社.2000.
    [70]林志彬.灵芝的现代研究(第3版).北京大学医学出版社.2007.
    [71]Paterson, P.R.M. Ganoderma-A therapeutic fungal biofactory. Phytochem.2006,67: 1985-2001.
    [72]Boh, B., Berovic, M., Zhang, J.S., Lin, Z.B. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol. Annual Rev.2007,13:265-301.
    [73]Kim, H.W., Kim, B.K. Biomedicinal triterpenoids of Ganoderma lucidum (Curt.:Fr.) P. Karst. (aphyllophoromycetideae). Int. J. Med. Mush.1999,1:121-138.
    [74]Kawagishi, H., Mitsunaga, S.I., Yamawaki, M., Ido, M., Shimada, A., Kinoshita, T., Murata, T., Usui, T., Kimura, A., Chiba, S. A lectin from mycelia of the fungus Ganoderma lucidum. Phytochem.1997,44:7-10.
    [75]Gao, P., Hirano, T., Chen, Z.G., Yasuhara, T., Nakata, Y., Sugimoto, K. Isolation and identification of C-19 fatty acids with anti-tumor activity from the spores of Ganoderma lucidum (reishi mushroom). Fitoterapia.2012,83:490-499.
    [76]Park, E.J., Ko, G., Kim, J., Sohn, D.H. Antifibrotic effects of a polysaccharide extracted, from Ganoderma lucidum, glycyrrhizin, and pentoxifylline in rats with cirrhosis induced by biliary obstruction. Biol. Pharm. Bull.1997,20,417-420.
    [77]Eo, S.K., Kim, Y.S., Lee, C.K., Han, S.S., Antiherpetic activities of various protein bound polysaccharides isolated from Ganoderma lucidum. J. Ethnopharmacol.1999,68: 175-181.
    [78]Ukai, S., Kiho, T., Hara, C., Kuruma, I., Tanaka, Y. Polysaccharides in fungi. XIV. Anti-inflammatory effect of the polysaccharides from the fruit bodies of several fungi. J. Pharmacobiodyn.1983,6:983-990.
    [79]Zhang, GL., Wang, Y.H., Ni, W., Teng, H.L., Lin, Z.B. Hepatoprotective role of Ganoderma lucidum polysaccharide against BCG-induced immune liver injury in mice. World J. Gastroenterol.2002,8:728-733.
    [80]Chen, X., Hi, Z., Yang, X. X., Huang, M., Gao, Y., Tang, W., Chan, S.Y., et al. Monitoring of immune responses to a herbal immuno-modulator in patients with advanced colorectal cancer. Int. Immunopharmacol.2006,6:499-508.
    [81]Wang, G., Zhang, J., Mizuno, T., Zhuang, C., Ito, H., Mayuzumi, H., Okamoto, H., Li, J. Antitumor active polysaccharides from the Chinese mushroom Songshan lingzhi, the fruiting body of Ganoderma tsugae. Biosci. Biotechnol. Biochem.1993,57:894-900.
    [82]Kim, K.C., Kim, I.G. Ganoderma lucidum extract protects DNA from strand breakage caused by hydroxyl radical and UV irradiation. Int. J. Mol. Med.1999,4:273-277.
    [83]van der Hem, L.G., van der Vliet, J.A., Bocken, C.F., Kino, K., Hoitsma, A.J., Tax, W.J. Ling Zhi-8:studies of a new immunomodulating agent. Transplantation 1995,60: 438-443.
    [84]Kubota, T., Asaka, Y., Miura, I., Mori, H. Structures of ganoderic acid A and B, two new lanostane type bitter triterpenes from Ganoderma lucidum (Fr.) Karst. Helv. Chim. Acta.1982,65:611.
    [85]Fang, X., Shi, L., Ren, A., Jiang, A.L., Wu, F.L., Zhao, W.M. The cloning, characterization and functional analysis of a gene encoding an acetyl-CoA acetyltransferase involved in triterpene biosynthesis in Ganoderma lucidum. Mycoscience.2012, In press.
