超宽带雷达目标探测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带(Ultra-Wide Band, UWB)雷达通常具有距离高分辨能力,从而在目标识别及成像等方面有着广阔的应用前景。然而,该雷达中径向速度不变的目标的多普勒频率随UWB信号频率变化而变化,即所谓的多普勒色散现象更加凸显,若将常规窄带雷达的信号处理方法应用于UWB雷达通常导致相关性能下降。此外,对于存在径向运动的目标,如多载频及线性调频(Linear Frequency Modulation, LFM)的调制信号存在的距离-多普勒耦合导致目标距离像移动及扩展,从而使得UWB雷达距离高分辨能力受到影响。因此,本文围绕UWB雷达目标距离及速度展开了相关的研究,主要工作包括:
     1.多普勒色散特征分析
     针对UWB雷达回波模型,从电磁波传播的角度建立了由三维空间及时间组成的4-波矢(wave4-vector),并利用洛伦兹变换推导出回波模型。基于该回波模型,推导了UWB雷达中多普勒色散对脉压输出性能的影响,并量化了适应匹配滤波器处理的条件。即当UWB雷达多普勒色散积BT(2v/c)小于1时(其中B、T、v和c分别为信号带宽、脉冲宽度、相对径向速度及光速),回波的伸缩可忽略;而当多普勒色散积大于1时,目标回波存在不可忽略的伸缩,且随着该积增大,利用常规匹配滤波器处理后性能下降明显。
     2.脉组间频率步进的UWB雷达目标距离及速度估计
     首先,针对脉组间频率步进(Stepped Frequency Pulse Trains, SFPTs)信号中由脉组间频率变化引起的多普勒色散导致目标距离像质量下降,采用了各脉组内的脉冲重复间隔(Pulse Repetition Interval, PRI)随当前脉组频率变化的参差PRI法。该方法除消除多普勒色散对合成距离像的影响外,还解除了对脉组个数N的限制。其次,针对SFPTs信号脉组内利用快速傅里叶变换测速时存在的量化误差,提出称为迭代二分逼近的方法(Iterative Dimidiate Approaching Method, IDAM)以获得逼近实际速度的估计值。该方法仅需通过log2N次迭代运算便可使测速精度提高N倍,从而使得补偿距离-多普勒耦合后的距离像移动不超过半个距离单元。由于SFPTs信号每个脉组内由若干个同频脉冲组成,因此,相比常规的频率步进信号,SFPTs信号具有较多的脉冲数。这不但导致目标在相干积累时间内易跨多个距离单元移动,而且在此时间内目标速度易发生变化。为此,基于SFPTs信号,采用了多重信号分类(MUltiple SIgnal Classification, MUSIC)的谱估计方法进行速度的高分辨估计。与IDAM不同的是,MUSIC法即使在低信噪比下仍具有较好的速度估计性能,且该方法通常在脉组内需要较少的脉冲数,因为MUSIC法只需满足‘'SFPTs信号脉组内脉冲数大于具有不同径向速度的运动目标个数”条件。此外,为应对高速飞行器的不断问世,进一步分析基于SFPTs信号的高速运动目标的速度解模糊。
     3. LFM UWB雷达目标距离及速度估计
     针对LFM UWB雷达中多普勒色散积不超过1的目标,采用了二维映射离散傅里叶变换及速度补偿((?)(?)wo-Dimensional Projection Discrete Fourier Transform and Velocity Compensation,2-DPDFTVC)方法。该方法借鉴用于宽带波达角估计的二维映射离散傅里叶变换法获得高分辨速度估计值,且利用该估计值进行相关补偿后得到高分辨距离像。此外,根据多普勒色散积不超过1的条件,进一步推导了适应上述处理方法的速度范围。当多普勒色散积超过1时,采用状态空间(State Space)法估计目标距离像及速度,推导了估计参数的克拉美-罗下界,并与通过Monte Carlo重复试验获得的相应均方根误差进行比较,以分析估计参数的统计性能。状态空间法在低信噪比下具有良好的估计性能。此外,由于状态空间法只需要目标频率响应函数而不涉及具体发射波形,因此该方法没有如小波变换对发射波形应具有母小波容许性的限制。
     4.UWB雷达杂波建模及其抑制分析
     结合物理平板模型,提出频率分割子带合成法构造UWB雷达杂波模型。该杂波模型不但考虑了频率因素,而且反映了信号极化、地表电磁特性、地貌凹凸及植被覆盖等诸多细节因素对杂波模型的影响。基于杂波仿真数据,利用最大似然估计获得概率密度函数(Probability Density Function, PDF)的参数,以及根据柯尔莫诺夫-斯米尔诺夫检验法拟合出与杂波数据直方图吻合度好的PDF。仿真结果表明杂波PDF具有“低重心,长拖尾”特征,且PDF模型易受系统及杂波参数影响。在此杂波模型的基础上,建立含有目标及杂波的回波模型。分别利用非相干动目标显示(Noncoherent Moving Target Indication, NMTI)以及多普勒域直接滤波法分析了杂波的抑制,通过比较抑制前后距离像的变化得出抑制方法的适应条件及有待改进之处。
Ultra-Wide Band (UWB) radar possesses a very broad application prospect in the fields of target identification and imaging, etc., since the radar usually has outstanding performance of range resolution. However, the Doppler frequency of UWB radar target with constant radial velocity varies with the frequencies of UWB signal, i.e. Doppler dispersion phenomenon. This phenomenon becomes more prominent than narrow band radar, and makes it difficult to estimate velocity of moving target for UWB radar by using the conventional signal processing methods suitable for narrow radar. Besides, for moving target with radial velocity, the modulation UWB signals, such as multi-carrier frequency and linear frequency modulation (LFM), etc., have range-Doppler coupling, which causes that the range profile moves and spreads seriously along range dimension. It is found that the capability of high range resolution of UWB radar is greatly restricted. This thesis focuses on target detection of range and velocity profiles for UWB radar, including
     1. Analysis on Doppler dispersion characteristic
     The echo of UWB radar is modeled by using Lorentz transformation and wave4-vector with three-dimensional space and time from the point of electromagnetic wave progagation. Doppler dispersion effect on the performance of matched filter output is discussed for UWB radar based on this echo model. In addition, the condition suitable for matched filter is quantified, i.e. when the Doppler dispersion product BT(2v/c) is smaller than1, the echo can be considered as non-stretch and the tranditional processing of matched filter is fit for this case, and vice versa counter, where B, T, v and c are signal bandwidth, pulsewidth, relative radial velocity and light speed, respectively.
