西昆仑塔县—康西瓦构造带印支期变质、岩浆作用及布伦阔勒岩群的形成时代
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西昆仑造山带是中国造山带的重要组成部分,是研究特提斯构造演化的关键区域。康西瓦构造带是区内一条重要的构造界线,沿康西瓦构造带分布有类型多样的高压变质岩石、大量的花岗岩和不同时代的沉积地层,作为西昆仑造山带演化的产物,保存了丰富的信息,是解译西昆仑造山带演化、特别是在印支期演化的载体。本论文选取塔县(塔什库尔干塔吉克自治县)—康西瓦一带的高压变质岩、印支期花岗岩和主要的沉积地层三个方面的内容,为深入讨论康西瓦构造带的形成时代、属性和演化提供约束。
     对塔县-康西瓦高压变质岩的研究选取了区内出露的麻粒岩,在岩相学和矿物成分研究的基础上,划分了变质矿物期次,并利用Thermocalc(3.33)程序重点对高压泥质麻粒岩、高压基性麻粒岩和石榴石辉石岩三类高压变质岩进行了相图模拟,建立了P-T视剖面图,通过划分的矿物期次和矿物等值线两方面限定不同变质期次矿物组合对应的P-T条件,并结合年代学研究,得到它们的P-T-t轨迹。这三类岩石均具有顺时针型的P-T-t轨迹,早期退变质P-T轨迹为等温降压的过程,反映了岩石早期经历了快速折返的过程,晚期退变质P-T轨迹是降温降压的过程,普遍经历了后期角闪岩相退变质事件,反映其经历了再次抬升。通过系统的锆石定年,确认高压麻粒岩的峰期变质时代介于220-250Ma,为印支期,早期麻粒岩相的退变质时代约为220Ma,晚期角闪岩相的退变质时代约为180-190Ma。
     对塔县-康西瓦的花岗岩的研究重点选取了胜利桥-麻扎-三十里营房-康西瓦一线出露的印支期花岗岩体,在岩相学、年代学和地球化学研究的基础上,重点讨论了印支期花岗岩的源岩性质、形成条件以及它们与康西瓦构造带演化之间的响应关系。结合区域构造背景将沿麻扎-康西瓦一线分布的花岗岩分为四期:第一期可能对应于洋壳俯冲阶段,时代约为251Ma;第二期可能对应于陆-陆碰撞造山引起的陆壳加厚阶段,时代约为242Ma;第三期可能对应于俯冲板片断离后的陆壳折返阶段,时代可能为223~231Ma;第四期可能形成于造山后期的伸展背景,形成时代为185-215Ma。
     对塔县-康西瓦的沉积地层的研究重点选取了争议较多、经济贡献大,同时也是区内分布最广泛的布伦阔勒岩群作为研究对象,从北到南选取了布伦口铜厂沟剖面、落依铁矿剖面、塔县-班迪尔剖面和赞坎铁矿剖面,这四个剖面相隔上百公里,基本覆盖了布伦阔勒岩群的分布范围,通过实测剖面,查明物质组成,选取典型定年样品,限定各剖面地层的形成时代,结合前人研究确认布伦阔勒岩群不存在古元古代地层,原划的布伦阔勒岩群地层包含有新元古代、早古生代和二叠纪地层,其中元古代-早古生代沉积地层包括赞坎铁矿、老并铁矿、落依铁矿等原划为布伦阔勒岩群的地层,二叠纪地层主要出露于塔县东,未见顶底,可能与高压变质岩石一起构成了俯冲碰撞杂岩。根据地层的物质组成、层序特征、变质变形特征、演化特征和形成时代将原划的布伦阔勒岩群初步重新划分为两个部分:新元古代-早古生代沉积地层和俯冲碰撞杂岩带。
     结合康西瓦构造带塔县高压麻粒岩和印支期花岗岩的研究对康西瓦构造带演化的约束,初步将康西瓦构造带构造演化期次划分为四期:第一期为洋壳俯冲阶段,时代可能~250Ma;第二期为陆壳俯冲或陆-陆碰撞阶段,该阶段陆壳叠置加厚,时代可能-240Ma;第三期为俯冲板片断离后的陆壳折返阶段,时代约为220-230Ma;第四期为造山后期地壳进一步伸展阶段,时代可能从约210Ma一直持续到185Ma。
The formation and evolution of West Kunlun orogenic belt is a quite complex process. The Kangxiwar tectonic belt is an important tectonic boundary of West Kunlun orogenic belt. Different types of high-pressure metamorphic rocks, great amount of granites and dedimentary stratums of different ages are distributed in this area, and function as the evolutionary product of West Kunlun orogenic belt. They preserve wealth information of Kangxiwar tectonic belt and can be used to interpret the evolution of West Kunlun orogenic belt, especially for the study of the evolution of Indosinian. This dissertation discusses the formation age, the properties and the evolution characteristics of Kangxiwar tectonic belt from three aspects, namely, Ta Xian (Taxkorgan, Tajik Autonomous County)-Kangxiwar tectonic belt, Indosinian granite and the major dedimentary stratum.