    [86]Shiao, M.S. Natural product of the medicinal fungus Ganoderma lucidum:occurrence, biological activities, and pharmacological functions. The chemical record.2003,80: 172-180.
    [87]Nishitoba T., Sato H., Sakamura S. Novel mycelia components, Ganoderic acids Mg, Mh, Mi, Mj and Mk, from the fungus Ganoderma lucidum. Agric. Biol. Chem.1987,51: 1149-1153.
    [88]Hirotani M, Asaka I, Ino C. Ganoderic acid derivatives and ergosta-4,7,22-triene-3,6-dione from Ganoderma lucidum. Phytochem.1987,26:2797.
    [89]陈若云,于德泉.灵芝三萜化学成分研究进展.药学学报.1990,25:940.
    [90]Yang, M., Wang, X.M., Guan, S.H., Xia, J.M., et al. Analysis of triterpenoids in Ganoderma lucidum using liquid chromatography coupled with electrospray ionization mass spectrometry. J Am. Soc. Mass Spectrom.2007,18:927-939.
    [91]Cheng, C.R., Yang, M., Wu, Z.Y., Wang, Y, Zeng, F., Wu, W.Y., Guan, S.H., Guo, D.A. Fragmentation pathways of oxygenated tetracyclic triterpenoids and their application in the qualitative analysis of Ganoderma lucidum by multistage tandem mass spectrometry. Rapid Commun. Mass Spectrom.2011,25:1323-1335.
    [92]Jin, L.J, Shiao, M.S. 13C-NMR correlation of stereochemistry in lanostanoid triterpenes. J.Nat. Prod.1989,52:595.
    [93]Zhou, Y.Q., Yang, X.T., Yang, Q.Y. Recent advances on triterpenes from Ganoderma mushroom. Food Rev. Int.2006,22:259-273.
    [94]Toth, O., Luu, B., Ourisson, G. Les acides ganoderiques t a z:triterpenes cytotoxiques de Ganoderma lucidum (Polyporacee). Tetrahedron Lett.1982,24:1081.
    [95]Li, C.H., Chen, P.Y., Chang, U.M., et al. Ganoderic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosis of cancer cells. Life Sci.2005,77: 252-265.
    [96]Yue, Q.X., Cao, Z.W., Guan, S.H., et al. Proteomics characterization of the cytotoxicity mechanism of ganoderic acid D and computer-automated estimation of the possible drug target network. Mol. Cell Proteomics 2008,7:949-961.
    [97]Wu, T.S., Shi, L.S., Kuo, S.C. Cytotoxicity of Ganoderma lucidum triterpenes. J. Nat. Prod.2001,64:1121-1122.
    [98]Gao, J.J., Min, B.S., Ahn, E.M., et al. New triterpene aldehydes, lucialdehydes A-C, from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells. Chem. Pharm. Bull.2002,50:837-840.
    [99]Min, B.S., Gao, J.J., Nakamura, N., et al. Triterpenes from the spores of Ganoderma lucidum and their cytotoxicity against Meth-A and LLC tumor cells. Chem. Pharm. Bull.2000,48:1026-1033.
    [100]Tang, W., Liu, J.W., Zhao, W.M., Wei, D.Z., Zhong, J.J. Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life Sci.2006,80:205-211.
    [101]Wang, G., Zhao, J., Liu, J.W., Huang, Y.P., Zhong, J.J., Tang, W. Enhancement of IL-2 and IFN-y expression and NK cells activity involved in the anti-tumor effect of ganoderic acid Me in vivo. Int. Immuno. Pharmacol.2007,7:864-870.
    [102]Chen, N.H., Zhong, J.J. Ganoderic acid Me induces G1 arrest in wild-type p53 human tumor cells while G1/S transition arrest in p53-null cells. Process Biochem.2009,44: 928-933.
    [103]Chen, N.H., Liu, J.W., Zhong, J.J. Ganoderic acid T inhibits tumor invasion in vitro and in vivo through inhibition of MMP expression. Pharmacol. Rep.2010,62:150-163.