     2. Range profile and velocity estimation of target for UWB radar based on stepped frequency pulse trains signal
     Staggering of pulse repetition interval (PRI) varying with subband is implemented for Doppler dispersion caused by the stepped frequencies of stepped frequency pulse trains (SFPTs) signal to solve the performance degradation of range profile. The staggering not only completely eliminates the effect of Doppler dispersion on synthetic range profile, but also relieves the restriction of the number N of the pulse trains. Then, when target velocity is estimated via fast Fourier transform processing, a quantized error is caused. Therefore, iterative dimidate approaching method (IDAM) is proposed in order to improve the calculated velocity precision. This method can improve the accuracy of N times by log2VN iterative processing, and the number of range motion bins caused by calculated velocity error is smaller than a half of range bin. However, the pulses number of SFPTs signal is larger than conventional stepped frequency signal since each subband includes multiple pulses with the same carrier frequency, which not only causes a moving target moving along multiple range cells, but also a constant velocity is hardly maintained. So a multiple signal classification (MUSIC) method is ultilized to estimate high resolution radial velocity on the basis of SFPTs signal. Compared with IDAM, this method still has better performance of velocity estimation even if in the case of low signal-to-noise ratio (SNR). In addition, the method usually acquires less number of pulses in each subband if the requirement, i.e. the number of pulses in each subband is larger than the number of targets moving with different radial velocities, can be met. Finally, with the emerging of high-speed moving vehicles, this thesis further study resolving velocity ambiguity for target moving at high velocity based on SFPTs signal.
     3. Range and velocity estimation of moving target for LFM UWB radar
     For a moving target with the Doppler dispersion product is smaller than1for LFM UWB radar, two-dimensional projection discrete Fourier fransform and velocity compensation (2-DPDFTVC) technique is proposed. In this technique, two-dimensional projection discrete Fourier transform (2-DPDFT), used for direction of arrival (DOA) estimation in the case of wideband signal, is referenced to obtain high resolution estimated velocity. Then, this method can further get high resolution range profile after the corresponding compensation with the calculated velocity. This thesis derives and quantifies the range of velocity according to the Doppler dispersion product being smaller than1. When the Doppler dispersion product is larger than1, state space technique is used to obtain range profile and velocity with high resolution. Then, Cramer-Rao lower bound (CRLB) of the estimated parameter is derived. The CRLB is compared with root mean square error (RMSE) obtained through Monte Carlo duplicate test in order to get the statistical performance of the parameter. State space method possesses fine estimation performance in the condition of low SNR. Besides, the difference between state space method and wavelet transform is that the former does not have admissibility restriction because the former only acquires impulse response of target in frequency domain and does not consider the special transimitted signal waveform.
     4. UWB radar clutter and its suppression
     A method of frequency splitting and subbands synthesis, combining with facet physical model, is proposed to construct UWB radar clutter model. This model not only reflects the feature varing with UWB frequency, but also reports the effects of many detail factors, such as polarization, electromagnetic properties of ground, landforms bump and vegetation cover, etc., on the clutter model. Maximum likelihood estimator (MLE) and Kolmogorov-Smirnov test are utilized to obtain probability statistical model having fine goodness of fit with the histogram of clutter simulation data and the model's parameters, respectively. The corresponding simulation results show that the probability statistical model of UWB clutter has the characteristics of the model varying with the parameters of radar system and clutter, large probability near0radar cross section and long tail. On the basis of the clutter model and the related simulation, this dissertation establishes an echo model mixing with the information of target and clutter for UWB radar. Two methods, called noncoherent moving target indication (NMTI) and filtering directly in Doppler-domain, are introduced to reject UWB radar clutter. Rang profiles are compared before and after NMTI and filtering directly in Doppler-domain processing to demonstrate the effect of clutter suppression, their restriction and the problems for improvement.