     The granulite exposed from the Ta Xian-Kangxiwar are selected to study. Based on the petrographic and mineral composition analysis, the phases of the metamorphic mineral are divided. Also, focusing on high-pressure politic granulite, high-pressure mafic and garnet pyroxenite, these three types of high-pressure metamorphic are phase diagram simulated by using Thermocale (3.3) program to construct the P-T pseudosection. By dividing the mineral phases and the P-T conditions of different phases of mineral defined from two aspects, and combined with geochronology, the P-T-t path is got. The P-T-t paths of the three types of rock are all clockwise metamorphic evolution path. In early retrograde metamorphism stage, P-T paths reveal isothermal decompression which reflected rock had overwent rapid exhumation process. In late retrograde metamorphism stage, temperature and pressure decrease P-T paths suggested three types of rock overwent amphibolite facies metamorphism and lifting once again.Based on zircon dating data of HP granulite, peak metamorphism age was between220-250Ma. The early retrograde metamorphism age was about220Ma and the late retrograde metamorphism age was about180-190Ma.
     The study of Ta Xian-Kangxiwar granite is mainly focusing on the exposed Indosinian granites from Shengli Bridge-Mazar-Thirty Miles Barracks-Kangxiwar line. Based on petrography, geochronology and geochemistry study, the nature of source rocks of these granites, forming conditions of these granites and the coupling relationship between these granites and the Kangxiwar tectonic belt are emphasized.Combined with previous studies, tectonic evolution process of Indosinian Granites along the Kangxiwar tectonic belt can be subdivided into four stages:The first stage may correspond to the subduction of oceanic crust stage and the corresponding age was about251Ma. The second stage may correspond to crustal thickening stage caused by the continent-continent collision and the corresponding age was about242Ma. The third stage may correspond to crust exhumation stage caused by subducting slab break-off and the corresponding age was during223-231Ma. The third stage may be dominated by post-collisional extension and corresponding time about during185-215Ma.
     The study of Ta Xian-Kangxiwar dedimentary stratum selects Bulunkuole rock group as the object which is the more contentious, more economic beneficial and also the most widely distributed in this area. From north to south, four profiles are chosen, namely, Tongchang ditch profile in Bulunkou, Ziluoyi iron ore profile, Ta Xian-Bandier iron profile and Zankan iron ore profile. The four sections are separated by hundreds of kilometers, covering most distributing area of Bulunkuole rock group. By measuring the profiles, identifying the material composition, selecting typical dating samples, limiting the forming ages of the profile strata and combined with the previous studies, the formation and evolution characteristics of Bulunkuole rock group are discussed. Combined with existing study, Proterozoic strata doesn't exist in Bulunkuole rock group. The original divided Bulunkuole rock group contains Neoproterozoic, early Paleozoic and Permian strata. Neoproterozoic strata and early Paleozoic strata are exposed in the Zankan iron ore, Laobing iron ore, Ziluoyi iron ore profiles. Permian strata are exposed in the east of Ta County profile. Permian strata are exposed in the east of Ta County profile. Permian strata associated with high-pressure metamorphic rocks together may constitute the subduction collision complex. Based on material composition, stratigraphic sequence, Metamorphism and deformation characteristics, evolution and formation age of strata in Bulunkuole rock group, the. The original divided Bulunkuole rock group could be divide into two parts:Neoproterozoic-early Paleozoic stara and subduction collision complex.
     Combined study on High pressure granulite and Indosinian Granites in Kangxiwar tectonic belt, the evolution of Kangxiwa tectonic belt can be preliminary subdivided into four stages:The first stage was oceanic crust stage and corresponding age was about250Ma. The second stage was crustal thickening stage caused by continent subduction or continent continent collision and the corresponding age was about240Ma. The third stage was crust exhumation caused by subducting slab break-off and the corresponding age was during223-231Ma. The third stage was post-collisional extension and corresponding time about during185-215Ma.
引文
[1]Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb [J]. Chem. Geol.,2002,192:59-79
    [2]Anderson J.L. Status of thermobarometry in granitic batholiths [J]. Trans. Roy. Soc. Edinb. Earth Sci.,1997,87:125-138
    [3]Appel P., Moller A., Schenk V. High-pressure granulite facies metamorphism in the Pan-African belt of eastern Tanzania:P-T-t evidence granulite formation by continent collision[C]. J Metamorphic Geol,1998,16:491-509
    [4]Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments [J].Lithos,1999,46:605-626
    [5]Bird P. Continental delaminateion and Colorado plateau[J]. J. Geophys. Res., 1979,84:7561-7571.