    [104]Liu, R.M., Li, Y.B., Zhong, J.J. Cytotoxic and pro-apoptotic effects of novel ganoderic acid derivatives on human cervical cancer cells in vitro. European J. Pharm.2012,681: 23-33.
    [105]Liu, R.M., Li, Y.B., Zhong, J.J. Anti-proliferative effect and induced mitochondria-mediated apoptosis of ganoderic acid Mk from Ganoderma lucidum mycelia on HeLa Cells. Latin Am. J. Pharm,2012,31(1):43-50.
    [106]Li, P.Z., Xu, R., Xia, J.H., Zhang, K.C. Production of teracyclic triterpene acids by submerged fermentation of Ganoderma lucidum. Ind. Microbiol.2000,20:15-17.
    [107]El-Mekkawy, S., Meselhy, M.R., Nakamura, N., et al. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochem.1998,49: 1651-1657.
    [108]Babitskaya, V.G., Bisko, N.A., Scherba, V.V., et al. Some biologically active substances from medicinal mushroom Ganoderma lucidum. Int. J. Med. Mushroom.2003,5: 301-305.
    [109]Hirotani, M., Furuya, T. Ganoderic acid derivatives, highly oxygenated lanostane-type triterpenoids, from Ganoderma lucidum. Phytochem.1986,25:1189-1193.
    [110]蔺丽,方能虎,吴旦.灵芝有效成分的研究概况.中成药.2002,24:293-296.
    [111]王明宇,林志彬.灵芝三萜类成分在体内外对小鼠免疫性肝损伤的影响.中国药学杂志.2000,35:809-812.
    [112]Komoda, Y., Shimizu, M., Sonoda, Y. Ganoderic acid and its derivatives as cholesterol synthesis inhibitors. Chem. Pharm. Bull.1989,37:531.
    [113]Morigiwa, A., Kitabatake, K., Fujimoto, Y, et al. Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidum. Chem. Pharm. Bull.1986,34: 3025-3028.
    [114]Wu, T.S., Shi, L.S., Kuo, S.C., et al. Platelet aggregation inhibitor from Ganoderma lucidum. J. Chin. Chem. Soc.1997,44:157-161.
    [115]Zhu, M., Chang, Q., Wong, L.K., Chong, F.S., Li, R.C. Triterpene antioxidants from Ganoderma lucidum. Phytother. Res.1999,13 (6),529-531.
    [116]Sheena, M., Ajith, A., Janardhanan, K. Prevention of nephrotoxicity induced by the anticancer drug cisplatin, using Ganoderma lucidum, a medicinal mushroom occurring in South India. Current Sci.2003,85(4):478-482.
    [117]Kohda, H., Tokumoto, W., Sakamoto, K., et al. The biologically active constituents of Ganoderma lucidum (Fr.) Karst. histamine release-inhibitory triterpenes. Chem. Pharm. Bull.1985,33:1367-1374.
    [118]Koyama, K., Imaizumi, T., Akiba, M., et al. Antinociceptive components of Ganoderma lucidum. Planta Med.1997,63:224-227.
    [119]Yu, J., Guo, Q.L., You, Q.D., et al. Repression of telomerase reverse transcriptase mRNA and hTERT promoter by gambogic acid in human gastric carcinoma cells. Cancer Chemother. Pharmacol.2006,58:434-443.
    [120]Carmen, W.H, Xin, D. Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components. J. Chromatogr. B.2004,812:241.
    [121]Su, C., Yang, Y, Ho, H., Hu, C., Sheu, M. High-performance liquid chromatographic analysis for the characterization of triterpenoids from Ganoderma. J. Chromatogr. Sci. 2001,39:93.
    [122]Sye, W. Improved method of extraction and high-performance liquid chromatographic separation of ganoderic acids from Ganoderma lucidum. J. Chin. Chem. Soc.1991,38: 179.
    [123]Lin, L., Shiao, S. Separation of oxygenated triterpenoids from Ganoderma lucidum by high-performance liquid chromatography. J. Chromatogr. A.1987,410:195.