引文
[1]Bertoni H L, Lawrance C, Baum C E, et al. Ultra-wideband, short-pulse electromagnetics.1st ed. New York:Plenum,1999
    [2]Skolnik M. Radar handbook.2nd ed. New York:McGraw-hill,1990
    [3]Woodward P M. Probability and information theory with application to radar.1st ed. New York:McGraw-hill,1953
    [4]Siebert W M. A radar detection philosophy. IEEE Transactions on Information Theory, 1956,2(3):204-221
    [5]Raymond C, Watson Jr. Radar origins worldwide:history of its evolution in 13 nations through world war Ⅱ. USA:Trafford Publishing,2009
    [6]Kostenko, Alexei A, Alexander I, et al. Development of the first soviet three-coordinate L-band pulsed radar in Kharkov before WWII. IEEE Antennas and Propagation Magazine,2001,43(3):29-48
    [7]Nakajima S. Japanese radar development prior to 1945. IEEE Antennas and Propagation Magazine,1992,34(6):17-22
    [8]Unwin, R S. Development of radar in New Zealand in World War Ⅱ. IEEE Antennas and Propagation Magazine,1992,34(3):31-39
    [9]Hewitt F J. South Africa's role in the development and use of radar in World War II. Military History Journal,1975,3(3)
    [10]Sinnott D H. Radar development in Australia:1939 to present. Proceedings of IEEE International Radar Conference, Washington, DC, USA,2005:5-9
    [11]张明友.雷达系统.第2版.北京:电子工业出版社,2006
    [12]Wehner D R. High-resolution radar.2nd ed. Norwood:Artech house, inc.1995
    [13]Skolnik M, Andrews G, Hansen J P. An ultra wideband microwave radar conceptual design. Proceedings of IEEE International Radar Conference, Alexandria, Va., Egypt, 1995:16-21
    [14]Skolnik M, Andrews G, Hansen J P. Ultrawideband Microwave radar conceptual design. IEEE Aerospace and Electronic Systems Magazine,1995,10(10):25-30
    [15]Taylor J D. Introduction to ultra-wideband radar systems.1st ed. Florida:CRC Press, 1995
    [16]Yaruvoy A G. Ultra-widehand systems. Proceedings of the 33rd European Microwave Conference, Munich, Germany,2003:597-600
    [17]Immoreev I Y. Practical application of ultra-wideband radars. Proceedings of Ultrawideband and Ultrashort Impulse Signals, Sevastopol, Ukraine,2006:18-22
    [18]Khaleghi A, Balasingham I, Chavez-Santiago R. Computational study of ultra-wideband wave propagation into the human chest. IET Microwaves, Antennas & Propagation,2011,5(15):559-567
    [19]OSD/DARPA. Assessment of ultra-wideband (UWB) technology. Ultra-wideband Radar Review Panel, DARPA, Arlington, VA,1990
    [20]Vichers R. Ultrahigh resolution radar. SPIE Proceedings,1993,1875
    [21]FCC 02-48. First report and order. Adopted:February 14,2002:Released:2002
    [22]Immoreev I Y. Ultrawideband location:main features and difference from common radiolocation. Electromagnetic Waves and Electronic Systems,1997,2(1):81-88
    [23]Hussain M G M. Ultra-wideband impulse radar:an overview of the principles. IEEE Aerospace and Electronic Systems Magazine,1998,13(9):9-14
    [24]Immoreev I Y. Main capabilities and features of ultrawideband (UWB) radars. Radio Physics and Radio Astronomy,2002,7(4):339-344
    [25]Immoreev I Y Ultrawideband (UWB) radar observation:signal generation, radiation and processing. Proceedings of European Conference on Synthetic Aperture Radar (EUSAR'96), Konigswinter, Germany,1996:26-28
    [26]Immoreev I Y Wu S J. Use Ultra wideband radar systems for increase information about target. Proceedings of CIE International Conference on Radar, Beijing, China, 2001:15-18
    [27]Immoreev I Y. New practical application of ultra-wideband radars. Processings of 4-th European Radar Conference, Munich, Germany,2007:216-219
    [28]Barrett T W. History of ultra wideband communications and radar:part 1, UWB communications. Microwave Journal,2001:22-54
    [29]Barrett T W. History of ultra wideband communications and radar:part 2, UWB radar and sensors. Microwave Journal,2001:22-46
    [30]Cramer R J M, Scholtz R A, Win M Z. On the analysis of UWB communication channels. Processings of IEEE Military Communications Conference, Atlantic, NJ, USA,1999,2:1199-1195
    [31]Jeffery H R. An introduction to ultra wideband communication systems.1 st ed. New Jersey:Prentice Hall PTR,2005
    [32]Cassioli D, Win M Z, Molisch A F. The ultra-wide band indoor channel:from statistical model to simulations. IEEE Journal on selected areas in communications, 2002,20(6):1247-1257
    [33]葛利嘉,曾凡鑫,刘郁林.超宽带无线通信.北京:国防工业出版社,2005
    [34]Sun H B, Lu Y L, Liu G S. Ultra-wideband technology and random signal radar:an ideal combination. IEEE Aerospace and Electronic Systems Magazine,2003,18(11): 3-7
    [35]Ksendzuk A V, Volosyuk V K, Sologub N S. Advantages of the wideband and ultra wideband signals in the remote sensing systems. Proceedings of Ultrawideband and Ultrashort Impulse Signals, Sevastopol, Ukraine,2004:19-22
    [36]Anstain L Y, Kostylev A A. Ultrawideband radar measurements analysis and processing.1st ed. United Kingdom:The Institution of Electrical Engineers,1997.