    [6]Boynton WV. Cosmochemistry of the rare earth elements:Meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry [C]. New York:Elsevier Science Publishing Company,1984:63-114
    [7]Calvin F.M., McDowell S.M., and Mapes R.W. Hot and cold granites: Implication of zircon saturation temperatures and preservation of inheritance [J]. Geology,2003,31(6):529-532
    [8]Carswell and O'Brien. Thermobarometry and Geotectonic Significance of High-Pressure Granulites:Examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria [J]. J Petrol,1993,34(3):427-459
    [9]Chappell B.W., and White A.J.R. Two contrastiong granite types[J]. Pacific. Geol.,1974,8:173-174
    [10]Chappell B.W., White A.J.R. and Wyborn D. The importance of residual Source material (restite) in granite petrogenesis[J]. J. petrol.,1987,28:1111-1138
    [11]Chen Y., Ye K., Liu J.B., et al. Multistage metamorphism of the Huangtuling granulite, Northern Dabie Orogen, eastern China:implications for the tectonometamorphic evolution of subducted lower continental crust [J]. J. Metamorphic Geol.,2006,24:633 654
    [12]Chen Y., Ye K., Liu J.B., et al. Quanititave P-T-X constraints on orthopyroxene-bearing high-pressuregranulites in felsic-metapelitic rocks:evidence from the Huangtuling granulite, Dabieshan Orogen [J]. J Metamorphic Geol,2008,26: 1-15
    [13]Clark G.L., Powell R., Fitzherbert J.A. The lawsonite paradox:a comparison of field evidence and mineral equilibria modeling [J]. J. Metamorphic Geol.,2006,24:715-725
    [14]Clark G.L., White R.W., Lui S., et al. Contrasting behaviour of rare earth and major elements duringpartial melting in granulite facies migmatites, Wuluma Hills, Arunta Block, central Australia [J]. J. Metamorphic Geol.,2007,25:1-18
    [15]Coldwell B., Clemens J. and Petford N. Deep crustal melting in the Peruvian Andes:Felsic magma generation during delamination and uplift[J]. Lithos,2011,125: 272-286
    [16]Coleman D.S and Glazner A.F. The Sierra crest magmatic event:Rapid formation of juvenile crust during the Late Cretaceous in California[J]. Inter. Geol. Rev., 1997,39:768-787
    [17]Coleman D.S., Frost T.P. and Glazner AF. Evidence from the Lamarck Granodiorite for rapid Late Cretaceous crust formation in California[J]. Science,1992, 258:1924-1926
    [18]Coleman D.S., Glazner A.F., Miller J.S., et al. Exposure of a Late Cretaceous layered mafic-felsic magma system in the central Sierra Nevada batholith, California[J]. Contrib. Mineral. Petrol.,1995,120:129-136
    [19]Corfu F., Hanchar J.M., Hoskin P.W.O. et al. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry [J],2003,53(1):469-500
    [20]Corfu F., Hanchar J.M., Hoskin P.W.O. et al. Atlas of zircon textures [J]. Reviews in Mineralogy and Geochemistry,2003,53 (1):469-500
    [21]Davies J.H. and von Blanckenburg F. Slab breakoff:A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens [J]. Earth and Planetary Science Letter,1995,129:85-102
    [22]Defant M.J. and Drummond M.S. Derivtion of some modern arc magmas by melting of young subduction lithosphere. Nature,1990,347:662-665
    [23]Defant M.J. and Kepezhinskas P. Evidence suggests slab melting in arc magmas[J]. EOS,2001,82:67-69.
    [24]DePaolo D.J., Linn A.M. and Schubert G. The continental crust age distribution:Methods of determining mantle separation ages from Sm-Nd isotopic data and implication to the southwestern United States[J]. J. Geophys. Res.,1991,96(B2): 2071-2088
    [25]Eby G.N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology,1992.20:641-644
    [26]E1-Shazly A.K., Sanderson D.D. and Napier J.2011. Petrogenesis of I-type granitoids from the Melrose Stock,east-central Nevada[J], International Geology Review, 53(13):1522-1558
    [27]Farina, F., Stevens, G.,2011. Source controlled 87Sr/86Sr isotope variability in granitic magmas:the inevitable consequence of mineral-scale isotopic disequilibrium in the protolith[J]. Lithos 122,189-200.
    [28]Ferry J.M. and Watson E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers [J]. Contrib. Mineral Petrol.,2007,154:429-437
    [29]Frost B.R., Chacko T. The Granulite Uncertainty Principle:Limitations on Thermobarometry in Granulites [J]. The Journal of Geology,1989,97(4):435-450
    [30]Gao S., Luo T.C., Zhang B.R., et al. Chemical composition of the continental crust as revealed by study in East China [J]. Geochemica et Cosmochimica Acta,1998, 62(11):1959-1975
    [31]Gerdes A., Worner G. and Henk A. Post-collisional granite generation and HAT-LP metamorphism by radiogenic heating:The example from the Variscan South Bohemian Batholith [J]. J. Geological Society-London,2000,157:577-587
    [32]Green D.H.and Ringwood A.E. An experimental investigation of the gabbro to eclogite transformation and its petrological applications [J]. Geochim. Cosmochim. Acta, 1967,31:767-833
    [33]Hanchar J.M. and Miller C.F. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images:Implica-tions for interpretation of complex crustal histories [J]. Chemical geology,1993,110:1-13
    [34]Hanchar J.M. and Rudnick R.L. Revealing hidden structures:The ap-plication of cathodoluminescence and back-scatter electrical im-aging to dating zircons from lower crustal xenoliths [J]. Lithos,1995,36:289-303
    [35]Harris N.B.W and Inger S. Trace element modeling of pelite derived granites [J]. Contrib. Mineral. Petrol.,1992,110:46-56
    [36]Holland T.J.B and Powell R. An internally consistent thermodynamic dataset with uncertainties and correlations:2. data and results[J]. Journal of Metamorphic Geology,1985,3:343-370
    [37]Hoskin P.W.O and Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry [J],2003,53(1): 27-62
    [38]Jahn B.M., Wu F.Y., Lo C.H. et al. Crust-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China [J]. Chemical Geology,1999,157:119-146
    [39]Ji W.H., Li R.S., Chen S.J.,et al. The discovery of Palaeoproterozoic volcanic rocks in the Bulunkuoler Group from the Tianshuihai Massif in Xinjiang of Northwest China and its geological significance [J]. Science China:Earth Science,2011,54(1):61-72
    [40]Jiang Y.H., Jia R.Y., Liu Z., et al. Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen, northwest China:A record of the closure of Paleo-Tethys [J]. Lithos, 2013,156-159:13-30
    [41]Jiang Y.H., Jiang S.Y., Ling H.F., et al. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China:implications for granitoid geneses [J]. Lithos,2002,63:165-187
    [42]Jiang Y.H., Liao S.Y., Yang W.Z., et al. An island arc origin of plagiogranites at Oytag, western Kunlun orogen, northwest China:SHRIMP zircon U-Pb chronology, elemental and Sr-Nd-Hf isotopic geochemistry and Paleozoic tectonic implications [J]. Lithos,2008,106:323-335
    [43]Kay R W and Kay S M.1991. Creation and destruction of lower continental crust[J]. Geologische Rundschan,80:259-278.