    [124]Shiao, M., Lin, L., Chen, C. Determination of stereo- and positional isomers of oxygenated triterpenoids by reversed phase high performance liquid chromatography. J. Lipid Res.1989,30:287.
    [125]Li, C.J., Li, Y.M., Sun, H. New ganoderic acids, bioactive triterpenoid metabolites from the mushroom Ganoderma lucidum. Nat. Prod. Res.:Formerly Nat. Prod. Lett.,2006, 20:985-991.
    [126]Akihisa, T., Tagata, M., Ukiy, M., Tokud, H., Suzuki, T., Kimura, Y. Oxygenated lanostane-type triterpenoids from the fungus Ganoderma lucidum. J. Nat. Prod.2005, 68:559-563.
    [127]Li, Y.Y., Mi, Z.Y., Tang, Y., Wang, G., Li, D.S., Tang, Y.J. Lanostanoids isolated from Ganoderma lucidum mycelium cultured by submerged fermentation. Helv. Chim. Acta. 2009,92:1586-1593.
    [128]Arisawa, M., Fujita, A., Saga, M., Fukumura, H., Hayashi, T., Shimizu, M., Morita, N. Three new lanostanoids from Ganoderma lucidum. J. Nat. Prod.1986,49:621-625.
    [129]Lee,I., Seo, J.J., Kim,J.P., Kim, H.J., Youn, U.J., Lee,J.S., Jung, H.J., Na, M.K., Hattori, M., Min,B.S., Bae, K. Lanostane triterpenes from the fruiting bodies of Ganoderma lucidum and their inhibitory effects on adipocyte differentiation in 3T3-L1 Cells. J. Nat. Prod.2010,73:172-176.
    [130]Ma, J. Y., Ye, Q., Hua, Y.J., Zhang, D.C., Cooper, R., Chang, M.N., Chang, J.Y., Sun, H.H. New Lanostanoids from the Mushroom Ganoderma lucidum. J. Nat. Prod.2002, 62:72-75.
    [131]Li, C.J., Yin, J.H., Guo, F.J., Zhang, D. S., Sun, H.H. Ganoderic acid Sz, a new lanostanoid from the mushroom Ganoderma lucidum. Nat. Prod.Res.:Formerly Nat. Prod. Lett.2005,19:461-465.
    [132]Cheng, C.R., Li, Y.F., Xu, P.P., Feng, R.H., Yang, M., Guan, S.H., Guo, D.A. Preparative isolation of triterpenoids from Ganoderma lucidum by counter-current chromatography combined with pH-zone-refining. Food Chem.2012,130:1010-1016.
    [133]Hirotani, M., Asaka, I., Furuya, T. Investigation of the biosynthesis of 3-hydroxy triterpenoids, ganoderic acids T and S by application of a feeding experiment using [1,2-13C2] acetate. J. Chem. Soc. Perkin Trans.1990:2751.
    [134]Yeh, S.F., Chou, C.S., Lin, L.J. Biosynthesis of oxygenated triterpenoids in Ganoderma lucidum. Proc. National Sci. Council Rep. China. Part B-Life Sci.1989,13:119.
    [135]Liu, D.B., Gong, J., Dai, W.K., Kang, X.K., Huang, Z., Zhang, H.M., et al. The genome of Ganderma lucidum provide insights into triterpense biosynthesis and wood degradation. PLoS ONE.2012,7:1-14.
    [136]Chen S.L., Xu, J., Liu, C., Zhu, Y.J., Nelson, D.R., et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat. Commun.2012. DOI: 10.1038/ncomms1923.
    [137]Cheng, C.R., Yue, Q.X., Wu, Z.Y., Song,X.Y., Tao, S.X., Wu, X.H., Xu, P.P., Liu, X., Guan, S.H., Guo, D.A. Cytotoxic triterpenoids from Ganoderma lucidum. Phytochem. 2010,71:1579-1585.
    [138]宋师花,贾晓斌,陈彦.超临界C02萃取灵芝r实体中的三萜类成分.中国中药杂志.2008,33(17):2104.