    [37]Napolitano A. Sampling theorems for Doppler-stretched wide-band signals. Signal Processing,2010,90(7):2276-2287
    [38]Niu X X, Ching P C, and Chan Y T. Wavelet based approach for joint time-delay and Doppler stretch measurements. IEEE Transactions on Aerospace and Electronic Systems,1999,35(3):1111-1119
    [39]Kim S D and Lee J H. Performance analysis of LFM-UWB radar based on Doppler frequency. Proceedings of 2010 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea,2010:297-298
    [40]Peng W, Wang X G, Chen K S, et al. The analysis of the synthetic range profile based on Doppler filter bank using FFT. Information Technology Journal,2009,8(8): 1160-1169
    [41]Shen Y Y, Liu Y T. A step pulse train design for high resolution range imaging with Doppler resolution processing. Chinese Journal of Electronics,1999,8(2):196-199
    [42]Chen H Y, Liu Y X, Jiang W D, et al. A new approach for synthesizing the range profile of moving targets via stepped-frequency waveforms. IEEE Geoscience and Remote Sensing Letters,2006,3(3):406-409
    [43]Kahn F J. Documents of American broadcasting.4th ed. New Jersey:Prentice-Hall, Inc.,1984
    [44]胡文.宽带混沌信号产生、分析与处理.南京理工大学博士学位论文,2008
    [45]Hong S. Wireless:from Marconi's black-box to the audion.1st ed. Cambridge, Massachusetts:MIT Press,2001
    [46]Gavin W. Signor Marconi's magic box:the most remarkable invention of the 19th century & the amateur inventor whose genius sparked a revolution.1 st ed. Da Capo Press Cambridge, Massachusetts:Da Capo Press,2003
    [47]Leonardo B C, Ross G F. Time-domain electromagnetics and its applications. Proceedings of the IEEE,1978,66(3):299-318
    [48]Lakkundi V. Ultra wideband communications:history, evolution and emergence. Acta Polytechnica,2006,46(4):18-20
    [49]Henning F H. Transmission of information by orthogonal functions.2nd revised ed. Berlin:Springer-Verlag,1972
    [50]Henning F H. Sequency theory---foundations and applications.1st ed. Reprinted in Beijing:Chinese edition Publishing House of the People's Post and Telecommunications,1980
    [51]Henning F H. Antennas and waveguides for nonsinusoidal waves.1st ed. New York: Academic Press,1984
    [52]Charles F, John E, James C. Assessment of Ultra-wideband (UWB) technology. IEEE Aerospace and Electronic Systems Magazine,1990,5(11):45-49
    [53]Turhan-Sayan G, Moffatt D L. K-pulse estimating and target identification for geometrically complicated low-Q scatters. Proceedings of Ultra-wideband Radar, the First Los Alamos Symposium, Noel, B., Ed., CRC Press, Boca Raton, FL,1991: 435-463
    [54]Vichers R S, Gonzalez V H, Ficklin R W. Results from a VHF impulse synthetic aperture radar. Proceedings of Ultrawideband Radar, LaHaie, I.J. Ed., SPIE,1992, 1631:219-225
    [55]Shensa M J. The discrete wavelet transform:wedding the atrous and mallat algorithms. IEEE Transactions on Signal Processing,1992,40(10):2464-2482
    [56]Charles A F. The UWB (impulse) radar caper of "punishment of the innocent". IEEE Aerospace and Electronic Systems Magazine,1992,7(12):3-5
    [57]Hussain M G M. Ultra-wideband impulse radar-an overview of the principles. IEEE Aerospace and Electronic Systems Magazine,1998,13(9):9-14
    [58]Arik M, Akan O B. Collaborative mobile target imaging in UWB wireless radar sensor networks. IEEE Journal on Selected Areas in Communications,2010,28(6):950-961
    [59]Sakamoto T, Sato T. Code-division multiple transmission for high-speed UWB radar imaging with an antenna array. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(4):1179-1186
    [60]Iverson D E. Coherent processing of ultra-wideband radar signals. IEE Proceedings-Radar, Sonar and Navigation,1994,141(3):171-179
    [61]Vickers R S. Design and applications of airborne radars in the VHF/UHF band. IEEE Aerospace and Electronic Systems Magazine,2002,17(6):26-29
    [62]Skolnik M, Andrews G, Hansen J P. Ultra wideband microwave-radar conceptual design. IEEE Aerospace and Electronic Systems Magazine,1995,10(10):25-30
    [63]Sakamoto T, Sato T. Two-dimensional ultrawideband radar imaging of a target with arbitrary translation and rotation. IEEE Transactions on Geoscience and Remote Sensing,2011,49(11):4493-4502
    [64]Kaplan L M, McClellan J H, Seung-Mok Oh. Prescreening during image formation for ultrawideband radar. IEEE Transactions on Aerospace and Electronic Systems,2002, 38(1):74-88
    [65]Hantscher S, Diskus C G. Pulse-based radar imaging using a genetic optimization approach for echo separation. IEEE Sensors Journal,2009,9(3):271-276
    [66]Kidera S, Sakamoto T, Sato T. Super-resolution UWB radar imaging algorithm based on extended Capon with reference signal optimization. IEEE Transactions or Antennas and Propagation,2011,59(5):1606-1615
    [67]Astanin L Y, Kostylev A A. Ultra-wideband signals-a new step in radar development. IEEE Aerospace and Electronic Systems Magazine,1992,7(3):12-15