    [44]Kay R W and Kay S M.1993. Determination and delaminateion magmatasm[J]. Tectonophysics,219:177-189.
    [45]Keleman P B.1995. Genesis of high Mg# andesite and the continental crust[J]. Conreib. Mineal. Petrol.,120:1-19
    [46]Kriegsman L.M. Partial melting, partial melt extraction, and partial back reaction in anatectic migmatites[J]. Lithos,2001,56:75-96
    [47]Ludwig K.R. Isoplot 3.0-A geochronological toolkit for Microsoft Excel [J]. Berkeley Geochronology Center Spec Pub,2003,4:1-70
    [48]Matte P., Tapponnier P., Arnaud N., et al. Tectonics of Western Tibet, between the Tarim and the Indus [J]. Earth Planet Sci Lett,1996,142:311-330
    [49]Mattern F., Schneider W. Suturing of the Proto-and Paleo-Tethys oceans in the western Kunlun (Xinjiang, China) [J]. J Asian Earth Sci,2000,18:637-650
    [50]Miller C., Schuster R., Klotzli U., et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis [J]. Journal of petrology,1999,40(9): 1399-1424
    [51]Mysen B O.1982. The role of mantle anatexis in Andesites. Thorpe R S, ed. Orogenic Andesites and RelatedRocks[J]. London:John Wiley and Sons,489-522.
    [52]Neves SP, Mariano G, Guimaraes IP, da Silva Filho AF and Melo SC.2000. Intralithospheric differentiation and crustal growth:Evidence from the Borborema province, northeastern Brazil[J]. Geology,28:519-522
    [53]O'Brien P.J. and Rotzler J. High-pressure granulites:formation, recovery of peak conditions and implications for tectonics [J]. J.Metamorphic Geol.,2003,21,3-20
    [54]Pattison D.R.M. Petrogenetic significance of orthopyroxene-free garnet + clinopyroxene+plagioclase±quartz-bearing metabasites with respect to the amphibolite and granulite facies [J]. J. Metamorphic Geol.,2003,21:21-34
    [55]Peccerillo R. and Taylor S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey [J]. Contributions to Mineralogy and Petrology,1976,58:63-81
    [56]Petford N, Paterson B, McCaffrey et al.1996, Melt infiltration and advection in microdioritic enclaves[J]. Eur. J.Mineral.8:405-412.
    [57]Pitcher W S. The nature and Origin of granite[M]. London,1997.
    [58]Pitcher W.S. The nature and origin of granite. London:Chapman and HallPitcher W S. Granite type and tectonic environment [M]. Mountain Building Processes. London:Academic Press,1983:19-40
    [59]Poli G, Tommasini S, Halliday A N.1996. Trace element and isotopic exchange during acid-basic magma interaction processes[J]. Trans. R Soc. Edinburgh: Earth Sci.87:225-232.
    [60]Powell and Holland T.J.B. On thermobarometry [J]. J. Metamorphic Geol., 2008,26:155-179
    [61]Powell R., Holland T., Worley B. Calculating phase diagram involving solid solutions via non-linear equations, with examples using thermocalc [J]. Journal of Metamorphic Geology,1998,16:577-586.
    [62]Rainer Altherr, Albert Holl, Ernst Hegner et al.2000. High-potassium, calc-alkaline I-type plutonism in the European variscides:northern Vosges (France) and northern Schwarzwald (Germany) [J]. Lithos,50:51-73.
    [63]Rapp R.P., Watson E.B., Miller C.F. Partial melting of amphibolite/eclogite and the origin of Archaean trondhjemites and tonalities [J]. Precambrian Research,1991, 5:1-25
    [64]Ratajeski K, Glazner AF, Miller BV.2001. Geology and geochemistry of mafic to felsic plutonic rocks in the Cretaceous intrusive suite of Yosemite Valley, California[J]. Geol. Soc. Am. Bull.,113:1486-1502
    [65]Rickwood P.C. Boundary lines with in petrologic diagram which use oxides of major and minor element [J].Lithos,1989,22:247-263
    [66]Rogers J W and Greenberg J K.1990. Late-orogenic, post-orogenic, and anorogenic granites:distinction by major- element and trace-element chemistry and possible origins[J]. The Journal of Geology,98:291-309.