    [139]张洁,段继诚,梁振.超临界流体萃取-高效液相色谱离线联用分析灵芝中三萜类化合物.分析化学.2006,34(4):447.
    [140]贾晓斌,宋师花,陈彦.超临界C02萃取法和醇回流法提取灵芝中三萜类成分的比较.中成药.2010,32(5):868.
    [141]Fang, Q.H., Zhong, J.J. Two-Stage culture process for improved production of ganoderic acid by liquid fermentation of higher fungus Ganoderma lucidum. Biotechnol. Prog.2002,18:51-54
    [142]Tang, W., Gu, T., Zhong, J.J. Separation of targeted ganoderic acids from Ganoderma lucidum by reversed phase liquid chromatography with ultraviolet and mass spectrometry detections. Biochem. Eng. J.2006,32:205-210.
    [143]Wang, J.L., Li, Y.B., Liu, R.M., Zhong, J.J. A new ganoderic acid from Ganoderma lucidum mycelia. J Asian Nat. Prod. Res.2010,12:727-731.
    [144]Wang, J.L., Gu, T.Y., Zhong, J.J. Enhanced recovery of antitumor ganoderic acid T from Ganoderma lucidum mycelia by novel chemical conversion strategy. Biotechnol. Bioeng.2012,109:754-762.
    [145]Xu J.W., Zhao, W., Zhong, J.J. Biotechnological production and application of ganoderic acids. Appl. Microbiol. Biotechnol.2010,87:457-466.
    [146]Liang, C.X., Li, Y.B., Xu, J.W., Wang, J.L., Miao, X.L., Tang, Y.J., Gu, T.Y., Zhong, J.J. Enhanced biosynthetic gene expressions and production of ganoderic acids in static culture of Ganoderma lucidum under Phenobarbital induction. Appl. Microbiol. Biotechnol.2010,86:1367-1374.
    [147]Tang, Y.J., Zhong, J.J. Scale-up of a liquid static culture process for hyperproduction of ganoderic acid by the medicinal mushroom Ganoderma lucidum. Biotechnol. Prog.2003, 19:1842-1846.
    [148]Fatmawati, S., Shimizu, K., Kondo, R. Ganoderic acid Df, a new triterpenoid with aldose reductase inhibitory activity from the fruiting body of Ganoderma lucidum. Fitoterapia 2010,81:1033-1036.
    [149]Alfonso, C., Rehmann, N., Hess, P., Alfonso, A., Wandscheer, C.B., Abuin, M., Vale, C., Otero, P., Vieytes, M.R., Botana, L.M. Evaluation of various pH and temperature conditions on the stability of azaspiracids and their importance in preparative isolation and toxicological studies, Anal. Chem.2008,80:9672-9680.
    [150]Wang, J.L., Li, Y.B., Qin, H.L., Zhong, J.J. Kinetic study of 7-O-ethyl ganoderic acid O stability and its importance in the preparative isolation. Biochem. Eng. J.2011,53: 182-186.
    [151]Wang, X.M., Yang, M., Guan, S.H., Liu, R.X., et al. Quantitative determination of six major triterpenoids in Ganoderma lucidum and related species by high performance liquid chromatography. J. Pharm. Biomed. Anal.2006,41:838-844.
    [152]Zhao, J., Zhang, X.Q., Li, S.P., Yang, F.Q., et al. Quality evaluation of Ganoderma through simultaneous determination of nine triterpenes and sterols using pressurized liquid extraction and high performance liquid chromatography. J. Sep. Sci.2006,29: 2609-2615.
    [153]Chen, D.H., Chen, W.K.D. Determination of ganoderic acids in triterpenoid constituents of Ganoderma tsugae. J. Food. Drug. Anal.2003,11:195-200.
    [154]Wang, X.M., Guan, S.H., Liu,R.X., Sun, J.H., Liang, Y., Yang, M., Wang, W., Bi, K.S., Guo, D.A. HPLC determination of four triterpenoids in rat urine after oral administration of total triterpenoids from Ganoderma lucidum. J. Pharm. Biomed. Anal. 2007,43:1185-1190.