    [68]Hamidi E, Weiner A M. Post-compensation of ultra-wideband antenna dispersion using microwave photonic phase filters and its applications to UWB systems. IEEE Transactions on Microwave Theory and Techniques,2009,57(4):890-898
    [69]Yarovoy A G, Ligthart L P, Matuzas J, et al. UWB radar for human being detection. IEEE Aerospace and Electronic Systems Magazine,2006,21(3):10-14
    [70]Yarovoy A G, Ligthart L P, Matuzas J, et al. UWB Radar for Human Being Detection. IEEE Aerospace and Electronic Systems Magazine,2006,21(11):22-26
    [71]Osaki H, Nishide T, Kobayashi T. Measurement of ultra wideband radar cross sections of an automobile at Ka band using circular polarizations. IEICE Transactions Fundamentals,2008, E91-A(11):3190-3196
    [72]Hantscher S, Reisenzahn A, Diskus C G. Ultra-wideband radar noise reduction foi target classification. IET Radar, Sonar & Navigation,2008,2(4):315-322
    [73]Immoreev I Y, Samkov S, Teh-Ho T. Short-distance ultra wideband radars. IEEE Aerospace and Electronic Systems Magazine,2005,20(6):9-14
    [74]Salmi J, Molisch A F. Propagation parameter estimation, modeling and measurements for ultrawideband MIMO radar. IEEE Transactions on Antennas and Propagation 2011,59(11):4257-4267
    [75]Pancera E, Zwick T. Wiesbeck W. Spherical fidelity patterns of UWB antennas. IEEE Transactions on Antennas and Propagation,2011,59(6):2111-2119
    [76]Immoreev I Y. Practical applications of UWB technology. IEEE Aerospace and Electronic Systems Magazine,2010,25(2):36-42
    [77]Zito F, Pepe D, Zito D. UWB CMOS monocycle pulse generator. IEEE Transactions on Circuits and Systems I:Regular Papers,2010,57(10):2654-2664
    [78]Chan K K -M, Rambabu K, Tan A E-C, et al. Efficient passive low-rate pulse generator for ultra-wideband radar. IET Microwaves, Antennas & Propagation,2010, 4(12):2196-2199
    [79]Immoreev I, Teh-Ho T. UWB radar for patient monitoring. IEEE Aerospace and Electronic Systems Magazine,2008,23(11):11-18
    [80]Hellsten H, Ulander L M H. Airborne array aperture UWB UHF radar-motivation and system considerations. IEEE Aerospace and Electronic Systems Magazine,2000, 15(5):35-45
    [81]王光泰,徐继麟,徐庆.超宽带雷达技术特点.电子科技大学学报,1997,26(增刊):13-16
    [82]李海英,杨玉良.超宽带雷达的发展、现状及应用.遥感技术与应用,2001,16(3):768-772
    [83]姜文,龚书喜,洪涛等.低雷达截面的超宽带扇形天线.电子学报,2010,38(9):2162-2165
    [84]晋良念,欧阳缮,肖海林.超宽带穿墙雷达双稳健波束互相关加权的自适应成像方法.电子与信息学报,2011,33(7):1644-1648
    [85]晋良念,欧阳缮.跳时序列调制超宽带正交Hermite脉冲串雷达信号分析.电子与信息学报,2010,32(3):575-581
    [86]水鹏朗,保铮.基于频带分割的超宽带雷达脉冲压缩方法.电子学报,1999,27(6):50-53
    [87]Shi G M, Lin J, Chen X Y, et al. UWB echo signal eetection with ultra-low rate sampling based on compressed sensing. IEEE Transactions on Circuits and Systems II: Express Briefs,2008,55(4):379-383
    [88]肖竹,黑永强,于全等.脉冲超宽带定位技术综述.中国科学F辑:信息科学,2009,3(10):1112-1124
    [89]王敏,杨淑媛,吴顺君.基于多速率滤波器组的UWB脉冲波束形成方法.电子与信息学报,2006,28(12):2214-2218
    [90]张安学,蒋延生,汪文秉.探地脉冲雷达回波信号波达方向估计方法的研究.西安交通大学学报,2002,36(8):843-846
    [91]郭晨,刘策,张安学.探地雷达超宽带背腔蝶形天线设计与实现.电波科学学报,2010,25(2):221-226
    [92]廖学文,朱世华,曾二林.针对超宽带发射参考接收机中符号间干扰的Turbo均衡.电子学报,2008,36(1):146-151
    [93]黎海涛.超宽带雷达关键技术研究.电子科技大学博士学位论文,2001
    [94]胡仕兵.超宽带雷达脉冲压缩信号数字产生方法研究.电子科技大学博士学位论文,2009
    [95]万永伦.宽带雷达信号产生与处理技术研究.电子科技大学博士学位论文,2007
    [96]费元春,陈世伟,米红.基于DDS的宽带雷达信号产生技术研究.电子学报,2001,29(8):1022-1027
    [97]刘志文,柯有安.雷达反隐身的若干问题与技术途径.现代雷达,1992,3(4):1-9
    [98]黄琼,吴世有,孟升卫.基于超宽带雷达的运动人体目标跟踪成像算法.电子学报,2011,39(3):531-537
    [99]刘志勇,张钦宇,张乃通.一种AOWL-FSLE的UWB均衡接收机.哈尔滨工业大学学报,2011,43(1):41-45
    [100]张欣宇.脉冲超宽带同步技术的研究.哈尔滨工业大学博士学位论文,2008
    [101]朱兆达,佘志舜.神经网络在未来超分辨雷达中的应用.南京航空航天大学学报,1992,24(6):659-665
    [102]刘云,赵永久.高端锐截止的短截线超宽带滤波器.微波学报,2011,27(4):42-44
    [103]李辉,宋耀良,杨余旺FM-DCSK超宽带系统设计及其多径信道性能分析.南京理工大学学报(自然科学版),2008,32(5):619-622
    [104]谭覃燕,Henry L,宋耀良.基于混沌调频信号的超宽带穿墙SAR成像.电子与信息学报,2011,33(2):388-394
    [105]李文彪,叶琦,苏卫民等.超宽带随机噪声SAR系统分析.现代雷达,2009,32(1):33-36
    [106]Daniels D J. Ground penetrating radar.2nd ed. London:the Institution of Electrical Engineers,2004
    [107]Chen C C, Nag S, Burnside W D, et al. A standoff, focused-beam land mine radar. IEEE Transactions on Geosicence and Remote Sensing,2000,38(1):507-514
    [108]Dong Y T, Runkle P R, Carin L, et al. Multi—aspect detection of surface and shallow-buried unexploded ordnance via ultra-wideband synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing,2001,39(6):1259-1270
    [109]Torrione P, Collins L M. Texture features for antitank landmine detection using ground penetrating radar. IEEE Transactions on Geoscience and Remote Sensing,2007,45(7): 2374-2382
    [110]Wilson J N, Gader P. A large-scale systematic evaluation of algorithms using ground-penetrating radar for landmine detection and discrimination. IEEE Transactions on Geoscience and Remote Sensing,2007,45(8):2560-2572