    [67]Rubatto D. and Gebauer D. Use of cathodoluminescence for U-Pb zir-con dating by IOM Microprobe:Some examples from the western Alps [J]. Cathodoluminescence in Geoscience, Springer-Verlag Berlin Heidelberg, Germany, 2000:373-400
    [68]Rubatto D. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism [J]. Chemical Geology,2002,184: 123-138
    [69]Rudnick RL.1995. Making continental crust[M]. Nature,378:571-578
    [70]Saleeby J, Ducea M and Clemens-Knott D.2003. Production and loss of high-density batholithic root, southern Sierra Nevada, California[J]. Tectonic,22(6) 1064
    [71]Sisson TW, Grove TL and Coleman DS.1996. Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith[J]. Contri. Mineral. Petrol.,126:81-108
    [72]Smithies R.H. and Bagas L. High pressure amphibolite-granulite facies metamorphism in the Paleoproterozoic Rudall complex, central western Australia [J]. Precam Res.1997,83:243-265
    [73]Sun S.S. and McDonough W.F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins [R]. Geological Society Special Publications, 1989,42:313-345
    [74]Sun W.D., Li S.G., Chen Y.D., et al. Time of synorogenic granitoids in the South Qinling, Central China:constraints on the evolution of the Qinling-Dabie orogenic belt [J]. Journal of Petrology,2002,110:457-468
    [75]Sylvester P.J. Post-collisional strongly peraluminous granites [J]. Lithos,1998, 45:29-44
    [76]Tayloy S.R. and Mclennan S.M. The composition and evolution of the continental crust:rare earth element evidence from sedimentary rocks [A]. Phil. Trans. R. Soc. London, A301,1985:381-399
    [77]Watson E.B., Harrison T.M. Zircon saturation revisited:Temperature and composition effect in a variety of crustal magmas types [J]. Earth and Planetary Science Letters,1983,64:295-304
    [78]Watson E.B., Wark D.A. and Thomas J.B. Crstallization thermometers for zircon and rutile [J]. Contrib. Mineral Petrol.,2006,151:413-433
    [79]Wei C.J., Li Y.J., Yu Y., et al. Phase equilibria and metamorphic evolution of glaucophane-bearing UHP eclogites from the western dabieshan terrane, central China[J]. Journal of Metamorphic Geology,2010,28:647-666
    [80]Wei C.J., Powell R. Calculated phase relations in high-pressure metapelites in the System NKFMASH (Na2O-K2O-FeO-MgO-A12O3-SiO2-H2O) with Application to Natural Rocks[J]. J. Petrol.,2004,44:183-202
    [81]Wei C.J., Powell R. Calculated phase relations in the system NCKFMASH (Na2O-CaO-K2O-FeO-MgO-A12O3-SiO2-H2O) for High-pressure metapelites[J]. J. Petrol.,2006,47:385-408
    [82]Wei C.J., Powell R. Phase relations in high-pressure metapelites in the system KFMASH(K2O-FeO-MgO-A12O3-SiO2-H2O) with application to matural rocks[J]. Contrib. Mineral. Petrol.,2003,145:301-315
    [83]Wei C.J., Powell R., Clarke G.L. Calculated phase equilibria for low-and medium-pressure metapelites in the KFMASH and KMnFMASH systems [J]. Journal of Metamorphic Geology,2004,22:495-508
    [84]Wei C.J., Powell R., Zhang L.F. Eclogites from the south Tianshan, NW China: Petrologic characteristic and calculated mineral equilibria in the Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O system[J]. Journal of Metamorphic Geology,2003,21: 163-179
    [85]Wei C.J., Yang Y., Su X.L., et al. Metamorphic evolution of low-T eclogite from the north Qilian orogen, NW China:Evidence from petrography and calculated phase equilibria in system NCKFMASHO [J]. Journal of Metamorphic Geology,2009, 27:55-70
    [86]Whalen JB, Mcnicoll VJ, Van Staal CR, et al.2006. Spatial, temporal and geochemical characteristics ofSilurian collision-zone magmatism, Newfoundland Appalachians:an example of a rapidly evolvingmagmatic system related to slab break-off[J]. Lithos,89:377-404
    [87]White R.W., Powell R. Melt loss and the preservation of granulite facies mineral assembleages [J]. J. Metamorphic Geol.,2002,20:621-632
    [88]White R.W., Powell R., Halpin J.A. Spatially-focused melt formation in aluminous metapelites from Broken Hill, Australia [J]. J. Metamorphic Geol.,2004,22: 825-845
    [89]White R.W., Powell R., Holland J.B. Progress relating to calculation of partial melting equilibria for metapelites [J]. J. Metamorphic Geol.,2007,25:511-527
    [90]White R.W., Powell R., Holland T.J.B. Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH) [J]. J. Metamorphic Geol.,2001,19:139-153
    [91]Whitehouse M.J., Platt J.P. Dating high-grade metamorphism-constraints from rare-earth elements in zircons and garnet [J]. Contrib Mineral Petrol,2003,145:61-74
    [92]Winter JD.2010. An introduction to igneous and metamorphic petrology: Upper Saddle River, NJ, Pearson Prentice-Hall, Pearson Education Inc., p 702Wyllie. 1977. Crustal anatexis:an experimental review[J]. Tectonophysics,43:41-71
    [93]Xiao W.J., Windley B.F., Hao J, et al. Arc-ophiolite obduction in the western Kunlun range (China):Implications for the Palaeozoic evolution of central Asia [J]. J Geol Soc London,2002,159(5):517-528
    [94]Xiao W.J., Windley B.F., Liu D.Y., et al. Accretionary tectonics of the western Kunlun orogen, China:A Paleozoic early Mesozoic, long-lived active continental margin with implications for the growth of southern Eurasia [J]. J Geol,2005,113(6): 687-705
    [95]Yuan H.L., Gao S., Dai M.N., et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS [J]. Chem. Geo.,2008,247:100-118
    [96]Yuan H.L., Gao S., Liu X.M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry [J]. Geostandards and Geoanlytical Research,2004,11:357-370
    [97]Zhang A.D., Liu L., Chen D.L., et al. SHRIMP U-Pb dating of zircons and its geological significance from UHP granitoid gneiss in Altyn Tagh [J]. Chinese Science Bulletin,2004,49(23):2527-2532
    [98]Zhang J.X., Mattinson C.G., Meng F.C.. et al. An early Paleozoic HP/HT granulite-garnet peridotite association in the south Altyn Tagh, NW China P-T history and U-Pb geochronology [J]. J Metamorphic Geology,2005,23:491-510
    [99]鲍佩声,肖序常,王军,等.西藏中北部双湖地区蓝片岩带及其构造涵义[J].地质学报,1999,73:302-314.