    [155]Gao, J.J., Nakamura, N., Min, B.S, Hirakawa, A., Zuo, F., Hattori, M. Quantitative determination of bitter principles in specimens of Ganoderma lucidum using high-performance liquid chromatography and its application to the evaluation of Ganoderma products. Chem. Pharm. Bull.2004,52:688-695.
    [156]Ding, N., Yang, Q., Huang, S.S., Fan, L.Y., Zhang, W., Zhong, J.J., Cao, C.X. Separation and determination of four ganoderic acids from dried fermentation mycelia powder of Ganoderma lucidum by capillary zone electrophoresis. J. Pharm. Biomed. Anal.2010,53:1224-1230.
    [157]Liu, Y.L., Liu, Y.P., Qiu, F., Di, X. Sensitive and selective liquid chromatography-tandem mass spectrometry method for the determination of five ganoderic acids in Ganoderma lucidum and its related species J. Pharm. Biomed. Anal., 2011,54:717-721.
    [158]李平作.灵芝深层发酵生产生物活性物质的研究.博士论文.无锡轻工大学.1997.
    [159]梁静,何威之,李琴韵.灵芝孢子油中三萜类成分的定量研究.中成药.2007,29:1529.
    [160]Hida, T., Ueda, R., Takahashi, T., et al. Chemosensitivity and radiosensitivity of small cell lung cancer cell lines studied by a newly developed 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) hybrid assay. Cancer Res.1989,49:4785-4790.
    [161]Heng, L., Vincken, J.P., Hoppe, K., van Koningsveld, G.A., Decroos, K., Gruppen, H., van Boekel, M.A.J.S., Voragen, A.G.J. Stability of pea DDMP saponin and the mechanism of its decomposition. Food Chem.2006,99:326-334.
    [162]王家乐.抗肿瘤活性化合物灵芝酸T高效制备方法的研究.硕士论文.上海交通大学.2011.
    [163]Fang, X., Shi, L., Ren, A., Jiang, A.L., Wu, F.L., Zhao, W.M. The cloning, characterization and functional analysis of a gene encoding an acetyl-CoA acetyltransferase involved in triterpene biosynthesis in Ganoderma lucidum. Mycoscience, In Press,2012.
    [164]Liu, W., Zhang, S., Zu, Y.G., Fu,Y.J., Ma, W., Zhang, D.Y., Kong, Y., Li, Y.J. Preliminary enrichment and separation of genistein and apigenin from extracts of pigeon pea roots by macroporous resins. Bioresour.Technol.2010,101:4667-4675.
    [165]Scordino, M., Mauro, A.D., Passerini, A., Maccarone, E. Adsorption of Flavonoids on Resins:Hesperidin. J. Agric. Food Chem.2003,51:6998-7004.
    [166]Silva, E.M., Pompeub, D.R., Larondelle, Y., Rogez, H. Optimisation of the adsorption of polyphenols from Inga edulis leaves on macroporous resins using an experimental design methodology. Sep. Purif. Technol.2007,53:274-280.
    [167]Jia, G.T., Lu, X.Y. Enrichment and purification of madecassoside and asiaticoside from Centella asiatica extracts with macroporous resins. J. Chromatogr. A 2008,1193: 136-141.
    [168]Fu, Y.J., Zu, Y.G., Li, S.M., Sun, R., Efferth, T., Liu, W., Jiang, S.G., Luo, H., Wang, Y. Separation of 7-xylosyl-10-deacetyl paclitaxel and 10-deacetylbaccatin Ⅲ from the remainder extracts free of paclitaxel using macroporous resins. J. Chromatogr. A 2008, 1177:77-86.
    [169]Belter, P.A., Cussler, E.L., Hu, W.S. Bioseparations-Downstream Processing for Biotechnology. pp.145.2008, Wiley, New York, USA.
    [170]Doran, P.M. Bioprocess Engineering Principles. pp.234.1995, Academic Press, London.