    [111]Zhu Q, Collins L M. Application of feature extraction methods for landmine detection using the wichmann/niiteck ground-penetrating radar. IEEE Transactions on Geoscience and Remote Sensing,2005,43(1):81-85
    [112]Masuyama S, Hirose A. Walled LTSA array for rapid, high spatial resolution, and phase-sensitive imaging to visualize plastic landmines. IEEE Transactions on Geoscience and Remote Sensing,2007,45(8):2536-2543
    [113]Baker G S, Ambrose H M. Ground penetrating radar imaging of a 4th Century Roman Fort, Humayma, Jordan. Proceedings of International Workshop on Advanced Ground Penetrating Radar, Aula Magna Partenope,2007:54-59
    [114]Shao W S, Bouzerdoum A, Phung S L, et al. Automatic classification of ground-penetrating-radar signals for railway-ballast assessment. IEEE Transactions on Geoscience and Remote Sensing,2011,49(10):3961-3972
    [115]Annan A P. GPR—history, trends, and future developments. Subsurface Sensing Technologies and Applications,2002,3(4):253-270
    [116]Lampe B. Finite-difference time-domain modeling of ground-penetrating radar antenna systems. Dipl.-Phys., Technical University of Braunschweig, Germany:Ph.D dissertation,2003
    [117]Olhoeft G R. Application of ground penetrating radar. Proceedings of Application of Ground Penetrating Radar, Sendai, Japan,1996:1-4
    [118]Daniels J J, Grumman D, Vendl M. Vertical indident three dimensional GPR. Journal of Environmental & Engineering Geophysics,1997,2(2):1-9
    [119]Daniels J J, Brower J, Baumgartner F. High resolution GPR at brookhaven national laboratory to delineate complex subsurface targets. Journal of Environmental and Engineering Geophysics,1998,3(1):1-5
    [120]Travassos X L, Vieira D A G, Ida N, et al. Inverse algorithms for the GPR assessment of concrete structures. IEEE Transactions on Magnetics,2008,44(6):994-997
    [121]李廷军.探地雷达干扰抑制及波速估计问题的研究.电子科技大学博士学位论文,2008
    [122]周智敏,金添,宋千等.超宽带SAR探地试验系统.电子与信息学报,2007,29(8):1805-1808
    [123]常文革,梁甸农,周智敏.轨道超宽带SAR实验技术研究.电子学报,2001,29(9):1213-1216
    [124]Fang G Y. The research activities of ultrawide-band (UWB) radar in China. Proceedings of IEEE International Conference on Ultra-Wideband, Singapore,2007: 43-45
    [125]张春城.浅地层探地雷达中的信号处理技术研究.电子科技大学博士学位论文,2005
    [126]孔令讲.浅地层探地雷达信号处理算法的研究.电子科技大学博士学位论文,2003
    [127]张安学,蒋延生,汪文秉.圆周探地雷达测量和成像方法的研究.电子学报,2002,30(6):853-856
    [128]杨峰,彭苏萍,冯正和等.基于谱剖面技术的路基病害地质雷达探测方法研究.公路交通科技,2007,24(5):6-9
    [129]申家全,闫怀志,胡昌振.基于主成分自动选择准则的探地雷达杂波抑制.电波科学学报,2010,25(1):83-87
    [130]屈乐乐,方广有,杨天虹.频率步进探地雷达系统小型化的设计与实现.仪器仪表学报,2010,31(3):699-703
    [131]常文革UWB SAR系统设计与实现.国防科技大学博士学位论文,2001
    [132]梁甸农,周智敏.叶簇穿透超宽带成像雷达技术.国防科技参考,1999,20(3):7-10
    [133]梁甸农,周智敏,常文革.机载叶簇穿透超宽带成像雷达的关键技术.国防科技参考,1999,20(3):30-31
    [134]Freeman A. Fitting a two-component scattering model to polarimetric SAR data from forests. IEEE Transactions on Geoscience and Remote Sensing,2007,45(8): 2583-2592
    [135]Davis M E, Tomlinson P G, Maloney R P. Technical challenges in ultra-wideband radar development for target detection and terrain mapping. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Seattle, WA,1998:1-6.
    [136]Sai B, Ligthart L P. GPR phase-based techniques for profiling rough surfaces and detecting small, low-contrast landmines under flat ground. IEEE Transactions on Geoscience and Remote Sensing,2004,42(2):318-326
    [137]Daniels D J. A review of GPR for landmine detection. Sensing and imaging,2006, 7(3):90-123
    [138]Potin D, Vanheeghe P. An abrupt change detection algorithm for buried landmines location. IEEE Transactions on Geoscience and Remote Sensing,2006,44(22): 260-272
    [139]Travassos X L, Vieira D A G, Ida N, et al. Inverse algorithms for the GPR assessment of concrete structures. IEEE Transactions on Magnetics,2008,44(6):994-997
    [140]Gamba P, Lossani S. Neural detection of pipe signatures in ground penetrating radar images. IEEE Transactions on Geoscience and Remote Sensing,2000,38(2):790-797
    [141]方学立UWB SAR图像中的目标检测与鉴别.国防科技大学博士学位论文,2005
    [142]谭怀英VHF UHF波段树干超宽带特性和建模方法研究.国防科技大学,2001
    [143]费元春.超宽带雷达理论与技术.北京:国防工业出版社,2010
    [144]Dehmollaian M, Thiel M, and Sarabandi K. Through-the-wall imaging using differential SAR. IEEE Transactions on Geoscience and Remote Sensing,2009,47(5): 1289-1296
    [145]Kim Y, Human H L. Activity classification based on mico-Doppler signatures using a support vector machine. IEEE Transactions on Geoscience and Remote Sensing,2009, 47(5):1328-1337
    [146]Ram S S, Christianson C, Youngwook Kim, et al. Simulation and analysis of human micro-Dopplers in through-wall environments. IEEE Transactions on Geoscience and Remote Sensing,2010,48(4):2015-2023.
    [147]Solimene R, Di R, Soldovieri F, et al. TWI for an unknown symmetric lossless wall. IEEE Transactions on Geoscience and Remote Sensing,2011,49(8):2876-2886
    [148]Ertin E, Moses R L. Through-the-wall SAR attributed scattering center feature estimation. IEEE Transactions on Geoscience and Remote Sensing,2009,47(5): 1338-1348.