    [100]毕华,王中刚,王元龙,等.西昆仑造山带构造-岩浆演化史[J].中国科学D辑:地球科学,1999,29(5):398-406
    [101]曹玉亭,刘良,王超,等.阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U-Pb定年及Hf同位素组成[J].岩石学报,2010,26(11):3259—3271
    [102]常承法,潘裕生,郑锡澜,等.青藏高原地质构造[M].北京,科学出版社,1982:77—81
    [103]常承法,郑锡澜.中国西藏南部珠穆朗玛峰地区地质构造特征以及青藏高原东西向诸山系形成的探讨[J]中国科学,1973,(2):190—-203
    [104]车自成,刘良,罗金海.中国及其邻区区域大地构造学[M].北京:科学出版社,2002:354—386
    [105]邓希光,丁林,刘小汉.藏北羌塘中部冈玛日—桃形错蓝片岩地发现[J].地质科学,2000,35:227-332
    [106]第五春荣,孙勇,袁洪林,等.河南登封地区嵩山石英岩碎屑锆石U-Pb年代学、Hf同位素组成及其地质意义[J].科学通报,2008,53(16):1923—1934
    [107]董申保,洪大卫,许保良.2001.花岗岩拓扑学的研究展望[J].地质论评,47(4):356-360
    [108]董申保,田伟.2007.花岗岩研究的反思[J].高校地质学报,13(3):353-361
    [109]董显扬,李行,叶良和.中国超镁铁质岩[M].北京:地质出版社,1995:38—50
    [110]方锡廉,汪玉珍.西昆仑加里东期花岗岩类浅识[J].新疆地质,1990,8(2):153—158
    [111]冯昌荣,吴海才,陈勇.新疆塔什库尔干县赞坎铁矿地质特征及成因浅析 [J].大地构造与成矿学,2011,35(3):404-409
    [112]高天山,陈江峰,谢智,等.苏鲁超高压变质带中三叠纪石岛杂岩体的地球化学研究[J].岩石学报,2004,20(5):1025—1038
    [113]韩宝福.2007.后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J].地学前缘,14(3):64-72.
    [114]河南省地质调查院.中华人民共和国1:25万塔什库尔干塔吉克自治县幅(J43C003003)、克克吐鲁克幅(J43C003002)、叶城县幅(J43C003004)区域地质调查报告.2004
    [115]洪大卫,王式,韩宝福,等.1995.碱性花岗岩的构造分类及其鉴别标志[J].中国科学(B辑).25(4):418-426
    [116]胡建卫,庄道泽,杨万志.新疆西南部塔什库尔干地区赞坎铁矿综合信息预测模型及其在区域预测中的应用[J].地质通报,2010,29(10):1495—1503
    [117]胡克,李才,程立人,等.西藏羌塘中部冈玛错-双湖蓝片岩带及其构造意义[J].长春地质学院学报,1995,25(3):268-274
    [118]姜春发,王宗启,李锦轶,等.中央造山带开合构造[M].北京:地质出版社,2000.47—68
    [119]姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M].北京:地质出版社,1992.58—217
    [120]姜耀辉,杨万志.西昆仑A型花岗岩带的发现及其地球动力学意义[J].地质论评,2000,46(3):235—244
    [121]柯珊,莫宣学,罗照华,等.塔什库尔干新生代碱性杂岩的地球化学特征及岩石成因[J].岩石学报,2006,22(4):905-915
    [122]李博秦,计文化,边小卫,等.西昆仑麻扎构造混杂岩的组成及其地质意义[J].现代地质,2007,21(1):78—85
    [123]李博秦,姚建新,计文化,等.西昆仑叶城南部麻扎地区弧火成岩的特征及其锆石SHRIMP U-Pb测年[J].地质通报,2006,25(1-2):124-132
    [124]李才,程立人,胡克,等.西藏龙木错-双湖古特提斯缝合带研究[M],北京:地质出版社,1995
    [125]李才,翟庆国,陈文,等.青藏高原羌塘中部榴辉岩Ar—Ar定年[J].岩石学报,2006b,22(12):2843-2849.