    [171]Liu, Y.F., Liu, J.X., Chen, X.F., Liu, Y.W., Di, D.L. Preparative separation and purification of lycopene from tomato skins extracts by macroporous adsorption resins. Food Chem.2010,123:1027-1034.
    [172]Lagergren, S. Zur theorie der sogenannten adsorptiom geloster stoffe, Kungliga svenska Vetenskapsakademiens.Handlingar 1898,24:1-39.
    [173]Boyd, G.E., Adamson, A.W., Myers, L.S. The exchange adsorption of ions from aqueous solutions by organic zeolites (11) kinetics. J. Am. Chem. Soc.1947,55: 2836-2848.
    [174]Ho, Y.S., McKay, G. Pseudo-second order model for sorption processes. Process Biochem.1999,34:451-465.
    [175]Azizian, S., Kinetic models of sorption:a theoretical analysis. J.Colloid Interface Sci. 2004,276:47-52.
    [176]Weber W.J., Morris, J.C. Kinetics of adsorption on carbon from solutions. J. Sanitary Eng. Div. ASCE 1963,89:31-60.
    [177]史作清,施富荣.吸附树脂在医药工业中的应用.化学工业出版社.2008.
    [178]McCabe, W.L., Smith, J.C., Harriott, P. Unit operations of chemical engineering.5th ed., pp.810-837.1993, McGraw-Hill, Singapore.
    [179]Lin, L.Z., Zhao, H.F., Dong, Y., Yang, B. Zhao, M.M. Macroporous resin purification behavior of phenolics and rosmarinic acid from Rabdosia serra (MAXIM.) HARA leaf. Food chem.2012,130:417-424.
    [180]Zhang, B., Yang, R.Y., Zhao, Y., Liu, C. Z. Separation of chlorogenic acid from honeysuckle crude extracts by macroporous resins. J. Chromatogr. B 2008,867: 253-258.
    [181]Liu, Y.F., Di, D.L., Bai, Q.Q., Li, J.T.Z., Chen, B., Lou, S., Ye, H. L. Preparative separation and purification of rebaudioside A from steviol glycosides using mixed-mode macroporous adsorption resins. J. Agric. Food Chem.2011,59: 9629-9636.
    [182]Bermejo, R., Ruiz, E., Acien, F.G. Recovery of B-phycoerythrin using expanded bed adsorption chromatography:Scale-up of the process. Biochem. Eng. J.2006,40: 927-933.
    [183]Sticher, O. Natural product isolation. Nat. Prod. Rep.2008,25:517-554.
    [184]Shi, L., Ren, A., Mu, D.S., Zhao M.W. Current progress in the study on biosynthesis and regulation of ganoderic acids. Appl. Microbiol. Biotechnol.2010,88:1243-1251.
    [185]Guiochon, G. Preparative liquid chromatography. J. Chromatogr. A 2002,965:129-161.
    [186]苏志国.层析在生物化工中的发展.全国第六次生物化工学术研讨会论文集.北京:化学工业出版社,1995,362-368.
    [187]Boyadzhiev, L., Dimitrov, K., Metcheva, D. Integration of solvent extraction and liquid membrane separation:An efficient tool for recovery of bio-active substances from botanicals. Chem. Eng. Sci.2006,61:4126-4128.
    [188]Xu, H.N., He, C.H. Extraction of isoflavones from stem of Pueraria lobata (Willd.) Ohwi using n-butanol/water two-phase solvent system and separation of daidzein. Sep. Purif. Technol.2007,56:85-89.
    [189]Nada, C.N., Mihajlo, Z.S. Solanidine hydrolytic extraction and separation from the potato(Solarium tuberosum L.) vines by using solid/liquid/liquid systems. J. Agric. Food Chem.2003,51:1845-1849.
    [190]Lee, J.Y., Kim, J.H. Development and optimization of a novel simultaneous microwave-assisted extraction and adsorbent treatment process for separation and recovery of paclitaxel from plant cell cultures. Sep. Purif. Technol.2011,80:240-245.