    [149]Ahmad F, Zhang Y M, Amin M G. Three-dimensional wideband beamforming for imaging through a single wall. IEEE Geoscience and Remote Sensing Letters,2008, 5(2):176-179
    [150]Borek S E. An overview of through the wall surveillance for homeland security. Proceedings of Applied Imagery and Pattern Recognition Workshop, Washington, USA,2005:42-47
    [151]Cook C. Enhanced motion and ranging sensor (EMARS), Final Technical Report, AFAL-IF-RS-TR-2005-72, Mar 2005
    [152]潘水洋.穿墙生命探测雷达信号处理算法研究.华南理工大学硕士学位论文,2011
    [153]荆西京,王健琪,路国华等.雷达式非接触生命参数检测的信号预处理.医疗卫生装备,2003,24(11):21-29
    [154]陈洁.超宽带雷达信号处理及成像方法研究.中国科学院电子学研究所博士学位论文,2007
    [155]王宏,周正欧,李廷军等.超宽带脉冲穿墙雷达互相关BP成像.电子科技大学学报,2011,40(1):16-19
    [156]陈慧华.超宽带冲击信号在穿墙雷达的应用.南京理工大学硕士学位论文,2010
    [157]黄冬梅.基于IR-UWB穿墙成像系统的性能研究.哈尔滨工业大学博士学位论文,2011
    [158]李磊,任丽香,包云霞.宽带频率步进信号参数估计的克拉美罗界研究.电子与信息学报,2011,33(4):982-986
    [159]Weiss L G. Wavelets and wideband correlation processing. IEEE Transactions on Signal Processing 1994,11(1):13-32
    [160]Ochoa H A. High velocity Doppler analysis of wideband radar signals. University of Texas et al Paso, Ph.D dissertation,2007
    [161]Remley W R. Doppler dispersion effects in matched filter detection and resolution. Proceedings of the IEEE,1966,54(1):33-39
    [162]费元春,苏广川,米红等.宽带雷达信号产生技术.北京:国防工业出版社,2002
    [163]Chen H Y, Liu Y X, Jiang W D, et al. A new approach for synthesizing the range profile of moving targets via stepped-frequency waveforms. IEEE Geoscience and Remote Sensing Letters,2006,3(3):406-409
    [164]Gill G S. Simultaneous pulse compression and Doppler processing with step frequency waveform. Electronics Letters,1996,32(23):2178-2179
    [165]刘铮.脉冲合成高分辨雷达目标运动补偿与成像.西安电子科技大学博士学位论文,2000
    [166]Richards M A. Fundamentals of radar signal processing.1st ed. New York: McGraw-hill companies, INC.,2005
    [167]Levanon N, Mozeson E. Radar signal.1st ed. Canada:John Wiley & Sons, Inc.,2004
    [168]毛二可,龙腾,韩月秋.频率步进雷达数字信号处理.航空学报(增刊),2001,22(6):16-29
    [169]龙腾.频率步进雷达信号的多普勒性能分析.现代雷达,1996,18(2):31-37
    [170]Ma Y B. Velocity compensation in stepped frequency radar. Naval post graduate school,United States Navy, degree of Master dissertation,1995
    [171]蒋楠稚,王毛路,李少洪等.频率步进脉冲距离高分辨一维成像速度补偿分析.电子科学学刊,1999,21(5):665-670
    [172]Berizzi F, Martorella M, Cacciamano A, et al. A contrast-based algorithm for synthetic range-profile motion compensation. IEEE Transactions on Geoscience and Remote Sensing,2008,46(10):3053-3062
    [173]Wang Y, Su H Y, Zhu H C, et al. Parameter design method of stepped-frequency radar to suppress clutter. Applied Mechanics and Materials,2011,130-134:2042-2046
    [174]Levanov N. Stepped-frequency pulse train radar signal. IEE procedings on Radar, sonar and Navigation,2002,149(6):297-309
    [175]彭卫,汪学刚,赵建宏等.基于常规多普勒滤波器组结构的合成宽带距离像性能分析.航空学报,2009,30(6):1096-1102
    [176]Sibul L H, Weiss L G. A wideband wavelet based estimator correlator and its properties. Multidimensional Systems and Signal Processing,2002,13(2):157-186
    [177]Bocker R P, Jones S H. ISAR motion compensation using the burst derivative measure as a focal quality indicator. International Journal of Imaging Systems and Technology, 1992,4(4):285-297
    [178]Zhang L P, Peng Y N, Wang X Q, et al. An iterative approach of parameter estimation for LFM signals. Proceedings of 2002 IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, Chengdu, China, 2002,2:1054-1057
    [179]Jin Q, Wong K M, Luo Z Q. The estimation of time delay and Doppler stretch of wideband signals. IEEE Transactions on Signal Processing,1995,43(4):904-916
    [180]Piou J E, Cuomo K M, Mayhan J T. A state-space technique for ultrawide-bandwidth coherent processing. MIT Lincoln Laboratory Technical Report 1054, Jul.1999
    [181]David J H Jr. State-space approaches to ultra-wideband Doppler processing. Worcester Polytechnic Institute, Ph.D dissertation,2007
    [182]Wang J, Wei S M, Sun J P, et al. A GTD model and state space approach based method for extracting the UWB scattering center of moving target. Science China:Information Sciences,2011,54(1):182-196
    [183]Skolnik M I. Radar Handbook.3rd ed. New York:McGraw-Hill, Inc.,2008
    [184]Banerjee A, Chellappa R. Statistical-physical model for foliage clutter in ultra-wideband synthetic aperture radar images. Journal of the Optical Society of America,2003,20(1):32-39
    [185]方学立,梁甸农.超宽带合成孔径雷达树干杂波的统计特性分析.系统工程与电子技术,2005,27(7):1154-1156
    [186]Greco M S, Gini F. Statistical analysis of high-resolution SAR ground clutter data. IEEE Transactions on Geoscience and Remote Sensing,2007,45(3):556-575
    [187]Richards M A, Scheer J A, Holm W A. Principles of Modern Radar, Volume 1:Basic Principles. Raleigh, NC:Scitech publishing, INC.,2010
    [188]Strifors H C, Gaunaurd G C. Scattering of electromagnetic pulses by simple-shaped targets with radar cross section modified by a dielectric coating. IEEE Transactions on Antennas and Propagation,1998,46(9):1252-1262
    [189]Kim H T. High-frequency analysis of EM scattering from a conducting sphere coated with a composite material. IEEE Transactions on Antennas and Propagation,1993, 41(2):1665-1674
    [190]Lee K H, Chen C C, Teixeira F L, et al. Modeling and investigation of a geometrically complex UWB GPR antenna using FDTD. IEEE Transactions on Antennas and Propagation,2004,52(8):1983-1991