    [126]李才,翟庆国,董永胜,等.冈瓦纳大陆北缘早期的洋壳信息——来自青藏高原羌塘中部早古生代蛇绿岩的依据[J].地质通报,2008,27(10):1605-1612
    [127]李才,翟庆国,董永胜,等.青藏高原羌塘中部榴辉岩的发现及其意义[J].科学通报,2006a51(1):70-74.
    [128]李才.龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J].长春地质学院学报,1987,17(2):155-166
    [129]李荣社,计文化,杨永成,等.昆仑山及邻区地质[M].北京:地质出版社,2008.1-5
    [130]李曙光,孙卫东,张国伟,等.南秦岭勉略构造带黑峡沟变质火山岩的年代学和地球化学—古生代洋盆及其闭合时代的证据[J].中国科学(D辑),1996,26(3):223—230
    [131]李献华,李武显,李正祥.2007.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报,52(9):981-991
    [132]李献华,李武显,王选策,等.2009.幔源岩浆在南岭燕山早期花岗岩形成中的作用:锆石原位Hf-O同位素制约[J].中国科学D辑:地球科学,39(7):872-887
    [133]李向民,马忠平,孙吉明,等.阿尔金断裂南缘约马克其镁铁-超镁铁岩的性质和年代学研究[J].岩石学报,2009,25(4):862—872
    [134]李永安,李向东,孙东江,等.中国新疆西南部喀喇昆仑羌塘地块及康西瓦构造带构造演化[J].乌鲁木齐:新疆科技卫生出版社,1995.1—100
    [135]林广春,马昌前.2003.过铝花岗岩的成因类型与构造环境研究综述[J].华南地质与矿产,1:65-70.
    [136]刘良,车自成,罗金海,等.阿尔金西段榴辉岩的确定及其地质意义[J].科学通报,1996,41(16):1458—1488
    [137]刘良,车自成,王焰,等.阿尔金高压变质岩带的特征及其构造意义[J].岩石学报,1999,15:57—64
    [138]刘良,车自成,王焰,等.阿尔金茫崖地区早古生代蛇绿岩的Sm-Nd等时线年龄证据[J].科学通报,1998,43(8):880—883
    [139]刘良,周鼎武,董云鹏,等.东秦岭松树沟高压变质基性岩石及其退变质作用的p-T-t演化轨迹[J].岩石学报,1995,11(2):127-136
    [140]刘良,周鼎武.东秦岭商南松树沟高压基性麻粒岩的发现及初步研究[J].地质学报,1994,9(17):1599-1601
    [141]刘强,杨坤光,张传林,等.西昆仑康西瓦断裂显微构造特征及其地质意义[J].矿物岩石,2003,23(3):26—30
    [142]刘宇,匡爱兵,张静.新疆塔什库尔干县老并—赞坎—塔吐鲁沟一带铁矿床地质特征及成因浅析[J].矿物学报,2011,31(Suppl 1):373-375
    [143]陆松年,于海峰,赵凤清,等.青藏高原北部前寒武纪地质初探[M].北京:地质出版社,2002:21-33
    [144]马昌前,佘振兵,张金阳,等.2006.地壳根、造山热与岩浆作用[J].地学前缘,13(2):130-139.
    [145]马昌前,张金阳,佘振兵,等.2005.大别山南、北坡古生代双岩浆带及其构造意义[J].矿物岩石地球化学通报,24(增刊):190.
    [146]马昌前,明厚利,杨坤光.2004.大别山北麓的古生代岩浆弧:侵入岩年代学和地球化学证据.岩石学报[J].20(3):393—402.
    [147]马昌前.2003.造山岩套中镁铁质和长英质岩浆的相互作用研究进展[J].地质科技情报,22(3):1-8.
    [148]潘桂棠,王立全,尹福光,等.从多岛弧盆系研究实践看板块构造登陆的魅力[J].地质通报,2004,23:933-939
    [149]潘裕生,李幼铭,李立敏,等.喀喇昆仑山-昆仑山地区地质演化[M].北京:科学出版社,2000:21-98
    [150]潘裕生,王毅,Matte P.H.,等.青藏高原叶城-狮泉河路线地质特征及区域构造演化[J].地质学报,1994,68(4):295—307
    [151]潘裕生,周伟明,许荣华,等.昆仑山早古生代地质特征与演化[J].中国科学D辑:地球科学,1996,26:302-307
    [152]潘裕生,王毅,Matte Ph,等.青藏高原叶城-狮泉河路线地质特征及区域构造演化[J].地质学报,1994,68(4):295~307
    [153]潘裕生.昆仑山区构造区划初探[J].自然资源学报,1989,4(3):196—203
    [154]潘裕生.西昆仑山构造特征与演化[J].地质科学,1990,25(3):224—232
    [155]秦江锋,赖绍聪,李永飞,等.扬子板块北缘阳坝岩体锆石饱和温度的计算及其意义[J].西北地质,2005,38(3):1—5
    [156]曲军峰,张立飞,艾永亮,等.西昆仑塔什库尔干高压麻粒岩PT轨迹、SHRIMP锆石定年及其大地构造意义[J].中国科学D辑:地球科学,2007,37:429—441
    [157]汪玉珍,方锡廉.西昆仑山、喀喇昆仑花岗岩类时空分布规律的初步探讨[J].新疆地质,1987,5(1):9—24
    [158]王德滋,沈渭洲.2003.中国东南部花岗岩成因与地壳演化[J].地学前缘,10(3):209-220.