    [191]Azevedo, A.M., Rosa, P.A.J., Ferreira, I.F., Aires-Barros, M.R. Integrated process for the purification of antibodies combining aqueous two-phase extraction, hydrophobic interaction chromatography and size-exclusion chromatography. J. Chromatogr. A 2008, 1213:154-161.
    [192]Fu, C.M., Lu, G.H., Schmitz, O.J., Li, Z.W., Leung, KS.Y. Improved chromatographic fingerprints for facile differentiation of two Ganoderma spp. Biomed. Chromatogr. 2009,23:280-288.
    [193]袁媛,杨毅,开桂青,潘见.灵芝三萜提取工艺研究.安徽化工.2007,33:24-26.
    [194]黄书铭,杨新林,张自强,徐建兰,朱鹤荪.超声循环提取灵芝中三萜类化合物的研究.中草药,2004,35:12-15.
    [195]Fang, X.S., Wang, J.H., Zhang, S., Zhao, Q.Q., Zheng, Z.K., Song, Z.Q. Simultaneous extraction of hydrosoluble phenolic acids and liposoluble tanshinones from Salviae miltiorrhizae radix by an optimized microwave-assisted extraction method. Sep. Purif. Technol.2012,86:149-156.
    [196]Lee, J.Y., Kim, J.H. Effect of water content of organic solvent on microwave-assisted extraction efficiency of paclitaxel from plant cell culture. Korean J. Chem. Eng.2011, 28:1561-1565.
    [197]Zhang, W., Teng, S.P., Popovich, D.G. Generation of group B soyasaponins Ⅰ and Ⅲ by hydrolysis. J. Agric. Food Chem.2009,57:3620-3625.
    [198]Martin W. Isolation of solasodine and other steroidal alkaloids and sapogenins by direct hydrolysis-extraction of Solanum plants or glycosides therefrom. Phytochem.2001,58: 501-508.
    [199]Parichat, B., Artiwan, S. Enhanced recovery of phenolic compounds from bitter melon (Momordica charantia) by subcritical water extraction. Sep. Purif. Technol.2009,66 125-129.
    [200]Pasquet, V., Cherouvrier, J.R., Farhat, F., Thiery, V., Piot, J.M., Berard, J.B., Kaas, R., Serive, B., Patrice, T., Cadoret, J.P., Picot, L. Study on the microalgal pigments extraction process:Performance of microwave assisted extraction. Process Biochem. 2011,46:59-67.
    [201]叶振华,宋清,朱建华.工业色谱基础理论和应用.化学工业出版社,1998.
    [202]Liu, R.M., Li, Y.B., Zhong, J.J. Cytotoxic and pro-apoptotic effects of novel ganoderic acid derivatives on human cervical cancer cells in vitro. Eur. J. Pharmacol.2012,681: 23-33.
    [203]Chung, S.F., Wen, C.Y. Longitudinal dispersion of liquid flowing through fixed and fluidized beds. AIChE J.1968,857:14.
    [204]Yau, W.W., Kirkland, J.J., Bly, D.D. Modern size exclusion liquid chromatography. Wiley, New York,1979, p.88.
    [205]Polson, A. Some aspects of diffusion in solution and a definition of a colloidal particle. J. Phys. Colloid Chem.1950,54:649.
    [206]Wilson, E.J., Geankoplis, C.J. Liquid mass transfer at very low Reynolds numbers in packed beds. Ind. Eng. Chem. Fundam.1966,5:9.
    [207]Park, Y.K., Row, K.H., Chung, S.T. Adsorption characteristics and separation of taxol from yew tree by NP-HPLC. Sep. Purif. Technol.2000,19:27-37.
    [208]Stephanie,J., Steffen, E., Martin, P., Ulrich, T. Determination of the interparticle void volume in packed beds via intraparticle Donnan exclusion. J. Chromatogr. A 2010, 1217:696-704.
    [209]Li, Z.G., Gu, Y.S., Gu, T.Y. Mathematical modeling and scale-up of size-exclusion chromatography. Biochem. Eng. J.1998,2:145-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700