    [191]Fernandez G, Grajal A F, Yeste-Ojeda J, et al. Analysis of ISAR images of a helicopter by a facet model. Proceedings of IEEE International Conference on radar, Adelaide, Australia,2008:32-37
    [192]Jachson J A, Moses R L. Clutter model for VHF SAR imagery. Proceedings of the SPIE,2004,54(27):271-282
    [193]Tan Y, Qi L F. An efficient approach for computing the RCS of electrically large targets. International Journal of Infrared and Millimeter Waves,1999,20(12): 2139-2147
    [194]Domingo M, Rivas F, Perez J, et al. Computation of the RCS of complex bodies modeled using NURBS surfaces. IEEE Antennas and Propagation Magazine,1995, 37(6):36-47
    [195]Xu Z Y. Subband synthesis method for simulation of wideband radar clutter. Proceedings of IET International Radar Conference, Guilin, China,2009:1-4
    [196]Hoffman A and Kogon S. Subband STAP in wideband radar systems. Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop, Cambridge, MA,2000:256-260
    [197]Steinhardt A and Pulsone N. Subband STAP processing, the fifth generation. Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop, Cambridge, MA,2000:1-6
    [198]戴奉周,刘宏伟,吴顺君.最大相关系数准则下的子带域宽带雷达杂波抑制与距离像增强.电子与信息学报,2009,31(7):1701-1705
    [199]侯庆禹,刘宏伟,保铮.一种新的宽带目标识别雷达杂波抑制方法.西安电子科技大学学报(自然科学版),2008,35(5):769-773
    [200]贺知明,向敬成,黄巍NMTI方法在宽带雷达系统中的应用.电子与信息学报,2003,25(12):1628-1633
    [201]贺知明,黄巍,张一冰等.适用于宽带雷达的非相干杂波抑制方法.系统工程与电子技术,2004,26(5):572-574
    [202]Taylor J D. Ultra-wideband radar technology.1st ed. New York:CRC Press,2001
    [203]Cook C E, Hejss W H. Linear FM pulse compression Doppler distortion effects. Proceedings of the Institute of Radio Engineers (Correspondence),1962, 50:1535-1536
    [204]Papas C H. Theory of electromagnetic wave propagation.1st ed. New York: McGraw-Hill,1965
    [205]Peng W, Wang X G, Zhao J H. Methods of eliminating Doppler dispersion in synthetic wideband signal. Proceedings of IEEE International Conference on. Microwave and Millimeter Wave, Beijing, China,2008:1540-1543
    [206]Allam M E, Greenleaf J F. Isomorphism between pulsed-wave Doppler ultrasound and direction-of-arrival estimation-Part I:basic principles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1996,43(5):911-922
    [207]Allam M E, Kinnick R R, Greenleaf J F. Isomorphism between pulsed-wave Doppler ultrasound and direction-of-arrival estimation-Part II:experimental results. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1996,43(5): 923-935
    [208]Akimasa H, Takeshi M, Zen K. DOA estimation of ultra-wideband EM waves with MUSIC and interferometry. IEEE antennas and wireless propagation letters,2003, 2(1):190-193
    [209]彭卫.合成宽带信号处理及宽带阵列雷达若干关键技术研究.电子科技大学博士学位论文,2010
    [210]Zhang J, Dai J S, Ye Z F. An extended TOPS algorithm based on incoherent signal subspace method. Signal Processing,2010,90(12):3317-3324
    [211]H. Wang, M. Kaveh, Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wideband sources. IEEE Transactions on Acoustics Speech and Signal Processing,1985,33(4):823-831
    [212]Claudio E. Di, Parisi R. WAVES:weighted average of signal subspaces for robust wideband direction finding. IEEE Transactions on Signal Processing,2001,49(10): 2179-2190
    [213]Sun Y Y, Kaplan L M, McClellan J H. TOPS:new DOA estimator for wideband signals. IEEE Transactions on Signal Processing,2006,54(6):1977-1989
    [214]Allam M, Moghaddamjoo A. Two-dimensional D.F.T. projection for wideband direction of arrival estimation. IEEE Transactions on Signal Processing,1995,43(7): 1728-1732
    [215]Torin S. Interpolation of complex signals. U.S. Patent 7697634B2,2010
    [216]Abatzoglou J, Gheen G O. Range, radial velocity, and acceleration MLE using radar LFM pulse train. IEEE Transactions on Aerospace Electronic Systems,1998,34(4): 1070-1083
    [217]Rao B D, Arun K S. Model based processing of signals:a state space approach. IEEE Proceedings,1992,80(2):283-309
    [218]Gulden P, Vossiek M, Storck E, et al. Application of state space frequency estimation techniques to radar systems. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, Utah,2001,5:2877-2880
    [219]Austin C D, Moses R L, Ash J N, et al. On the relation between sparse reconstruction and parameter estimation with model order selection. IEEE Journal of Selected Topics in Signal Processing,2010,4(3):560-570
    [220]Haddadi F, Malek-Mohammadi M, Nayebi M M, et al. Statistical performance analysis of MDL source enumeration in array processing. IEEE Transactions on Signal Processing,2010,58(1):452-457
    [221]王剑,吴嗣亮,侯淑娟.超分辨条件下雷达目标散射点数的估计方法.电子学报,2008,36(6):1058-1062
    [222]Ruck G T, Barrick D E, and Stuart W D, et al. Radar cross section handbook volume 2. 1st ed. New York:Plenum Press,1970:700-702
    [223]Liang J, Liang Q L, and Samn S W. Foliage clutter modeling using the UWB radar. Proceedings of IEEE International Conference on Communications, Beijing, China, 2008:1937-1941
    [224]Stephens M A. EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association,1974,69(347):730-737
    [225]侯庆禹,刘宏伟,保铮.宽带目标识别雷达的杂波抑制.现代雷达,2007,29(9):44-47
    [226]许小剑,黄培康.雷达系统及其信息处理.北京:电子工业出版社,2010
    [227]马超,许小剑.空间进动目标的宽带雷达特征信号研究.电子学报,2011,39(3):636-642

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700