    [159]王德滋,舒良树.2007.花岗岩构造岩浆组合[J].高校地质学报,13(3):362-370.
    [160]王德滋,周金城.1999.我国花岗岩研究的回顾与展望[J].岩石学报,15(2):161-169
    [161]王东安.西昆仑赛力亚克混杂堆积中砂岩块体的主要特点[J].岩石学报,1995,11(1):93—100
    [162]王建平.西昆仑塔什库尔干混杂岩的地质特征及其大地构造意义[J].地质通报,2008,27(12):2057—2066
    [163]王建平.西昆仑塔什库尔干混杂岩地质特征及其大地构造意义[D].北京:中国地质大学,2008
    [164]王仁民,陈珍珍,陈飞.恒山灰色片麻岩和高压麻粒岩及其地质意义[J],岩石学报,1991,4:119-131
    [165]王守斌.阿克陶孜洛依铁矿床特征及其矿床模型[D].新疆:新疆大学,2012
    [166]魏春景,张翠光,张阿利,等.辽西建平高压麻粒岩变质作用的P-T条件及其地质意义[J].岩石学报,2001,17:269-282
    [167]魏春景.21世纪最初十年变质岩石学研究进展.矿物岩石地球化学通报[J],2012,31(5):415-427
    [168]吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217—1238
    [169]吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007,23(2):185—220
    [170]吴锁平,吴才来,陈其.阿尔金断裂南侧吐拉铝质A型花岗岩的特征及构 造环境[J].地质通报,2007,26(10):1385—1392
    [171]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589—1604
    [172]向华.北秦岭-桐柏造山带早古生代多期次变质作用及构造演化[D].武汉:中国地质大学(武汉),2012
    [173]肖文交,侯泉林,李继亮,等.西昆仑大地构造相解剖及其多岛增生过程[J].中国科学D辑:地球科学,2000,30(增刊):21—28
    [174]新疆地质矿产局第一区调大队.新疆同位素年龄数据汇编[M].新疆地质,1987,5(4):16~106
    [175]新疆地质矿产局第一区调大队四分队.新藏公路(新疆境内)沿线地质调查报告(1:1000000)[M].1983.184-286
    [176]新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志[M].北京:地质出版社,1982:14—15
    [177]徐夕生,周新民,王德滋.1999.壳幔作用与花岗岩成因[J].高校地质学报,5(3):241-250.
    [178]徐夕生.2008.华南花岗岩-火山岩成因研究的几个问题[J].高校地质学报,14(3):283-294.
    [179]许文良,王冬艳,王清海,等.2002.徐淮地区早侏罗世侵入杂岩体中榴辉岩类包体的发现及其地质意义[J].科学通报,8:618-622.
    [180]许文良,王冬艳,王清海,等.2003.鲁西中生代闪长岩中两类幔源捕虏体的岩石学和地球化学[J].岩石学报,19(4):623-636.
    [181]许文良,杨承海,杨德彬,等.2006.华北克拉通东部中生代高Mg闪长岩—对岩石圈减薄机制的制约[J].地学前缘,13(2):120-129
    [182]许志琴,戚学祥,刘福来,等.西昆仑康西瓦加里东期孔兹岩系及地质意义[J].地质学报,2004,78(6):733—743
    [183]燕长海,曹新志,张旺生,等.帕米尔式铁矿床[M].北京:地质出版社,2012:1-250
    [184]杨坤光,刘强,张传林,等.西昆仑康西瓦断裂带新发现的麻粒岩[J].地质科技情报,2003,22(1):100—104
    [185]袁超,孙敏,李继亮.西昆仑中带两个花岗岩岩体的年龄和可能的源区[J]. 科学通报,1999,44(5):534—538
    [186]翟明国,郭敬辉,闫月华,等.中国华北太古宙高压基性麻粒岩的发现及其初步研究[J].中国科学(B),1992,12:1325-1330
    [187]翟庆国,李才,黄小鹏.西藏羌塘角木日地区二叠纪蛇绿岩地质特征及构造意义[J].地质通报,2004,23(12):1228-1230
    [188]翟庆国,李才,黄小鹏.西藏羌塘中部古特提斯洋残片——来自果干加山变质基性岩地球化学证据[J].中国科学(D辑),2007,37(7):866-872
    [189]翟庆国,李才,王军,等.藏北羌塘中部戎玛地区蓝片岩岩石学、矿物学和40Ar/39Ar年代学[J].岩石学报,2009,25(09):2281-2288.
    [190]张传林,陆松年,于海峰,等.青藏高原北缘西昆仑造山带构造演化:来自锆石SHRIMP及LA-ICP-MS测年的证据[J].中国科学D辑:地球科学,2007,37(2):145-154
    [191]张传林,于海锋,王爱国,等.西昆仑西段三叠纪两类花岗岩年龄测定及其构造意义[J].地质学报,2005,79(5):645—652
    [192]张旗,潘国强,李承东,等.2007.花岗岩构造环境问题:关于花岗岩研究的思考之三[J].岩石学报,23(11):2683-2698.
    [193]张旗,周国庆.中国蛇绿岩[M].北京:科学出版社,2001:1—182
    [194]张玉泉,谢应雯.三十里营房地区花岗岩类Rb-Sr等时年龄研究[J].自然资源学报,1989,4(3):222—227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700